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Abstract

We propose a globally divergence conforming discontinuous Galerkin (DG) method
on Cartesian meshes for curl-type hyperbolic conservation laws based on directly
evolving the face and cell moments of the Raviart-Thomas approximation polyno-
mials. The face moments are evolved using a 1-D discontinuous Gakerkin method
that uses 1-D and multi-dimensional Riemann solvers while the cell moments are
evolved using a standard 2-D DG scheme that uses 1-D Riemann solvers. The
scheme can be implemented in a local manner without the need to solve a global
mass matrix which makes it a truly DG method and hence useful for explicit time
stepping schemes for hyperbolic problems. The scheme is also shown to exactly pre-
serve the divergence of the vector field at the discrete level. Numerical results using
second and third order schemes for induction equation are presented to demonstrate
the stability, accuracy and divergence preservation property of the scheme.

Keywords: Hyperbolic conservation laws; curl-type equations; discontinuous Galerkin;
constraint-preserving; divergence-free; induction equation.

1 Introduction

Constraint-preserving approximations are important in the numerical simulation of prob-
lems in computational electrodynamics (CED) and magnetohydrodynamics (MHD). The
time domain Maxwell equations used in CED for the electric and magnetic fields may
be written in non-dimensional units as

∂E

∂t
−∇×B = −J , ∂B

∂t
+∇×E = 0

with the constraint that

∇ ·B = 0, ∇ ·E = ρ,
∂ρ

∂t
+∇ · J = 0

where ρ is the electric charge density and J is the current which can be related to E,
B through Ohm’s Law. In ideal compressible MHD, the magnetic field is given by the
Faraday Law or induction equation

∂B

∂t
+∇×E = 0, E = −v ×B
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with the constraint
∇ ·B = 0

where v is the velocity of the fluid obtained from solving the compressible Euler equations
with a Lorentz force that depends on the magnetic field. The above two sets of problems
involve hyperbolic conservation laws with a constraint on the divergence of some vector
field and we will concentrate on this type of problems in the present work. The methods
we develop in this paper can be applied to the above two class of problems.

There is a large collection of methods developed to solve problems with some diver-
gence constraint spanning Maxwell equations, the simple induction equation and the full
MHD equations, both compressible and incompressible. It recognized that satisfying the
constraints can have an implication on the accuracy and stability of the schemes [17],
[40]. Yee [43] proposed a staggered grid central difference scheme for Maxwell equa-
tions which preserves a finite difference approximation of the divergence. This work
showed the importance of staggered storage of variables which has been used in other
forms by subsequent researchers. A correction method was used for MHD in [17] where
the magnetic field is first updated by some standard method and then projected to
divergence-free space which however requires the solution of a globally coupled problem.
In [24], a constrained transport method is developed for MHD which is based on the Yee
scheme. Balsara et al. [2], [3], [4], [8] proposed to reconstruct the magnetic field inside
the cells in a divergence-free manner, given the information of the normal components
on the faces of the cell. The solution on the faces are evolved either with a finite volume
or DG method [12]. These methods require the use of 1-D and 2-D Riemann solvers,
where the 2-D Riemann solver involves four states meeting at the vertices of the cells.
Recent work has developed methods to solve such 2-D Riemann problems in the context
of CED [7], [14], [11] and MHD [5], [6], [10], [9], [13].

A DG scheme based on locally divergence-free approximations has been proposed
in [22, 16, 31] but these are not globally divergence-free since the normal components
are not continuous across the cell faces. Central DG schemes for ideal MHD which are
globally divergence-free and also free of any Riemann solvers have been proposed in
[33], [32] where the magnetic field is approximated by Brezzi-Douglas-Marini (BDM)
polynomials [18] on staggered Cartesian meshes. A stability analysis of the first order
central DG scheme when applied to induction equation has been performed in [42].

