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Abstract A coupling strategy between hybridizable discontinuous Galerkin
(HDG) and continuous Galerkin (CG) methods is proposed in the frame-
work of second-order elliptic operators. The coupled formulation is imple-
mented and its convergence properties are established numerically by us-
ing manufactured solutions. Afterwards, the solution of the coupled Navier–
Stokes/convection-diffusion problem, using Boussinesq approximation, is for-
mulated within the HDG framework and analysed using numerical experi-
ments. Results of Rayleigh–Bénard convection flow are also presented and
validated with literature data. Finally, the proposed coupled formulation be-
tween HDG and CG for heat equation is combined with the coupled Navier–
Stokes/convection diffusion equations to formulate a new CG-HDG model for
solving conjugate heat transfer problems. Benchmark examples are solved us-
ing the proposed model and validated with literature values. The proposed
CG-HDG model is also compared with a CG-CG model, where all the equa-
tions are discretized using the CG method, and it is concluded that CG-HDG
model can have a superior computational efficiency when compared to CG-CG
model.
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1 Introduction

Conjugate heat transfer problem describes the variations of temperature in
fluid and solid domains in a coupled system. In solids, conduction is the dom-
inant phenomenon, whereas in fluids, convection usually prevails. There are
plenty of applications of conjugate heat transfer models [19], like designing
effective heat exchangers, forced convection regimes, etc. The temperature
variation in solid is described by the heat conduction equation, whereas the
fluid’s is described by Navier–Stokes and energy equations. The solution of
these problems, however, is far from trivial as convection dominated regimes
in fluids may develop sharp fronts and boundary layers. In solids, the solu-
tion to the conduction equation is relatively smooth in the absence of strong
non-linearities in the material properties, which can depend on temperature.

Continuous Galerkin (CG) finite element methods are widely used in com-
putational mechanics. However, for convection dominated problems, CG meth-
ods might pose stability issues. Discontinuous Galerkin (DG) finite element
methods, originally developed for hyperbolic equations [41], offer some inter-
esting features in this context: (i) local conservation, as they are based on satis-
fying conservation principles element-by-element, (ii) ability to handle hanging
nodes, thereby making the implementation of adaptive algorithms relatively
easier and (iii) ready parallelization. However, DG methods for problems in-
volving self-adjoint operators, such as Interior Penalty Methods (IPM) [5],
Local Discontinuous Galerkin (LDG) methods [13] and Compact Discontin-
uous Galerkin (CDG) methods [39] are often criticised for having a higher
number of degrees of freedoms (DOFs).

With the introduction of Hybridizable Discontinuous Galerkin (HDG) meth-
ods [11] in the framework of second-order elliptic problems, the mentioned
drawback of the DG methods is addressed. The hybridization technique in the
case of HDG methods leads to significant reduction in number of DOFs in
the final system. HDG method have also been successfully applied to Navier–
Stokes problems [35] and convection-diffusion equations [10] providing stable
solutions in convection dominated problems, with a very competitive number
of DOFs when compared to CG methods [37].

This manuscript proposes two coupled CG-HDG formulations for the solu-
tion of conjugate heat transfer problems. A HDG discretization is considered
for the fluid domain, taking advantage of the superior stability properties of
DG methods, while keeping a competitive DOF count. A CG formulation is
considered for the discretization of the heat equation in the solid domain,
where no stabilization is required. Both formulations are set together with a
proper coupled weak form.

Several formulations coupling CG with DG methods have been proposed
in the literature: for the simulation of rotating electrical machines, motivated
by the ability of DG methods to handle hanging nodes on non-matching in-
terfaces [2], for second-order elliptic problems [40], for shallow water prob-
lems [15,16,17,7], for poroelasticity with an adaptive penalty scheme [31],
and for advection-diffusion-reaction problems [8], among others. The LDG
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method has been coupled to CG formulations for transport problems [14] and
for convection-diffusion problems in [51,50,49].

As far as the knowledge of the authors, coupled CG-HDG scheme has
not been proposed yet in any framework. Hence, the present work focuses
on the coupling of HDG with CG in the context of conjugate heat transfer
problems, aiming to combine the favourable features of both CG and HDG
methods. To accomplish this goal, a coupled formulation with HDG in the
fluid domain and CG in the solid domain is first developed for the steady state
heat equation in section 3. Then, a HDG formulation for the coupled Navier–
Stokes and convection-diffusion equations in the fluid domain is presented and
analysed numerically, in section 4. Finally, in section 5, the HDG formulation
for the fluid domain is coupled, through the convection-diffusion equation, to
the heat transfer equation in the solid domain, to solve conjugate heat transfer
problems.

2 Notation

Most of the algebra presented in this text is expressed in symbolic (also fre-
quently referred to as direct, intrinsic or absolute) notation [24]. The usual
matrix and indicial notation are sometimes employed in specific cases.

Throughout the text italic Latin or Greek lowercase letters (a, b, . . . α, β, . . .)
denote scalar quantities, bold italic Latin or Greek lowercase letters (a, b, . . .α,β, . . .)
denote vectors and bold italic Latin or Greek capital letters (A,B, . . .) denote
second-order tensors in a d-dimensional Euclidean space.

Rectangular and single-column matrices built of tensor components on
orthogonal frames are expressed by boldface upright Latin or Greek letters
(A,B, . . .a,b . . .ρ,λ . . .). The scalar products used in the present paper are
(·, ·)D and 〈·, ·〉B , which represents the L2 scalar product in any domain,D, and
over any boundary, B, respectively. Let the domain, Ω, be split into two sub-
domains, ΩD and ΩC , such that Ω̄ = Ω̄D∪Ω̄C with an interface ΓI = Ω̄D∩Ω̄C ,
as shown in fig. 1. In this work, HDG discretization will be considered in ΩD,
and CG formulation is stated in ΩC . The domain Ω is assumed to be divided
into nel elements, Ωe, with the boundaries ∂Ωe.

Ω̄ =

nel⋃
e=1

Ω̄e, Ωe ∩Ωk = ∅ for e 6= k, (1)

The elements in ΩD and ΩC are represented as ΩeD and ΩeC , respectively, while
the exterior boundaries are denoted by ΓD and ΓC , respectively. The union of
all faces in ΩD is denoted as

Γ =

mel⋃
e=1

∂ΩeD, (2)

where mel is the number of elements in ΩD.
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Fig. 1: Domain representation: HDG and CG discretizations are considered in
ΩD and ΩC , respectively.

Let w and z be generic vector and scalar fields, respectively, defined over
Ω. Their error norms are computed as follows,

||ew||L2(Ω) =

[∫
Ω

(wex −wnum) · (wex −wnum) dΩ

]1/2
,

||ez||L2(Ω) =

[∫
Ω

(zex − znum)2 dΩ

]1/2
,

(3)

where suffixes ex and num stand for exact and numerical values.

3 CG-HDG coupled formulation for the heat equation

This section presents suitable formulations for the solution of the heat equation
coupling HDG discretization in ΩD and CG discretization in ΩC .

3.1 Governing equations

The heat equation in ΩD and ΩC , along with the transmission conditions on
ΓI , are

qD + (kD grad θD) = 0 in ΩD, (4a)

div qD = ḡD in ΩD, (4b)

−div (kC grad θC) = ḡC in ΩC , (4c)

θD = θ̄D on ΓD, (4d)

θC = θ̄C on ΓC , (4e)

θD − θC = 0 on ΓI , (4f)

qD · nD − (kC grad θC) · nC = 0 on ΓI , (4g)

where θD and θC are the temperatures in ΩD and ΩC , respectively and qD
is the independently approximated flux in ΩD. Heat conductivity coefficients
are denoted by kD, kC , heat generations per unit volume are given by ḡD, ḡC ,
where the subscriptsD and C denote that quantities are defined inΩD andΩC ,
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ΩD ΩCΓI

Fig. 2: Representation of a computational mesh for coupled discretization.
Green triangles represent the HDG local elemental variables while the red
edges correspond to HDG trace variable. CG mesh is represented in blue and
ΓI is represented in black.

respectively. Unit normal vectors on ΓI , nD and nC , are outward vectors toΩD
and ΩC , respectively, which satisfy nD = −nC . Dirichlet boundary conditions
are prescribed with values θ̄D and θ̄C for both sub-domains on the exterior
boundaries to simplify the presentation. The extension of the formulation to
problems including Neumann boundary conditions on the exterior boundary
is straightforward following the usual procedure for HDG or CG formulations.

