Skip to main content
Log in

A Nonconvex Model with Minimax Concave Penalty for Image Restoration

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A natural image u is often sparse under a given transformation W, one can use \(L_0\) norm of Wu as a regularisation term in image reconstructions. Since minimizing the \(L_0\) norm is a NP hard problem, the \(L_1\) norm is widely used as an replacement. However, recent studies show that nonconvex penalties, e.g., MCP, enjoy better performance for sparse signal recovery. In this paper, we propose a nonconvex model for image restoration with a minimax concave penalty (MCP). First we establish the existence of a global minimizer for the nonconvex model. Then we solve this model by using the alternating direction method of multipliers algorithm. The convergence of the proposed algorithm is analysed with properly chosen parameters. Numerical experiments show that the MCP model outperforms TV model in terms of efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S.: Alternating direction method of multipliers. Talk at NIPS Workshop on Optimization and Machine Learning (2011)

  4. Cai, J., Chan, R.H., Shen, L., Shen, Z.: Convergence analysis of tight framelet approach for missing data recovery. Adv. Comput. Math. 31(1), 87–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9(263–340), 227 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17(1), 91–115 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chouzenoux, E., Jezierska, A., Pesquet, J.-C., Talbot, H.: A majorize–minimize subspace approach for \(\ell _2\)\(\ell _0\) image regularization. SIAM J. Imaging Sci. 6(1), 563–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM Rep. 9, 31 (2009)

    Google Scholar 

  19. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001). [MR 1946581 (2003k:62160)]

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, J., Peng, H.: Nonconcave penalized likelihood with a diverging number of parameters. Ann. Stat. 32(3), 928–961 (2004). [MR 2065194 (2005g:62047)]

    Article  MathSciNet  MATH  Google Scholar 

  22. Frank, L.L.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135 (1993)

    Article  MATH  Google Scholar 

  23. Fu, S.J., Zhang, C.M., Tai, X.C.: Image denoising and deblurring: non-convex regularization, inverse diffusion and shock filter. Sci. China Inf. Sci. 54(6), 1184–1198 (2011)

    Article  MathSciNet  Google Scholar 

  24. Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7(3), 397–416 (1998)

    MathSciNet  Google Scholar 

  25. Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)

    Article  Google Scholar 

  26. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  27. Getreuer, P.: Rudin–Osher–Fatemi total variation denoising using split Bregman. Image Process. On Line 2, 74–95 (2012)

    Article  Google Scholar 

  28. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Anal. Numér. 9(2), 41–76 (1975)

    MathSciNet  MATH  Google Scholar 

  29. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hong, M., Luo, Z.-Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiao, Y., Jin, B., Lu, X., Ren, W.: A primal dual active set algorithm for a class of nonconvex sparsity optimization. arXiv preprint arXiv:1310.1147 (2013)

  32. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lou, Y., Zeng, T., Osher, S., Xin, J.: A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Article  Google Scholar 

  35. Mordukhovich, B.S., Shao, Y.: On nonconvex subdifferential calculus in banach spaces1. J. Convex Anal. 2(1/2), 211–227 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. CR Acad. Sci. Paris Ser. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  37. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93(2), 273–299 (1965)

    Article  MATH  Google Scholar 

  38. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nikolova, M.: Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inv. Probl. Imaging 1(4), 1–677 (2007)

    Google Scholar 

  40. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.-K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

    MATH  Google Scholar 

  43. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21(3), 193–199 (2010)

    Article  Google Scholar 

  45. Sun, D., Sun, J., Zhang, L.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114(2), 349–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tao, P.D., An, L.T.H.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Tao, P.D., An, L.T.H.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  49. Yang, L., Pong, T., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imaging Sci. 10(1), 74–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, C.-H., Huang, J.: The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Stat. 36(4), 1567–1594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, T.: Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11(2), 1081–1107 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36(4), 1509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers and editor for providing very useful comments and suggestions. We also thank Dr. Yifei Lou for providing the code of \(L_1-0.5L_2\). The research of Y. Jiao is partially supported by National Science Foundation of China No. 11501579, X. Lu is supported by National Science Foundation of China Nos. 11471253 and 91630313, and T. Zeng is supported in part by National Science Foundation of China No. 11671002, CUHK start-up and CUHK DAG 4053296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Jiao, Y., Lu, X. et al. A Nonconvex Model with Minimax Concave Penalty for Image Restoration. J Sci Comput 78, 1063–1086 (2019). https://doi.org/10.1007/s10915-018-0801-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0801-z

Keywords

Navigation