In Lagrange multiplier methods, an artificial pressure is introduced in the induction
equation and the divergence-free condition is satisfied in a weak sense, see e.g. [38]. There
is also the class of hyperbolic divergence cleaning methods [23] where the divergence
errors are damped by adding an artificial pressure like term. A summation-by-parts
finite difference scheme for induction equation have been developed in [29], [30] where
a term proportional to the divergence is added to the equations to obtain a stable
scheme. A stable upwind finite difference scheme based on the symmetrized version of
the equations in the non-conservative form is constructed in [26]. For MHD, methods
have been developed based on Godunov’s symmetrized version of the equations where
stability is achieved using Riemann solvers [35] or using entropy stability ideas [21],
[41]. But all these approaches are non-conservative since they modify the PDE in a
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non-conservative manner.
There are also a wide variety of Galerkin finite element methods developed for curl-

type equations like Maxwell, induction and MHD, see e.g., [27], [28]. When applied to
MHD problems as in [28], the magnetic field is approximated by a H(div,Ω) conforming
space while the electric field is approximated by a H(curl,Ω) conforming space. The
first type of spaces have continuous normal components while the second type have
continuous tangential components across the cell faces. Divergence-free bases have been
developed in [20], [19] that allow to locally correct any divergence error. In all of these
methods, the approximating spaces require some continuity across the cell faces leading
to global matrices which require efficient matrix solution techniques for application to
large scale problems arising in real world situations. If we are interested in purely
hyperbolic problems like Maxwell equations or ideal MHD where explicit time stepping
schemes are used, we will have to solve a global mass matrix in every time step which
increases the computational expense. One of the goals of this work is to construct a
divergence conforming method that has local mass matrices which can be easily inverted
on each cell or face.

Coming back to the present work, as a prototypical model, we will consider the
curl-type equation of the form

∂B

∂t
+∇×E = −M (1)

whose solutions satisfy
∂

∂t
(∇ ·B) +∇ ·M = 0 (2)

If M = 0 and ∇·B = 0 at the initial time, then we have ∇·B = 0 at future times also.
This property does not depend on the particular form of E but as a concrete example
we will take E = −v × B as in the induction equation with v being a given velocity
field. We will also restrict the examples to two dimensional case where the equations are
of the form

∂Bx

∂t
+
∂E

∂y
= −Mx,

∂By

∂t
− ∂E

∂x
= −My

with E = vyBx − vxBy.
The goal of this paper is to present a divergence constraint preserving DG scheme for

the curl type equation of the form (1) that makes use of the standard Raviart-Thomas
elements [37] on Cartesian meshes. The Raviart-Thomas polynomials are defined in
terms of certain face and cell moments. In the present work, the face moments are
evolved using a DG scheme proposed in Balsara & Kappeli [12] which makes use of 1-D
and 2-D Riemann solvers. However, unlike those authors, the novelty of our formulation
is that it is based from the ground-up on the Raviart-Thomas elements. As a result,
our scheme also includes internal nodes within each element in addition to the facial
nodes proposed in [12] but there is no need to perform a divergence-free reconstruction
step. The internal nodal values are evolved according to a conventional DG scheme
which makes of 1-D Riemann solver to obtain the numerical fluxes. In 2-D, the algo-
rithm involves a one dimensional DG scheme built on the faces of the mesh and a two
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dimensional DG scheme built in the interior of the cells. The idea of evolving moments
of BDM polynomials has been used in the central DG scheme [33], [32] together with a
reconstruction step and the use of staggered grids, but in our approach there is no need
to perform a recontruction step and all the degrees of freedom are directly evolved by
the DG scheme. By having certain compatibility in the internal and facial DG schemes,
we obtain a scheme that overall preserves the divergence of the solution and also en-
sures that normal component of the vector field is continuous across the cell faces. This
synthesis yields a conceptually pleasing time-explicit DG scheme which avoids staggered
meshes and brings together methods for CED and MHD. An important feature of the
present scheme is that there is no need to invert a global mass matrix which makes ex-
plicit time stepping to be very efficient. While only second and third order results are
shown here, the extension to much higher order is very easy since we can easily con-
struct high order Raviart-Thomas polynomials on Cartesian meshes. Since it does not
require staggered grids, the methodology presented here can be used for other curl-type
equations, including the Maxwell equations, to develop constraint preserving schemes on
unstructured quadrilateral/hexahedral grids, isoparametric elements and also on adap-
tively refined grids of quadtree/octree type. An unstaggered DG scheme using BDM
polynomials as approximation space has been proposed in [25] for induction equation
and the full MHD system which is able to preserve the divergence of the magnetic field.
This scheme makes use of multi-dimensional Riemann solvers at the cell vertices and
evolves the normal components on the faces by a DG scheme, and the present scheme is
very similar to [25]. A Fourier stability analysis for induction equation in [25] shows the
importance of correctly approximating the multi-dimensional Riemann solution and the
theoretical developments there will be useful in extending our own scheme to the MHD
system.