Equation (4f) represents the continuity of θ, whereas (4g) states the equi-
librium of the normal flux across the interface.

3.2 Weak formulation of the CG-HDG coupled problem

As shown in fig. 2, in ΩC the temperature field, θC , is approximated with a
continuous space on the mesh represented in blue, while in the HDG domain,
ΩD, the elemental variables θD and qD are approximated within each element
represented in green and a new independently approximated trace variable,
θ̂D, is defined along the red edges (mesh skeleton).

The CG weak form of the heat equation in ΩC is,

(grad δθC , kC grad θC)ΩC
−〈δθC , kC (grad θC · nC)〉ΓI

− (δθC , ḡC)ΩC
= 0, (5)

where δθC = 0 on ΓC . Equation (5) is obtained after multiplying equation (4c)
with δθC and performing integration by parts.

For the HDG domain, ΩD, the discrete problem is expressed as element-
by-element local problems and the so-called global problem (see [11] for more
details). Note that the only difference of equations (8) with the standard HDG
local problem is that the Dirichlet data, that is imposed in weak is

θD =

{
θ̂D on ∂ΩeD\ΓI ,
θC on ∂ΩeD ∩ ΓI .

(6)
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For the elements along the interface, no trace variables are considered, as
illustrated in fig. 2. For elements in the interior of ΩD, the local problem is
the standard one, with a weak imposition of θD = θ̂D on ∂ΩeD. The Dirichlet
boundary condition (6) ensures the weak continuity of the temperature, i.e.,
the transmission condition (4f) on ΓI . The HDG numerical normal flux, q̂D ·n,
is defined as,

q̂D · n =

{
qD · n+ τ(θD − θ̂D) on ∂ΩeD\ΓI ,
qD · nD + τ(θD − θC) on ∂ΩeD ∩ ΓI .

(7)

Therefore, the local problem in each element can be written as,

(δθD,div qD)Ωe
D

+
〈
δθD, τ(θD − θ̂D)

〉
∂Ωe

D\ΓI

+ 〈δθD, τ(θD − θC)〉∂Ωe
D∩ΓI

− (δθD, ḡD)Ωe
D

= 0,(
δqD, k

−1
D qD

)
Ωe

D

− (div δqD, θD)Ωe
D

+
〈
δqD · n, θ̂D

〉
∂Ωe

D\ΓI

+ 〈δqD · nD, θC〉∂Ωe
D∩ΓI

= 0,

(8)

where θ̂D is an independently approximated trace variable along the mesh
skeleton, Γ , which is represented in red in fig. 2, and τ is a parameter of
order O(kD). Parameter τ has an important effect on stability, accuracy and
convergence properties of the HDG method (see [10,36]). As usual in HDG,
the local problem can be solved element-by-element to express θD and qD in

terms of θ̂D and, in the present case, θC as well.
The global problem in ΩD is the usual HDG global problem, which can be

presented as

mel∑
e=1

〈
δθ̂D, q̂D · n

〉
∂Ωe

D\ΓI

= 0, (9a)

θ̂D = P2(θ̄D) on ΓD, (9b)

where δθ̂D = 0 on ΓD, P2(θ̄D) is the L2 projection of the Dirichlet data into
the approximation space on ΓD.

Essentially, the global problem (9a) states the so-called conservativity con-
dition, i.e, the weak continuity of the normal flux across all the interior faces
of the mesh in ΩD. The continuity of the fluxes on the interface, ΓI , i.e., equa-
tion (4g), is imposed between the numerical normal flux of HDG, q̂D · nD,
which is defined in equation (7) and the flux on the interface from ΩC , which
is −kC grad θC · nC , leading to,

−〈δθC , qD · nD + τ(θD − θC)〉ΓI
+ 〈δθC , kC grad θC · nC〉ΓI

= 0. (10)

By summing equation (10) to the weak form of CG in ΩC (5), and using the
weak formulation of HDG, (8) and (9), in ΩD, the coupled discrete problem is
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obtained: find (qD, θD, θ̂D, θC) ∈
[
Vh
]d×Vh×Λh×Vhc such that θ̂D = P2(θ̄D)

on ΓD, θC = Πh(θ̄C) on ΓC and

(δθD,div qD)Ωe
D

+
〈
δθD, τ(θD − θ̂D)

〉
∂Ωe

D\ΓI

+ 〈δθD, τ(θD − θC)〉∂Ωe
D∩ΓI

− (δθD, ḡD)Ωe
D

= 0,(
δqD, k

−1
D qD

)
Ωe

D

− (div δqD, θD)Ωe
D

+
〈
δqD · n, θ̂D

〉
∂Ωe

D\ΓI

+ 〈δqD · nD, θC〉∂Ωe
D∩ΓI

= 0,

(11a)

for e = 1, . . . ,mel and,
mel∑
e=1

〈
δθ̂D,

(
qD · n+ τ(θD − θ̂D)

)〉
∂Ωe

D\ΓI

= 0, (11b)

(grad δθC , kC grad θC)ΩC
− 〈δθC , qD · nD + τ (θD − θC)〉ΓI

− (δθC , ḡC)ΩC
= 0.

(11c)

for all (δqD, δθD, δθ̂D, δθC) ∈
[
Vh
]d ×Vh ×Λh ×Vhc such that δθ̂D = 0 on ΓD

and δθC = 0 on ΓC , where the discrete spaces are defined as

Vh :=
{
v ∈ L2(ΩD) : v|Ωe ∈ Pk(Ωe) ,∀Ωe ⊂ ΩD

}
,

Λh :=
{
v̂ ∈ L2(Γ\ΓI) : v̂|Γi ∈ Pk(Γi) ,∀Γi ⊂ Γ

}
,

Vhc :=
{
v ∈ H1(ΩC) : v|Ωe ∈ Pr(Ωe) ,∀Ωe ⊂ ΩC

}
.

(12)

As usual in HDG, the spaces for approximation in ΩD, Vh and Λh, consider
polynomials of the same degree k for all variables. Numerical tests in section 3.5
show that the HDG super-convergence cannot be retained by the coupling
with the CG approximation of same degree, r = k. However, as expected,
convergence rates of order k + 2 for the solution, and of order k + 1 for the
flux, are obtained when higher degree r = k + 1 is considered for the CG
approximation space Vhc .

The discretization of the system of equations in (11) gives rise to a matrix
equation of the form

Aθ̂θ̂ 0 Aθ̂θ Aθ̂q

0 Kθθ BT
θθ Bθq

Aθθ̂ Bθθ Aθθ Aθq

Aqθ̂ Bqθ Aqθ Aqq



θ̂D
θC
θD
qD

 =


0

ḡC
ḡD
0

 . (13)

The column vectors θD,qD, θ̂D and θC contain the DOFs associated to θD, qD, θ̂D
and θC , respectively. Static condensation is assumed for the CG discretization,
expressing the nodal values of interior nodes of the element in terms of the
nodal values on the edges. The elemental matrices in equation (13) are defined
in the appendix.

