Skip to main content
Log in

A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Some virtual element methods on polytopal meshes for the Stokes problem are proposed and analyzed. The pressure is approximated by discontinuous polynomials, while the velocity is discretized by H(div) virtual elements enriched with some tangential polynomials on the element boundaries. A weak symmetric gradient of the velocity is computed using the corresponding degree of freedoms. The main feature of the method is that it exactly preserves the divergence free constraint, and therefore the error estimates for the velocity does not explicitly depend on the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl)-conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Serendipity face and edge vem spaces. Rend. Lincei Mat. Appl. 28(1), 143–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  9. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise H\(^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C.: Korn’s inequalities for piecewise H\(^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 15th edn. Springer, Berlin (2007)

    Google Scholar 

  12. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Falk, R.S., Marini., L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48, 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, L.: \(i\)FEM: An Innovative Finite Element Methods Package in MATLAB. Preprint, University of Maryland, College Park (2008)

    Google Scholar 

  16. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63(3), 716–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Wang, Y.: Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes. Math. Comput. 86(307), 2053–2087 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Nguyen, N.C., Peraire., J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83(288), 1571–1598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Dios, B.A., Brezzi, F., Marini, L.D., Xu, J., Zikatanov., L.: A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. J. Sci. Comput. 58(3), 517–547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Di Pietro, D.A., Ern, A., Linke, A., Schieweck., F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)

    Article  MathSciNet  Google Scholar 

  26. Di Pietro, D.A., Lemaire., S.: An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  29. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34(4), 1489–1508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows, vol. 6. SIAM, Tulsa (2008)

    Book  MATH  Google Scholar 

  33. Lederer, P.L., Linke, A., Merdon, C., Schöberl., J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    Article  MathSciNet  Google Scholar 

  36. Mardal, K.A., Tai, X.C., Winther., R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mardal, K.A., Winther, R.: An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 75(253), 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285(C), 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO-Modélisation Mathématique et Analyse Numérique 19(1), 111–143 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Shi, Z., Ming, W.: Finite Element Methods. Science Press, Beijing (2013)

    Google Scholar 

  42. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Talischi, C., Pereira, A., Paulino, G.H., Menezes, I.F.M., Carvalho., M.S.: Polygonal finite elements for incompressible fluid flow. Int. J. Numer. Methods Fluids 74(2), 134–151 (2014)

    Article  MathSciNet  Google Scholar 

  44. Vacca, G.: An H\(^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(1), 159–194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, C., Wang, J., Wang, R., Zhang, R.: A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J. Comput. Appl. Math. 307, 346–366 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45(3), 1269–1286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42(1), 155–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, S.: Divergence-free finite elements on tetrahedral grids for \(k\ge 6\). Math. Comput. 80(274), 669–695 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Long Chen was supported by the National Science Foundation (NSF) DMS-1418934 and in part by the Sea Poly Project of Beijing Overseas Talents, and Feng Wang was supported by National Natural Science Foundation of China (Grant Nos. 11371199, 11371198, 11301275) and the Fund of Overseas Research and Training Program for Excellent Young and Middle-aged Teachers and Presidents in Universities and Colleges of Jiangsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, F. A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes. J Sci Comput 78, 864–886 (2019). https://doi.org/10.1007/s10915-018-0796-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0796-5

Keywords

Navigation