The rest of the paper is organized as follows. The schemes proposed here make use
of some non-standard approximation spaces which is not so well known among scientific
and engineering community. Hence we have strived to provide some elementary intro-
duction and derivations to explain this important topic to a wider audience. We start
in section (2) by explaining the process of approximating vector fields whose divergence
has to be bounded in terms of Raviart-Thomas polynomials. The construction of the
approximation in terms of moments is explained and we show how the approximation
automatically satisfies the divergence-free condition. In section (3), the DG scheme is
proposed to evolve the moments and its ability to exactly preserve the divergence is
shown. Then we detail the numerical fluxes and boundary conditions for the induc-
tion equation. Finally, in section (4), we show through many numerical tests that the
proposed schemes have to optimal accuracy in approximating both divergence-free and
divergent solutions.
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2 Approximation of vector fields

When dealing with problems where the vector field B must be divergence-free, it is
natural to look for solutions in the space H(div,Ω) which is defined as

H(div,Ω) = {B ∈ L2(Ω) : div(B) ∈ L2(Ω)}

i.e., these functions have bounded L2 norm and the divergence also has bounded L2

norm. To approximate functions in H(div,Ω) on a mesh Th with piecewise polynomials
as done in the finite element method, we need the following compatibility condition.

Theorem 1 (See [36], Proposition 3.2.2). Let Bh : Ω→ Rd be such that

1. Bh|K ∈H1(Ω) for all K ∈ Th
2. for each common face F = K1 ∩K2, K1,K2 ∈ Th, the trace of normal component

n ·Bh|K1 and n ·Bh|K2 is the same.

Then Bh ∈ H(div,Ω). Conversely, if Bh ∈ H(div,Ω) and (1) holds, then (2) is also
satisfied.

The functions in H(div,Ω) can be approximated on a Cartesian mesh by the Raviart-
Thomas space of piecewise polynomial functions as follows. Define the one dimensional
polynomials Pk(x), Pk(y) of degree at most k with respect to the variables x, y respec-
tively. Let Qr,s(x, y) denote the tensor product polynomials of degree r in the variable
x and degree s in the variable y, i.e.,

Qr,s(x, y) = span{xiyj , 0 ≤ i ≤ r, 0 ≤ j ≤ s}

For k ≥ 0, the Raviart-Thomas space of vector functions is defined as

RTk = Qk+1,k ×Qk,k+1

The dimension of this space is 2(k + 1)(k + 2). For any Bh ∈ RTk, we have div(Bh) ∈
Qk,k(x, y). We consider a cell centered at the origin and of size ∆x,∆y. The restriction
of Bh = (Bh

x , B
h
y ) to a face is a polynomial of degree k, i.e.,

Bh
x(±∆x/2, y) ∈ Pk(y), Bh

y (x,±∆y/2) ∈ Pk(x)

For doing the numerical computations, it is useful to map each cell C to a reference
cell and choose certain nodes that can be used to define Lagrange polynomials. Let
{ξi, 0 ≤ i ≤ k + 1} and {ξ̂i, 0 ≤ i ≤ k} be two sets of distinct nodes in the reference
interval [0, 1] with the constraint that ξ0 = 0 and ξk+1 = 1. Let φi and φ̂i be the
corresponding one dimensional Lagrange polynomials. Then the magnetic field is given
by

Bh
x(ξ, η) =

k+1∑
i=0

k∑
j=0

(Bx)ijφi(ξ)φ̂j(η), Bh
y (ξ, η) =

k∑
i=0

k+1∑
j=0

(By)ijφ̂i(ξ)φj(η) (3)
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Bx ∈ Q1,0 By ∈ Q0,1

Figure 1: Location of dofs of Raviart-Thomas polynomial for k = 0

Bx ∈ Q2,1 By ∈ Q1,2

Figure 2: Location of dofs of Raviart-Thomas polynomial for k = 1

Our choice of nodes ensures that the normal component of the magnetic field is contin-
uous on the cell faces. There is no unique way to choose the nodes and the particular
choice we use is what is implemented in the deal.II library [15]. We first describe
the nodes used for the Bx component. On the left and right faces of the cell, we have
k+ 1 Gauss-Legendre nodes, while on the interior, we have tensor product of k× (k+ 1)
Gauss-Legendre nodes. For the By component, we have (k+1) Gauss-Legendre nodes on
the bottom and top faces of the cell, and a tensor product of (k+ 1)×k Gauss-Legendre
nodes in the interior. Figures (1), (2) and (3) show the location of the nodes for the
case of k = 0, k = 1 and k = 2 respectively. On Cartesian meshes, the optimal error
estimates for approximating vector fields with RTk are of the form [18], [1]