As it is well explained in the literature, one of the attractive features of
HDG is being able to express the local variables, θD and qD, in terms of the
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trace variable θ̂D. This is done by using static condensation technique applied
in an element-by-element fashion (see, for instance [44]). In the present case,

θ̂D and θC are coupled at the interface and hence, the local variables, θD and
qD, in the HDG domain ΩD are expressed in terms of θ̂D and θC . Therefore,
system (13) can be expressed as follows,{

θD
qD

}
=

[
Aθθ Aθq

Aqθ Aqq

]−1({
ḡD
0

}
−
[
Aθθ̂ Bθθ

Aqθ̂ Bqθ

]{
θ̂D
θC

})
, (14a)

[
Aθ̂θ Aθ̂q

BT
θθ Bθq

]{
θD
qD

}
+

[
Aθ̂θ̂ 0
0 Kθθ

]{
θ̂D
θC

}
=

{
0

ḡC

}
. (14b)

Equation (14a) is the so-called HDG local solver, which can be computed
element-wise owing to the fact that the equations corresponding to the local
problem of an element do not involve elemental variables of other elements i.e.,
the inverted matrix is block diagonal. By replacing equation (14a) in (14b),

θD and qD are eliminated resulting in a system with unknowns only in θ̂D
and θC : [

KDD KDC

KCD KCC

]{
θ̂D
θC

}
=

{
fD
fC

}
, (15)

where[
KDD KDC

KCD KCC

]
=

[
Aθ̂θ̂ 0
0 Kθθ

]
−
[
Aθ̂θ Aθ̂q

BT
θθ Bθq

] [
Aθθ Aθq

Aqθ Aqq

]−1 [
Aθθ̂ Bθθ

Aqθ̂ Bqθ

]
,

(16a)

{
fD
fC

}
=

{
0

ḡC

}
−
[
Aθ̂θ Aθ̂q

BT
θθ Bθq

] [
Aθθ Aθq

Aqθ Aqq

]−1{
ḡD
0

}
. (16b)

After solving the system in (15) for θ̂D and θC , the HDG elemental local
variables, θD and qD, and the CG nodal values of the interior nodes can be
computed by using (14a), and the CG static condensation.

3.3 Alternative CG-HDG coupled formulation with a projection operator on
the interface

The coupled formulation presented earlier considers the standard HDG local
problem for the elements that do not share the interface, ∂ΩeD ∩ΓI = ∅, and a
non-standard HDG local problem imposing (6) in weak form for elements along
the interface, ∂ΩeD ∩ ΓI 6= ∅. In terms of implementation, additional matri-
ces, Bθθ and Bθq, in the elements along the interface boundary ΓI are needed
for the non-standard HDG local solver. An alternative coupling formulation
is proposed in this section to keep the implementation changes to minimum
in any existing HDG and CG codes. The main idea in this formulation is to
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use a projection to satisfy the transmission conditions. This formulation only
requires the standard elemental matrices from HDG (after static condensation
of local variables into trace variable) and CG domains, and a projection oper-
ation is used on the HDG elemental matrices before assembling into the global
system. This requires minimal changes to the existing codes and it is noticed
that, in the numerical results, this implementation gives practically the same
results as the earlier one with same convergence rates.

In this case, the Dirichlet boundary conditions for the local problem are
defined as follows,

θD =

{
θ̂D on ∂ΩeD\ΓI ,
P2(θC) on ∂ΩeD ∩ ΓI ,

(17)

where in equation (17) the operator P2 stands for the L2 projection from the
CG space Vhc to the HDG space Vh. Hence, the trace is set to the projection

of the CG solution on the faces along the interface, i.e., θ̂D = P2(θC) on
∂ΩeD ∩ ΓI . Consequently, the numerical normal flux is defined as,

q̂D · n =

{
qD · n+ τ(θD − θ̂D) on ∂ΩeD\ΓI ,
qD · nD + τ(θD − P2(θC)) on ∂ΩeD ∩ ΓI .

(18)

The jump of fluxes along the interface is weighted with P2 (δθC) leading to,

−〈P2 (δθC) , qD · nD + τ (θD − P2 (θC))〉ΓI
+〈P2 (δθC) , kC grad θC · nC〉ΓI

= 0.
(19)

Using (17) and (19), the weak formulation of the coupled discrete problem

becomes: find (qD, θD, θ̂D, θC) ∈
[
Vh
]d×Vh×Λh×Vhc such that θ̂D = P2(θ̄D)

on ΓD, θC = Πh(θ̄C) on ΓC and

(δθD,div qD)Ωe
D

+
〈
δθD, τ(θD − θ̂D)

〉
∂Ωe

D\ΓI

+ 〈δθD, τ(θD − P2 (θC))〉∂Ωe
D∩ΓI

− (δθD, ḡD)Ωe
D

= 0,(
δqD, k

−1
D qD

)
Ωe

D

− (div δqD, θD)Ωe
D

+
〈
δqD · n, θ̂D

〉
∂Ωe

D\ΓI

+ 〈δqD · nD,P2 (θC)〉∂Ωe
D∩ΓI

= 0,

(20a)

for e = 1, . . . ,mel and,
mel∑
e=1

〈
δθ̂D,

(
qD · n+ τ(θD − θ̂D)

)〉
∂Ωe

D\ΓI

= 0, (20b)

(grad δθC , kC grad θC)ΩC
− 〈P2 (δθC) , qD · nD + τ (θD − P2 (θC))〉ΓI

+ 〈(P2 (δθC)− δθC), kC grad θC · nC〉ΓI
− (δθC , ḡC)ΩC

= 0.
(20c)

for all (δqD, δθD, δθ̂D, δθC) ∈
[
Vh
]d ×Vh ×Λh ×Vhc such that δθ̂D = 0 on ΓD

and δθC = 0 on ΓC .
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The weak form in equations (20) is similar to one presented earlier in equa-
tions (11) except for two major differences. First, θC is now replaced by its pro-
jection, P2(θC), in the HDG local problems (20a), and, second, an additional
term 〈(P2 (δθC)− δθC), kC grad θC · nC〉ΓI

appears in the last equation (20c).
The implementation of this new term maybe cumbersome, because it requires
the computation of the gradient of the CG elemental basis functions on the
integration points on the interface. However, P2 (δθC)−δθC = O(hk+1), where
h is the mesh size and k is degree of approximation, and therefore, this term
can be safely neglected in the discrete problem without losing neither the
convergence nor the accuracy of the solution.

This formulation does not require the computation of the new matrices that
arise in (11), namely Bθθ and Bθq. The projection operation can be done in
an element-by-element basis on the HDG elemental matrices for the elements
along the interface boundary. For the sake of simplifying the presentation the
nodal values of the CG approximation, θC , are split into values for nodes on
the interface, θIC , and the remaining CG nodal values, θiC . The global stiffness
matrix can be then represented as, KDD KDIP 0

PTKID PTKD
IIP + KC

II KIC

0 KCI KCC


θ̂D
θIC
θiC

 =

 fD
PT fDI + fCI

fC

 , (21)

where in equation (21), P is the assembly of projection matrices on all the
faces along the interface. This implementation can be easily plugged into any
existing HDG solver for heat equation.

Both coupled formulations (11) and (20) have been implemented and the
comparison of the numerical results inferred that both are practically identical.
In some tests, the first proposed formulation (11) gave slightly smaller errors.
The difference might be due to neglecting the term P2 (δθC)− δθC in the last
formulation (20). However, the difference in the errors — even for the coarsest
mesh — is negligible and, hence, in all the results presented in this work, the
formulation with projection (20) is used neglecting the term P2 (δθC)− δθC .

3.4 Implementation details

In all the results presented in the current work the shape functions that are
used to approximate the variables inside each element are generated using
Fekete nodal distributions [46] for triangular elements and Gauss–Lobatto
points [1, p. 888] in the case of quadrilateral elements. The shape functions are
computed using Jacobi polynomials [23]. All the meshes are generated using
EZ4U [42,43,29], which is a high order mesh generator, and Gmsh [20] is used
to post process the results.

The non-linear system of equations is solved using full Newton–Raphson
method. Relative incremental and residual norms are used as convergence
criteria with a tolerance of 10−12.
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An in-house code is implemented in FORTRAN. Harwell Subroutine Li-
brary (HSL) [25] routine MA57d and MA41d [4] are used for solving symmetric
and unsymmetric systems, respectively. Both solvers use Approximate Mini-
mum Degree (AMD) [3] reordering algorithm to reorder the linear system of
equations. MC75d [47] is used to estimate the condition number of the tangent
stiffness matrices, κ(A).

All tests were performed on machine equipped with 24 Intel(R) Xeon(R)
E5-2620 v2 2.10-2.60 GHz processors and 64 GB of RAM running OpenSUSE
13.1 (x86 64) using a serial implementation. The code was compiled using
gfortran 4.8.1.

3.5 Convergence

In this section, the convergence results of the coupled CG-HDG formulation
for the heat equation are presented. A square domain, Ω := [0, 1]2 is considered
with the analytical solution,

θ = 1 + cos(πx1) cos(πx2). (22)

Dirichlet boundary conditions are prescribed on all the exterior boundary.
The domain is divided into two halves in vertical direction. The domain

corresponding to HDG is ΩD := [0, 0.5] × [0, 1], the CG domain is ΩC :=
[0.5, 1] × [0, 1], and the interface, ΓI , is x1 = 0.5. A suitable body force is
computed from the heat equation with the considered analytical solution for
both domains, with the conductivity constants, kC = kD = 1.

Meshes are obtained by splitting a regular n × n Cartesian grid into 2n2

triangles, which gives an uniform mesh element size, h = 1/n. The results
presented here consider a parameter of τ = 1 on all faces of each element in
HDG domain, ΩD.

Figure 3 shows the convergence for the coupled formulation with same de-
gree for CG and HDG, with k = 1−8 and element size, h = 0.5/{1, 2, 4, 8, 16}.
The error in θ is measured by using L2 norm of errors of the post-processed
solution, θ∗D, in ΩD, and CG solution, θC , in ΩC . Similarly, error in grad θ is
computed using L2 norm of error in qD in ΩD and error in grad θC in ΩC ,
that is,

‖eθ‖L2(Ω) =
√∥∥eθ∗D∥∥2L2(ΩD)

+ ‖eθC‖
2
L2(ΩC),

‖egrad θ‖L2(Ω) =
√∥∥eqD

∥∥2
L2(ΩD)

+ ‖egrad θC‖
2
L2(ΩC).

(23)

When the degree of approximation k is used for both HDG and CG do-
mains, even though HDG has superior convergence properties, errors in CG
domain dominates for both θ and grad θ. Hence, as shown in fig. 3a, the order
of convergence of the coupled solution is k + 1 for θ. Similarly, for grad θ, the
order of convergence is k.

Figure 4 shows the convergence of θ∗D and qD in ΩD for the coupled
CG(Pk)-HDG(Pk) model. Sub-optimal convergence rates are observed in both
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Fig. 3: Coupled CG(Pk)-HDG(Pk): convergence plots in Ω.
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Fig. 4: Coupled CG(Pk)-HDG(Pk): convergence plots in ΩD.
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Fig. 5: Coupled CG(Pk+1)-HDG(Pk): convergence plots in Ω.

variables: for k > 2, θ∗D converges with only k + 1.5 instead of k + 2, and qD
converges with order k+0.5 instead of k+1. HDG super-convergence requires
a solution of order k + 1 for qD, and mean of θD that converges with order
k+ 2 in each element in ΩD. The elements in ΩD that share the interface, ΓI ,
do not possess the mentioned convergence rates because of the coupling with
CG domain, ΩC .

To address this shortcoming, higher degree of approximation is considered
for the CG discretization. Figure 5a shows the convergence plots for a coupled
approximation with degree k for HDG and degree k + 1 for CG. Optimal
convergence rates of both methods are retained in this case. The post-processed
solution of HDG with degree k has the same order of convergence, which is
k + 2, as the CG solution with degree k + 1. Similarly, the flux qD of HDG
converges with same order as grad θC of CG, which is k + 1.

The same conclusions are drawn for quadrilateral elements as well and,
hence, the results are omitted.

3.6 Influence of τ parameter on coupled formulation

This section presents the study of effect of parameter, τ , on the coupled formu-
lation. Two different cases are considered in this study namely, single-face [9]
and all-face [12] techniques. In all-face approach, τ is a positive value for all
the edges of each element whereas, in single-face approach, τ is zero on all
edges except an arbitrarily chosen edge of each element. The convergence re-
sults presented earlier use all-face approach. However, previous works [10,22]
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Fig. 6: Coupled CG(Pk+1)-HDG(Pk): convergence of L2 norm of θ and grad θ
in Ω showing the influence of parameter, τ , on coupled solution for single-face
approach.

conclude that the method is less sensitive to the choice of τ with the single-face
definition, resulting in a more robust formulation than all-face approach in the
case of second-order elliptic operators. Hence, both cases are investigated in
the context of the present coupled formulation.

Figures 6 and 7 show the convergence of temperature and gradient of tem-
perature for different values of τ , for single-face and all-face approach, respec-
tively. The results are in agreement with the conclusions in [22]. In the case of
single-face approach, the error values are practically the same for different val-
ues of τ . It can also be noticed that optimal rates of convergence are achieved
for both temperature and gradient of temperature. It is worthy to note that
it is possible to take τ = 0 on all faces sharing the interface without loss of
neither convergence nor accuracy in the single-face approach. However, in the
case of all-face approach, as the parameter, τ , is increased, the optimal rate of
convergence is lost. From fig. 7, it is clear that both temperature and gradient
of temperature show sub-optimal convergence for τ significantly larger than
1, due to loss of optimal convergence in the HDG domain.

Even though stable and accurate solutions are obtained in all cases, it is
therefore recommended to use single-face approach as it is less sensitive to the
value of parameter τ .
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Fig. 7: Coupled CG(Pk+1)-HDG(Pk): convergence L2 norm of θ and grad θ
in Ω demonstrating the influence of parameter, τ , on coupled formulation for
all-face approach.

4 HDG formulation for coupled Navier–Stokes/convection-diffusion
equations

4.1 Governing equations

Let Ω = ΩD be the fluid domain with boundary ∂Ω divided into Dirich-
let, ∂ΩD, and Neumann, ∂ΩN , boundaries. The steady state incompressible
Navier–Stokes and convection-diffusion equations can be expressed as,

div (u⊗ u)− div (−pI + ν gradu) = f (θ) + s̄ in Ω,

divu = 0 in Ω,

u · (grad θ)− div (α grad θ) = ḡ in Ω,

u = ū on ∂ΩD,

θ = θ̄ on ∂ΩD,

(−pI + ν gradu)n = t̄ on ∂ΩN ,

(−α grad θ + u θ) · n = q̄n on ∂ΩN ,

(24)

where u, θ and p are velocity, temperature and kinematic pressure, respec-
tively. Material properties ν and α are kinematic viscosity and thermal diffu-
sivity, respectively. f (θ) is the body force, which is a function of temperature,
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s̄ is an additional external body force acting on fluid and ḡ is the volumetric
heat generation. ū and θ̄ are the prescribed velocity and temperature on the
Dirichlet boundary, ∂ΩD, and t̄ and q̄n are the prescribed pseudo tractions
and normal flux on the Neumann boundary, ∂ΩN .

As it is clear from the governing equations, this is a coupled system in u, p
and θ. The convective term u · (grad θ) in the convection-diffusion equation in-
fluences the temperature distribution and the body force f(θ) in momentum
equations governs the velocity of the fluid. Hence, a coupled system is es-
tablished in both directions. In the present work, natural buoyancy flows are
considered and Boussinesq approximation is used to compute the approximate
body force, f(θ), of Navier–Stokes equations. The artificial linear variation of
density with temperature is expressed as,

ρ = ρ0 (1− β (θ − θ0)) , (25)

where β is the thermal expansion coefficient and θ0 is the reference temper-
ature. The density is assumed to be constant to that of the reference state,
ρ0. The gravitational force due to the artificial variation of the density can be
expressed as the following body force vector per unit of mass of the reference
state

f(θ) =
g(ρ− ρ0)

ρ0
= −gβ(θ − θ0), (26)

where g is the gravity acceleration vector. The important non-dimensional
numbers that are used in the context of natural buoyancy flows are Rayleigh
number (Ra) and Prandtl number (Pr), which are defined as,

Ra =
gβL3

ref∆θ

να
, Pr =

ν

α
, where α =

κ

ρ0cp
. (27)

In equation (27), κ is heat conductivity, Lref and ∆θ are the characteristic
length and temperature difference in the domain, respectively.