‖B −Bh‖L2(Ω) ≤ Chk+1|B|Hk+1(Ω) (4)

‖div(B)− div(Bh)‖L2(Ω) ≤ Chk+1|div(B)|Hk+1(Ω) (5)

The second error estimate implies that div(Bh) ≡ 0 if div(B) ≡ 0 but we will show the
divergence-free property of the approximation more explicitly in a later section.
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Bx ∈ Q3,2 By ∈ Q2,3

Figure 3: Location of dofs of Raviart-Thomas polynomial for k = 2

e+xe−x

e−y

e+y

C

0 1

2 3

Figure 4: A cell C and its face nomenclature

2.1 Construction of Bh

To determine a function Bh ∈ RTk on each cell C, we need 2(k + 1)(k + 2) pieces of
information which is the dimension of the RTk space. These are taken to be certain
moments on the faces and interior of the cell. The face moments are given by∫

e∓x

Bh
xφdy ∀φ ∈ Pk(y)

and ∫
e∓y

Bh
yφdx ∀φ ∈ Pk(x)
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where e∓x are the two vertical sides of cell C and e∓y are the two horizontal sides of cell
C as shown in figure (4). The cell moments are given by∫

C
Bh

xψdxdy ∀ψ ∈ ∂xQk,k(x, y) := Qk−1,k(x, y)

and ∫
C
Bh

yψdxdy ∀ψ ∈ ∂yQk,k(x, y) := Qk,k−1(x, y)

Note that dimPk(x) = dimPk(y) = k + 1 and dim ∂xQk,k(x, y) = dim ∂yQk,k(x, y) =
k(k + 1) so that we have in total 4(k + 1) + 2k(k + 1) = 2(k + 1)(k + 2) pieces of
information which is enough to determine Bh ∈ RTk. The moments on the faces e∓x
uniquely determine the restriction of Bh

x on those faces, and similarly the moments on
e∓y uniquely determine the restriction of Bh

y on the corresponding faces. This ensures

continuity of the normal component of Bh on all the faces. Also note that the moment
equations for Bh

x , Bh
y are decoupled and can be solved independently of one another.

Given all the moments for a cell, we can uniquely determine the function Bh as shown
in the following theorem. If all the moments are zero, then we show that the Bh is
identically zero which implies that the matrix arising from the moments is invertible.
This is a standard result which we state here in a simple setting of Cartesian meshes and
for a proof of this result on general meshes, see ([18], Proposition 3.3 and 3.4) and [34].

Theorem 2. If all the moments are zero for any cell C, then Bh ≡ 0 inside that cell.

Proof: The face moments being zero implies that

Bh
x ≡ 0 on e∓x and Bh

y ≡ 0 on e∓y

Now take ψ = ∂xφ for some φ ∈ Qk,k in the cell moment equation of Bh
x and perform an

integration by parts

−
∫
C

∂Bh
x

∂x
φdxdy −

∫
e−x

Bh
xφdy +

∫
e+x

Bh
xφdy = 0

and hence ∫
C

∂Bh
x

∂x
φdxdy = 0 ∀φ ∈ Qk,k

Since ∂Bh
x

∂x ∈ Qk,k, this implies that ∂Bh
x

∂x ≡ 0 and hence Bh
x ≡ 0. Similarly, we conclude

that Bh
y ≡ 0.
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Theorem 3. Let Bh ∈ RTk satisfy the moments∫
e∓x

Bh
xφdy =

∫
e∓x

Bxφdy ∀φ ∈ Pk(y) (6)∫
e∓y

Bh
yφdx =

∫
e∓y

Byφdx ∀φ ∈ Pk(x) (7)∫
C
Bh

xψdxdy =

∫
C
Bxψdxdy ∀ψ ∈ ∂xQk,k(x, y) (8)∫

C
Bh

yψdxdy =

∫
C
Byψdxdy ∀ψ ∈ ∂yQk,k(x, y) (9)

for a given vector field B ∈ H(div,Ω). If div(B) ≡ 0 then div(Bh) ≡ 0.