4.2 HDG formulation

Using notation, L = gradu and q = −α grad θ, the HDG formulation of the
coupled Navier–Stokes (see [21]) and convection-diffusion (see [10]) equations

is: find (u, p,L, θ, q, û,ρ, θ̂) ∈ [Vh]d × Vh × [Vh]d×d × Vh × [Vh]d × [Λh]d ×
Rnel × Λh satisfying the local problem in every element Ωe,
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(δL,L)Ωe + (div δL,u)Ωe − 〈δLn, û〉∂Ωe = 0,

− (grad δu,u⊗ u)Ωe + (δu,div (−νL+ pI))Ωe

+ 〈δu, (û⊗ û)n+ τu (u− û)〉∂Ωe − (δu,f(θ))Ωe − (δu, s̄)Ωe = 0,

− (grad δp,u)Ωe + 〈δp, û · n〉∂Ωe = 0,

(28a)

1

|∂Ωe|
〈p, 1〉∂Ωe = ρe, (28b)(

δq, α−1q
)
Ωe − (div δq, θ)Ωe + 〈δq · n, θ̂〉∂Ωe = 0,

(δθ,div q)Ωe − (grad δθ,uθ)Ωe + 〈δθ, (û · n− τθ) , θ̂〉∂Ωe

+ 〈δθ, τθθ〉∂Ωe − (δθ, ḡ)Ωe = 0,

(28c)

for e = 1, . . . ,mel, and the global problem

mel∑
e=1

〈δû, (−pI + νL)n+ τu (û− u)〉∂Ωe = 〈δû, t̄〉∂ΩN
,

〈û · n, 1〉∂Ωe = 0 for e = 1, . . . ,mel,

û = P2(ū) on ∂ΩD,

(29a)

mel∑
e=1

〈δθ̂, (q + ûθ̂) · n+ τθ(θ − θ̂)〉∂Ωe = 〈δθ̂, q̄n〉∂ΩN
,

θ̂ = P2(θ̄) on ∂ΩD,

(29b)

for all (δu, δp, δL, δθ, δq, δû, δθ̂) ∈ [Vh]d×Vh×[Vh]d×d×Vh×[Vh]d×[Λh]d×Λh
such that δû = 0 and δθ̂ = 0 on ∂ΩD, where the discrete spaces are defined
in (12) taking Ω = ΩD. P2(ū) and P2(θ̄) are the L2 projections of the Dirichlet
data into the approximation space on ∂ΩD. The parameters τu and τθ are
positive and, following [36,33], they are usually taken as

τu ≈
ν

L
+ |u|, τθ ≈

α

L
+ |u · n|, (30)

where L is the characteristic length of the problem. Even though the so-called
stabilization parameter has some influence on the accuracy of the HDG so-
lution, the method is very robust in front of variations of τu and τθ [33,34].
Nevertheless, as will be seen in the numerical tests in section 4.4, choosing
this parameter according to equation (30) is crucial to alleviate or remove
numerical oscillations in the presence of sharp fronts.
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The discretization of local and global problems (28)-(29) leads to a discrete
residual of the form,



Aûû 0 0 Aûu AûL Aûp 0 0 0
Aρû 0 0 0 0 0 0 0 0
0 0 Aθ̂θ̂ + Cθ̂θ̂(û) 0 0 0 0 Aθ̂θ Aθ̂q

Auû + Cuû(û) 0 0 Auu + Cuu(u) AuL Aup 0 Auθ 0
ALû 0 0 ALu ALL 0 0 0 0
Apû 0 0 Apu 0 0 AT

ρp 0 0
0 −1 0 0 0 Aρp 0 0 0
0 0 Aθθ̂ + Cθθ̂(û) 0 0 0 0 Aθθ + Cθθ(u) Aθq

0 0 Aqθ̂ 0 0 0 0 Aqθ Aqq





û
ρ

θ̂

u
L
p
λ
θ
q


−



t̄
0
q̄n

f̄θ0 + s̄
0
0
0
ḡ
0


= 0.

(31)
This coupled system is solved in a monolithic sense using Newton–Raphson
method computing the exact Jacobian matrix. As already explained in previ-
ous sections, static condensation is used to express the local variables in terms
of global variables and solve the final system in only global unknowns. The
constraint in (28b) is applied using a Lagrangian multiplier λe on each element.
These are gathered in the vector λ. The matrices in the system (31) that arise
from Navier–Stokes are presented in the appendix of an earlier work [38], while
the matrices from convection-diffusion and the matrices that result from the
coupling are presented in the appendix, along with their tangent operators.

The HDG formulation provides a numerical solution with optimal con-
vergence of order k + 1 (k is the degree of approximation) in L2 norm for
velocity, u, pressure, p, gradient of velocity, L, temperature, θ, and flux, q.
As the mean of the velocity and mean of the temperature inside each element
converges with order k + 2, new approximate solutions for u and θ can be
computed element-by-element which converge with order k + 2. The details
of the post-processing are explained in the literature for Navier–Stokes [36]
and convection-diffusion [33] equations. In the present work, it is concluded
that the property of super-convergence is retained in the case of the Navier–
Stokes/convection-diffusion coupled formulation for both velocity and temper-
ature, as will be shown in the numerical example in the next section.

4.3 Convergence results

In this section, the convergence results of Navier–Stokes equations coupled
with convection-diffusion equation are presented for HDG. The solution of
Navier–Stokes equations is taken as Kovasznay flow [28], which is the analytical
solution of Navier–Stokes in domain [0, 2]× [−0.5, 1.5]. The analytical solution
considered for the temperature variation is of sinusoidal form. The expressions
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for velocity, pressure and temperature are given as follows,

u =

[
1− exp(λx1) cos(2πx2)
λ

2π
exp(λx1) cos(2πx2)

]
,

p = −1

2
exp(2λx1) + C,

θ = sin

(
3πx1

4

)
sin

(
3πx2

4
+

3π

8

)
,

(32)

where λ = Re
2 −

√
Re2

4 + 4π2 and Re = 1
ν is the Reynolds number. Dirichlet

boundary conditions are prescribed for velocity and temperature on all the
exterior boundary. The solution is computed at Re = 20 and the thermal
diffusivity, α, is taken as unity.

As discussed earlier, the Boussinesq approximation term couples the Navier–
Stokes and convection-diffusion equations. In the Boussinesq term (26), β is
taken as unity, g = −10e2 and θ0 = 0. An appropriate body force term, s̄ in
momentum equation, and heat generation, ḡ, in the convection-diffusion equa-
tion are computed from the analytical solution. The body force term, s̄, is
considered only in the convergence analysis, while this term is taken as zero in
Rayleigh–Bénard convection flow and conjugate heat transfer problems. The
parameters, τu and τθ, are both taken as unity on all faces of each element in
this example.

Figure 8 shows the convergence of post-processed solution of velocity and
temperature for triangular meshes for degree k = 2 − 9 and element size,
h = 2/{2, 4, 8, 16, 32, 64}. It is clear that the super-convergence of HDG is
retained for both velocity and temperature in the coupled framework.

As the extension of our previous work [38], the results of computational
efficiency of HDG (Pk) and CG (PkPk−1) are presented for the coupled Navier–
Stokes/convection-diffusion equations. Taylor–Hood [45] elements are used for
CG discretization of Navier–Stokes equations with velocities approximated
with polynomial of degree k and pressure with k−1. Here, only the plots of the
ratio of CPU times of HDG to CG against the error are presented. Note that
CPU times of solving only the final linear system is taken into account in the
plots. The time taken to compute the elemental matrices and assemble them
is highly implementation dependent and they can be parallelized relatively
easily. In the present implementation, direct solvers are used as black boxes as
mentioned previously in Section 3.4. Hence, only CPU times of the global solve
are taken into account to have a robust comparison in terms of computational
efficiency. Figures 9 and 10 show the ratio of CPU times with respect to
error in velocity and ratio of CPU times with respect to error in temperature,
respectively. As explained in the mentioned work, the errors values from CG
are used in plots and CPU times of HDG are interpolated corresponding to
the errors of CG. Note that post-processed solutions are used to compute
errors in HDG for both velocity and temperature. From the results, it can be
concluded that HDG outperforms CG in terms of CPU time for linear solver
for a given level accuracy and k ≥ 3. Hence, the conclusions drawn from the
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Fig. 8: Coupled Navier–Stokes/convection-diffusion problem: convergence
plots for post-processed velocity and post-processed temperature with
HDG(Pk) using triangular elements.

computational efficiency for Navier–Stokes can be extended to the present
coupled Navier–Stokes/convection-diffusion analysis.

4.4 Rayleigh–Bénard convection flow

This section presents the results of Rayleigh–Bénard convection flow at dif-
ferent Rayleigh numbers. This is a standard benchmark example for natural
buoyancy flows.

A square cavity of unit length is considered with a temperature gradient
along x1−direction. The top and bottom walls are prescribed with adiabatic
boundary conditions, whereas the laterals walls are prescribed with Dirichlet
boundary conditions for temperature. No-slip conditions are applied on all the
boundary for the velocity. Rayleigh numbers ranging from 103 to 108, along
with Prandtl number of 0.71, are considered in the analysis. The tempera-
ture difference is kept at unity with left wall at 0.5 and right wall at −0.5,
g = −10e2 and β is chosen based on the Ra. Nusselt number at the hot wall is
used to compare the HDG (Pk) solution with CG (PkPk−1) and other results
from literature. Average Nusselt number is defined as,

Nu = − 1

θh − θc

∫ L

0

∂θ

∂x1
ds, (33)



Coupling of continuous and hybridizable discontinuous Galerkin methods 21

−12 −10 −8 −6 −4 −2
0

0.2

0.4

0.6

0.8

1

h = 0.25

h = 0.125

h = 0.0625

h = 0.03125

log
(
‖eu‖L2

)

H
D

G
(P
k
)

T
im

e/
C

G
(P
k
P
k
−
1
)

T
im

e

k = 3 k = 4 k = 5

(a) k = 3− 5.

−12 −10 −8 −6 −4 −2
0

0.2

0.4

0.6

0.8

1

h = 1

h = 0.5

h = 0.25

log
(
‖eu‖L2

)
H

D
G

(P
k
)

T
im

e/
C

G
(P
k
P
k
−
1
)

T
im

e

k = 6 k = 7 k = 8 k = 9

(b) k = 6− 9.

Fig. 9: Coupled Navier–Stokes/convection-diffusion problem: ratio of CPU
times for linear solver vs. error in velocity for triangular elements.
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Fig. 10: Coupled Navier–Stokes/convection-diffusion problem: ratio of CPU
times for linear solver vs. error in temperature for triangular elements.
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Table 1: Rayleigh–Bénard convection flow: τu, τθ parameters

Ra τu, τθ
103, 104 1

105 10
106 100

107, 108 500

where θh and θc denote the temperatures of hot and cold walls and L is the
length of the cavity.

A uniform mesh with triangular elements of degree k = 5 and element size
h = 1/26 was chosen. All the results presented corresponds to steady state
analysis. Sometimes, at higher Rayleigh number, convergence to the solution
could not be achieved in a single step. In this case, Ra number is increased
in a finite number of steps to obtain a converged solution. No stabilization
techniques for the CG method are used.

The parameters, τu, τθ, in the case of HDG discretization are critical in
obtaining a solution at higher Ra. Table 1 provides the values of parameters
used in the present work for different Ra. The analytical maximum velocity
in the domain increases with increasing Ra number. In the present work, the
parameters, τu, τθ, are chosen to be in the order of magnitude of the maximum
velocity in the domain for a given Ra.

Figure 11 presents the isolines of velocity and temperature at Ra of 104, 106

and 108. It can be noticed from the plots that as the Ra number increases,
a strong boundary layer is formed at both lateral edges of the domain. The
vertical isotherms denote that the dominant mechanism of heat transfer is
conduction and as the isoterms depart from the vertical position, convection
becomes the dominant form of heat transfer. It is evident from the velocity
isolines that velocity varies from 20 at Ra = 104 to around 2200 at Ra = 108.

The variation of dimensionless u1 along x1 = 0.5 and dimensionless u2
along x2 = 0.5 are presented in figs. 12a and 12b, respectively, to show the
evolution of boundary layer as the Ra increases. Similarly, the variation of
temperature along x2 = 0.5 is plotted for all the Ra numbers considered
in fig. 12c. The present numerical results are compared with [6] whenever
applicable and the values are denoted by circle marks in the plots. The fact that
HDG could resolve the boundary layer without any refinement on boundary
shows the effectiveness of using high-order meshes.

To validate the results obtained in the present work, various quantities
of interest are compared with the results from literature. The comparison is
presented in the tables 2 and 3, which shows the results of HDG, CG and the
literature ones. The table presents the results of both HDG and CG with
that of literature ones. The results from HDG and CG are practically similar
owing to the high-degree of the approximations and relatively refined mesh.
Nevertheless, HDG produces slightly more accurate solution than CG when
Nusselt number is compared for Ra = 108. However, when CPU times for
the linear solver are considered, HDG outperforms CG in the present example
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Fig. 11: Rayleigh–Bénard convection flow: isolines of temperature and velocity
at different Ra numbers using HDG.
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Fig. 12: Rayleigh–Bénard convection flow: distribution of temperature and
velocity components at different Ra numbers using HDG. Circles correspond
to reference values in [6].
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Table 2: Rayleigh–Bénard convection flow: summary of important quantities
and comparison with literature values for Ra = 103 − 105.

Ra Quantity De Vahl Davis [18] HDG (P5) / CG (P5P4)

103
Nu 1.117 1.117

Max. u1 along x1 = 0.5 3.649 3.649
Max. u2 along x2 = 0.5 3.697 3.697

104
Nu 2.238 2.244

Max. u1 along x1 = 0.5 16.178 16.183
Max. u2 along x2 = 0.5 19.617 16.626

105
Nu 4.509 4.521

Max. u1 along x1 = 0.5 34.73 34.740
Max. u2 along x2 = 0.5 68.59 68.632

Table 3: Rayleigh–Bénard convection flow: summary of important quantities
and comparison with literature values for Ra = 106 − 108.

Ra Quantity Le Quéré [30] HDG (P5) CG (P5P4)

106
Nu 8.825 8.825 8.825

Max. u1 along x1 = 0.5 64.83 64.826 64.826
Max. u2 along x2 = 0.5 220.6 220.390 220.390

107
Nu 16.523 16.523 16.521

Max. u1 along x1 = 0.5 148.580 148.583 148.583
Max. u2 along x2 = 0.5 699.236 695.940 695.940

108
Nu 30.225 30.209 30.145

Max. u1 along x1 = 0.5 321.876 321.567 321.568
Max. u2 along x2 = 0.5 2222.39 2221.647 2221.657

Table 4: Rayleigh–Bénard convection flow: computational details for HDG and
CG for Ra = 105 and h = 1/26.

HDG (P5) CG (P5P4)
DOFs 231680 203140

CPU time for linear solver 67.8 sec 75 sec
No. of non-linear iterations 13 13
Condition number, κ(A) O(1011) O(1012)

No. of non-zeros, nnz 20,478,391 19,854,033

using a uniform triangular mesh with h = 1/26 and k = 5. Table 4 gives the
details of computations for HDG and CG at Ra = 105. Even though, HDG has
slightly more DOFs than CG, the CPU time for the linear solver per one non-
linear iteration of HDG is less than its CG counterpart. This can be attributed
towards the regular block structure of the HDG stiffness matrix in accordance
with the study in [27,48]. This fact is more pronounced by comparing the
condition numbers of the matrix, which is one order of magnitude larger for
CG than for HDG, for same mesh and degree of approximation.

Hence, it can be advantageous to use high-order HDG methods to solve the
coupled Navier–Stokes/convection-diffusion equations, specially in the pres-
ence of strong boundary layers.
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5 Coupled CG-HDG formulation for conjugate heat transfer
problem

Following fig. 13, consider ΩD is the fluid domain and ΩC is the solid part. The
governing equations for ΩD are presented in (24), while the solid domain ΩC
is governed by heat equation presented in (4c). Since, the interface boundary
is solid wall, no-slip boundary condition is applied for fluid, i.e., velocity is
zero on the interface. Therefore, convective flux entering the solid domain is
zero and the transmission conditions presented in (4f) and (4g) are valid in
this example. The extension of coupled formulation presented in section 3 to
the conjugate heat transfer problem is straightforward.