Proof: This is also a standard result and we refer the reader to the textbook [18] for
a general proof and other references. We choose ψ = ∂xφ and ψ = ∂yφ for some
φ ∈ Qk,k(x, y) respectively in the two cell moment equations (8), (9). Adding these two
equations together, we get∫

C
(Bh

x∂xφ+Bh
y ∂xφ)dxdy =

∫
C

(Bx∂xφ+By∂yφ)dxdy

Performing integration by parts on both sides

−
∫
C

(∂xB
h
x + ∂yB

h
y )φdxdy+

∫
∂C
φBh ·nds = −

∫
C

(∂xBx + ∂yBy)φdxdy+

∫
∂C
φB ·nds

where n is the unit normal vector on the boundary of the cell. Note that φ restricted
to ∂C is a one dimensional polynomial of degree k and the face moments of Bh and B
agree with one another by equations (6), (7). Hence we get∫

C
(∂xB

h
x + ∂yB

h
y )φdxdy =

∫
C

(∂xBx + ∂yBy)φdxdy ∀φ ∈ Qk,k(x, y)

If div(B) ≡ 0, then ∫
C

div(Bh)φdxdy = 0 ∀φ ∈ Qk,k(x, y)

Since div(Bh) ∈ Qk,k(x, y) this implies that div(Bh) ≡ 0 everywhere inside the cell
C.

Remark The moments are with respect to some non-standard test function spaces
whose choice is now well motivated by the above theorem. Since the test functions for
the cell moments can be written as ∂xφ and ∂yφ for some φ ∈ Qk,k, we can obtain an
equation for the divergence by doing an integration by parts, which helps us to control
the divergence of the approximation.
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Remark The proof makes use of integration by parts for which the quadrature must
be exact. The integrals involving Bh can be evaluated exactly using Gauss quadrature
of sufficient accuracy. This is not the case for the integrals involving B since it can
be an arbitrary nonlinear function. When div(B) = 0, we have B = (∂yΦ,−∂xΦ) for
some smooth function Φ. We can approximate Φ by Φh ∈ Qk+1,k+1 and compute the
projections using (∂yΦh,−∂xΦh) in which case the integrations can be performed exactly.
This procedure is used in all the test cases with zero divergence which then ensures that
the initial condition Bh(0) has zero divergence everywhere.

3 DG scheme for the induction equation

We propose a mixed scheme which evolves the face and cell moments that are used
to define the projection on the Raviart-Thomas space. Since we have shown that this
projection gives divergence-free approximations, the evolution of the same moments will
be able to preserve the divergence of the magnetic field at future times also. The face
moments are evolved using the scheme proposed in Balsara & Kappeli [12]. The variation
of Bx on the vertical faces e∓x is given by a one dimensional PDE in the y direction, and
similarly for the By component. Hence we can discretize the one dimensional PDEs on
the faces by applying a DG method. Multiplying by test functions used to define the
face moments and performing an integration by parts, the DG scheme on the faces is
given by ∫

e∓x

∂Bh
x

∂t
φdy −

∫
e∓x

Ê
∂φ

∂y
dy + [Ẽφ]e∓x = −

∫
e∓x

M̂xφdy ∀φ ∈ Pk(y) (10)

∫
e∓y

∂Bh
y

∂t
φdx+

∫
e∓y

Ê
∂φ

∂x
dx− [Ẽφ]e∓y = −

∫
e∓y

M̂yφdx ∀φ ∈ Pk(x) (11)

where Ê is a numerical flux from a 1-D Riemann solver which is required on the faces
of the cells, while Ẽ is a numerical flux obtained from a multi-D Riemann solver and
is needed at the vertices of the cells. Note that we may have to approximate Mx,My

on the faces by some numerical scheme if the source term depends on the solution,
since the tangential components of Bh could be discontinuous across the cell faces, and
this numerical approximation is denoted as M̂x, M̂y, respectively. This type of situation
occurs for Maxwell equations as discussed in the Introduction. The quantities [Ẽφ]e∓x ,

[Ẽφ]e∓y are difference operators on the faces, and with respect to the vertex numbering

in figure (4), are defined as follows:

[Ẽφ]e−x = (Ẽφ)2 − (Ẽφ)0, [Ẽφ]e+x = (Ẽφ)3 − (Ẽφ)1

[Ẽφ]e−y = (Ẽφ)1 − (Ẽφ)0, [Ẽφ]e+y = (Ẽφ)3 − (Ẽφ)2

The cells moments are evolved by the following standard DG scheme∫
C

∂Bh
x

∂t
ψdxdy −

∫
C
E
∂ψ

∂y
dxdy +

∫
∂C
Êψnyds = −

∫
C
Mxψdxdy ∀ψ ∈ ∂xQk,k(x, y)

(12)
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∫
C

∂Bh
y

∂t
ψdxdy +

∫
C
E
∂ψ

∂x
dxdy −

∫
∂C
Êψnxds = −

∫
C
Myψdxdy ∀ψ ∈ ∂yQk,k(x, y)

(13)
Note that the same 1-D numerical flux Ê is used in both the face and cell moment equa-
tions whereas the vertex numerical flux Ẽ is needed only in the face moment equations.