Here the coupling is made between heat equation in ΩC and the diffu-
sive flux term of the convection-diffusion equation in ΩD. Hence, the system
of equations in (13) can be readily expressed along with coupled Navier–
Stokes/convection-diffusion equations in (31) to obtain the residual in the
matrix notation in (34).



Aûû 0 0 0 Aûu AûL Aûp 0 0 0
Aρû 0 0 0 0 0 0 0 0 0
0 0 Aθ̂θ̂ + Cθ̂θ̂(û) 0 0 0 0 0 Aθ̂θ Aθ̂q

0 0 0 Kθθ 0 0 0 0 BT
θθ Bθq

Auû + Cuû(û) 0 0 0 Auu + Cuu(u) AuL Aup 0 Auθ 0
ALû 0 0 0 ALu ALL 0 0 0 0
Apû 0 0 0 Apu 0 0 AT

ρp 0 0
0 −1 0 0 0 0 Aρp 0 0 0
0 0 Aθθ̂ + Cθθ̂(û) Bθθ 0 0 0 0 Aθθ + Cθθ(u) Aθq

0 0 Aqθ̂ Bqθ 0 0 0 0 Aqθ Aqq





û
ρ

θ̂D
θC
u
L
p
λ
θD
qD



−



t̄
0
q̄n
ḡC
f̄θ0
0
0
0

ḡD
0



= 0.

(34)
The matrix Auθ couples temperature to the momentum equation and the

matrices Cθθ̂(û), Cθθ(u) couples velocity from Navier–Stokes to convection-
diffusion equation. Following the static condensation technique, only unknowns
in û,ρ, θ̂D and θC are solved in the final system and local variables are com-
puted element-by-element.

5.1 Conjugate heat transfer problem

In this example, the proposed models are combined together to solve a bench-
mark conjugate heat transfer problem. The fluid part, which is governed by
Navier–Stokes/convection-diffusion, is discretized using HDG, while the solid
part, governed by heat equation, is discretized using CG.

The geometry of the problem along with the applied boundary conditions
are shown in fig. 13. The fluid domain, ΩD, is the square cavity of unit length
and the solid wall, ΩC , has a thickness of 0.2. The ratio of thermal diffusivities
of solid to fluid is considered as unity. Prandtl number of 0.71 is used in ΩD
in the computations.
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ΩDΩCθ̄ = 1 θ̄ = 0

q̄n = 0, ū = 0

q̄n = 0, ū = 0

ū = 0

ū
=

0

Fig. 13: Conjugate heat transfer problem: geometry and prescribed boundary
values of conjugate heat transfer problem domain.

The problem is solved with the proposed CG(Qk+1)-HDG(Qk) model and,
also, a CG(Qk+1)-CG(Qk+1Qk) model, where all the equations are discretized
with CG method. The solution is approximated with one degree higher in the
CG domain than HDG, to keep the optimal convergence in both domains, as
discussed in section 3. The obtained results are compared with the literature
data. A degree of approximation k = 5, and an uniform mesh size, h = 0.025,
with quadrilateral elements are used in both models. As stated in the sec-
tion 4.4, at higher Ra number, an incremental method is used to obtain the
steady state numerical solution. The parameters, τu, τθ, are the same as in
table 1.

Figure 14 presents the isolines for velocity and temperature at different
Ra number. The temperature and velocity distributions inside the fluid cavity
are similar to the solutions of Rayleigh–Bénard convection flow with relatively
less sharp boundary layer. At higher Ra, the loss of symmetry in the solution
of velocity can be clearly noticed in the present example.

Nusselt number at the fluid-solid interface is computed and compared with
the values present in the literature. Whenever possible, the average tempera-
ture on the interface is also compared with literature data. It is to be noted
that the geometry considered in the work of [26] has the solid wall to the
right of fluid domain. Hence, the results presented for the comparison with
the mentioned work correspond to the solid wall to the right of fluid domain.
All the results obtained by both models are presented in table 5 and, for the
number of significant digits presented, they coincide. They are also very close
to the literature values.

The models will be now compared in terms of computational effort to point
their relative merits. The computational details of CG(Qk+1)-HDG(Qk) and
CG(Qk+1)-CG(Qk+1Qk) models are tabulated in table 6, similar to one pre-
sented for Rayleigh–Bénard convection flow. It is clear from this table that the
proposed CG-HDG model is superior to CG-CG model in terms of computa-
tional efficiency and complexity. It is also worth stressing that both models
have similar orders of convergence for all the variables of interest. Hence, the
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Fig. 14: Conjugate heat transfer problem: isolines of temperature and velocity
at different Ra numbers using CG-HDG model.
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Table 5: Conjugate heat transfer problem: summary of important quantities
and comparison with literature values for Ra = 103 − 108.

Ra Quantity
Misra &
Sarkar

[32]
Kaminski &

Prakash
[26]

CG(Q6)-HDG(Q5) /
CG(Q6)-CG(Q6Q5)

0.7× 103
Nu — 0.87 0.8678

Mean θ along interface — — 0.8264

103
Nu 0.8958 — 0.8957

Mean θ along interface 0.1791 — 0.1791

104
Nu 1.4528 — 1.4537

Mean θ along interface 0.2906 — 0.2906

0.7× 105
Nu — 2.08 2.0850

Mean θ along interface — — 0.5832

105
Nu 2.1997 — 2.2014

Mean θ along interface 0.4400 — 0.4400

0.7× 106
Nu — 2.87 2.8540

Mean θ along interface — — 0.4294

106
Nu 2.9528 — 2.9605

Mean θ along interface 0.5916 — 0.5919

0.7× 107
Nu — 3.53 3.5077

Mean θ along interface — — 0.2987

107
Nu — — 3.5913

Mean θ along interface — — 0.7181

108
Nu — — 4.061

Mean θ along interface — — 0.8120

Table 6: Conjugate heat transfer problem: computational details for CG-HDG
and CG-CG for Ra = 105 and h = 0.025.

CG(Q6)-HDG(Q5) CG(Q6)-CG(Q6Q5)
DOFs 64209 72612

CPU time for linear solver 13.3 sec 25.5 sec
No. of non-linear iterations 11 11
Condition number, κ(A) O(1010) O(1012)

No. of non-zeros, nnz 7,377,875 11,033,375

proposed CG-HDG model can be beneficial to use for multi-physics flows in-
volving high Ra number.

6 Conclusions

Optimal HDG and CG convergence rates are kept with both CG-HDG coupled
formulations proposed for the heat equation when the degree of approximation
for CG is one degree higher than HDG degree.

Optimal convergence and super-convergence rates are shown in the numeri-
cal tests for the coupled Navier–Stokes/convection-diffusion equations formula-
tion with HDG. The results of Rayleigh–Bénard convection flow are presented
until Ra of 108 and the Nusselt numbers are compared between HDG, CG and
literature values. Even though, both HDG and CG can resolve the solution at
high Ra, it is noticed that HDG is more accurate and has less computational
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cost. CPU times for linear solver and condition numbers of HDG are lower
than its CG counterpart for the same mesh and degree of approximation in
the example considered.

Finally, the proposed CG-HDG coupling is merged with coupled HDG
formulation for Navier–Stokes/convection-diffusion equations and applied to a
conjugate heat transfer problem. The benchmark problem is solved using both
CG-HDG and CG-CG models and the results are compared to literature data.
Both models give the identical results in terms of Nusselt numbers and mean
temperature on interface, but, it is shown that CG-HDG model has higher
computational efficiency than CG-CG model.
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Appendix: Definition of elemental matrices

In this appendix, the elemental matrices that arise from coupled CG-HDG for-
mulation for heat equation and HDG method for coupled Navier–Stokes/convection-
diffusion equations are defined. All the variables presented in this section are
the elemental variables. Variable L(e) is a second–order tensor and it is repre-

sented as a column vector, [l11 l12 l21 l22]
(e)T

, in the numerical computations.

The independent variables (L(e),u(e), p(e), θ(e), q(e), û(e), ρ(e), θ̂(e)) over each
element, Ωe, can be approximated as follows,

L(e)(ξ) = ψL(ξ)L(e), u(e)(ξ) = ψu(ξ)u(e), p(e)(ξ) = ψp(ξ)p(e) in Ωe,

θ(e)(ξ) = ψθ(ξ)θ(e), q(e)(ξ) = ψq(ξ)q(e) in Ωe,

û(e)(ξ) = ψû(ξ)û(e), θ̂(e)(ξ) = ψθ̂(ξ)θ̂
(e)

on ∂Ωe,
(35)

where ψL(ξ), ψu(ξ), ψp(ξ),ψθ(ξ),ψq(ξ),ψû(ξ) and ψθ̂(ξ) are matrices that

gather the approximation functions of respective unknowns, while L(e), u(e),

p(e),θ(e),q(e), û(e) and θ̂
(e)

are the elemental nodal column vectors of gradient
of velocity, velocity, pressure, temperature, flux, velocity trace and tempera-
ture trace, respectively. ξ and ξ represent the coordinate in the area and line
reference domains, respectively. û(e) contains the trace of velocity on each face

of the element and it can be represented as
[
ûFe1 . . . ûFen

]T
, where Fef is the

f th face of eth element. Here, n = 3 in the case of triangular elements, while
n = 4 for quadrilateral elements. From now on explicit dependence on ξ and
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ξ will be omitted for the sake of simplicity. The approximation functions can
be represented as follows,

ψL =


ψ
ψ
ψ
ψ

 , ψu = ψq =

[
ψ
ψ

]
, ψp = ψθ = ψ,

ψû =

[
ψFe1

. . . ψFen

ψFe1
. . . ψFen

]
, ψθ̂ =

[
ψFe1

. . . ψFen

]
,

(36)

where ψ is the matrix that gathers the shape functions associated to the
nodes of the elements and ψFef

is the matrix collecting the shape functions
associated to the nodes along the sides of the element.

Some notation used to represent the element matrices in case of both HDG
and CG is given as follows,

∇̃ ≡

∂∂x1 ∂

∂x2
∂

∂x1

∂

∂x2

 , Ñ ≡
[
n1 n2

n1 n2

]
. (37)

The definition of elemental matrices corresponding to the standard local
problem of HDG in the case of coupled CG-HDG formulation for heat equa-
tion (13) are presented as follows,

A
(e)
qq =

(
ψTq , k

−1
D ψq

)
Ωe
, A

(e)
qθ = −

(
(∇̃T

ψq)
T ,ψθ

)
Ωe
,

A
(e)

qθ̂
= 〈(nT ψq)T ,ψθ̂〉∂Ωe , A

(e)
θq =

(
ψTθ , (∇̃

T
ψq)

T
)
Ωe
,

A
(e)
θθ = 〈ψTθ , τψθ〉∂Ωe , A

(e)

θθ̂
= −〈ψTθ , τψθ̂〉∂Ωe .

(38)

The matrices of global system of HDG and CG in system (13) are defined as,

A
(e)

θ̂θ̂
= −〈ψT

θ̂
, τψθ̂〉∂Ωe , A

(e)

θ̂θ
= 〈ψT

θ̂
, τψθ〉∂Ωe ,

A
(e)

θ̂q
= 〈ψT

θ̂
, (nT ψq)〉∂Ωe , K

(e)
θθ =

(
(∇ψCθ )T , kC∇ψCθ

)
Ωe
.

(39)

where ψCθ corresponds to the matrix that has the shape functions of the tem-
perature, θC , in ΩC . Finally, the matrices that arise from the coupling of HDG
and CG on the interface, ΓI , in the equation (13) can be expressed as follows,

B
(e)
θθ = −〈ψTθ , τψ

C
θ 〉∂Ωe∩ΓI

, B
(e)
qθ = 〈(nT ψq)T ,ψ

C
θ 〉∂Ωe∩ΓI

B
(e)
θq = −B

(e)T
qθ

(40)

The definition of elemental matrices that arise from Navier–Stokes equa-
tions are already provided in our previous work [38]. The non-linear matrices
from the local problem (28) and global problem (29) are defined as follows,

C
(e)
θθ (u) = −〈ψTθ,1, u1ψθ〉∂Ωe − 〈ψTθ,2, u2ψθ〉∂Ωe ,

C
(e)

θθ̂
(û) = 〈ψTθ , (û · n)ψθ̂〉∂Ωe ,

C
(e)

θ̂θ̂
(û) = 〈ψT

θ̂
, (û · n)ψθ̂〉∂Ωe .

(41)
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The tangent operators of the non-linear matrices already presented in (41) are
given as,

C
(e)
θθT (θ) = −

[
〈ψTθ,1, θψθ〉∂Ωe 〈ψTθ,2, θψθ〉∂Ωe

]
,

C
(e)

θθ̂T
(θ) =

[
〈ψTθ , θ n1ψû〉∂Ωe 〈ψTθ , θ n2ψû〉∂Ωe

]
,

C
(e)

θ̂θ̂T
(θ) =

[
〈ψT

θ̂
, θ n1ψû〉∂Ωe 〈ψT

θ̂
, θ n2ψû〉∂Ωe

]
.

(42)
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30. Le Quéré, P.: Accurate solutions to the square thermally driven cavity at high Rayleigh

number. Computers & Fluids 20(1), 29 – 41 (1991). DOI http://dx.doi.org/10.1016/
0045-7930(91)90025-D. URL http://www.sciencedirect.com/science/article/pii/

004579309190025D
31. Liu, R., Wheeler, M.F., Dawson, C.N., Dean, R.H.: On a coupled discontinu-

ous/continuous Galerkin framework and an adaptive penalty scheme for poroelastic-
ity problems. Computer Methods in Applied Mechanics and Engineering 198(41-
44), 3499 – 3510 (2009). DOI http://dx.doi.org/10.1016/j.cma.2009.07.005. URL
http://www.sciencedirect.com/science/article/pii/S0045782509002473

32. Misra, D., Sarkar, A.: Finite element analysis of conjugate natural convection in a
square enclosure with a conducting vertical wall. Computer Methods in Applied Me-
chanics and Engineering 141(3), 205 – 219 (1997). DOI http://dx.doi.org/10.1016/
S0045-7825(96)01109-7. URL http://www.sciencedirect.com/science/article/pii/

S0045782596011097
33. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous

Galerkin method for linear convection–diffusion equations. Journal of Computational
Physics 228(9), 3232 – 3254 (2009). DOI http://dx.doi.org/10.1016/j.jcp.2009.01.030.
URL http://www.sciencedirect.com/science/article/pii/S0021999109000308

34. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable dis-
continuous Galerkin method for nonlinear convection–diffusion equations. Journal
of Computational Physics 228(23), 8841 – 8855 (2009). DOI http://dx.doi.org/10.
1016/j.jcp.2009.08.030. URL http://www.sciencedirect.com/science/article/pii/

S0021999109004756
35. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous

Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics
230(10), 3695 – 3718 (2011). DOI http://dx.doi.org/10.1016/j.jcp.2011.01.035. URL
http://www.sciencedirect.com/science/article/pii/S002199911100060X

36. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discon-
tinuous Galerkin method for the incompressible Navier–Stokes equations. Journal
of Computational Physics 230(4), 1147 – 1170 (2011). DOI http://dx.doi.org/10.
1016/j.jcp.2010.10.032. URL http://www.sciencedirect.com/science/article/pii/

S0021999110005887
37. Paipuri, M., Fernández-Méndez, S., Tiago, C.: Comparison of continuous and hybridiz-

able discontinuous Galerkin methods in incompressible fluid flow problems. In: I. Arias,
J.M. Blanco, S. Clain, P. Flores, P. Lourenço, J.J. Ródenas, M. Tur (eds.) Congreso
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