Theorem 4. If M = 0, the DG scheme (10)-(13) preserves the divergence of the mag-
netic field. If M 6= 0, then the divergence evolves consistently with equation (2) in the
sense that the numerical solution satisfies∫

C
φ
∂

∂t
div(Bh)dxdy −

∫
C
M · ∇φdxdy +

∫
∂C
φM̂ · nds = 0, ∀φ ∈ Qk,k (14)

Proof: For any φ ∈ Qk,k(x, y) take test functions ψ = ∂xφ and ψ = ∂yφ in the two cell
moment equations (12), (13) respectively and add them together to obtain∫

C

[
∂Bh

x

∂t
∂xφ+

∂Bh
y

∂t
∂yφ

]
dxdy+

∫
C
M · ∇φdxdy −

∫
∂C
Ê(nx∂yφ− ny∂xφ)ds = 0

Note that two of the cell integrals cancel since ∂x∂yφ = ∂y∂xφ. Performing an integration
by parts in the first term, we obtain

−
∫
C
φ
∂

∂t
(∂xB

h
x + ∂yB

h
y )dxdy+

∫
∂C
φ
∂

∂t
(Bh · n)ds

+

∫
C
M · ∇φdxdy −

∫
∂C
Ê(nx∂yφ− ny∂xφ)ds = 0

(15)

Now, let us concentrate on the second and last terms which can be re-arranged as follows∫
∂C
φ
∂

∂t
(Bh · n)ds−

∫
∂C
Ê(nx∂yφ− ny∂xφ)ds

=

∫
e+x

φ
∂Bh

x

∂t
dy −

∫
e−x

φ
∂Bh

x

∂t
dy +

∫
e+y

φ
∂Bh

y

∂t
dx−

∫
e−y

φ
∂Bh

y

∂t
dx

−
∫
e+x

Ê∂yφdy +

∫
e−x

Ê∂yφdy +

∫
e+y

Ê∂xφdx−
∫
e−y

Ê∂xφdx

The restriction of φ on each face is a one dimensional polynomial of degree k and we
can use the face moment equations (10), (11) to obtain∫

∂C
φ
∂

∂t
(Bh · n)ds−

∫
∂C
Ê(nx∂yφ− ny∂xφ)ds

= −
∫
e+x

M̂xφdy +

∫
e−x

M̂xφdy −
∫
e+y

M̂yφdx+

∫
e−y

M̂yφdx

−[Ẽφ]e+x + [Ẽφ]e−x + [Ẽφ]e+y − [Ẽφ]e−y

= −
∫
∂C
φM̂ · nds (16)
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since

−[Ẽφ]e+x + [Ẽφ]e−x + [Ẽφ]e+y − [Ẽφ]e−y

= −(Ẽφ)3 + (Ẽφ)1 + (Ẽφ)2 − (Ẽφ)0 + (Ẽφ)3 − (Ẽφ)2 − (Ẽφ)1 + (Ẽφ)0

= 0

Combining equations (15) and (16), we obtain equation (14). In the case of M = 0, any
consistent numerical approximation would lead to M̂ = 0, and then we obtain∫

C
φ
∂

∂t
(div(Bh))dxdy = 0 ∀φ ∈ Qk,k(x, y)

Since div(Bh) ∈ Qk,k(x, y), we conclude that the divergence is preserved by the numer-
ical scheme.

Remark The above proof required integration by parts in the terms involving the time
derivative which is usually called the mass matrix. The other cell integral in the DG
scheme can be computed using any quadrature rule of sufficient order and need not be
exact. All the face integrals which involve the numerical flux Ê appearing in the face
moment and cell moment evolution equations must be computed with the same rule and
it is not necessary to be exact for the above proof to hold. However, from an accuracy
point of view, these quadratures must be of a sufficiently high order to obtain optimal
error estimates. In practice we find that using a (k+1)-point Gauss-Legendre quadrature
for face integrals and a tensor product rule of the same points for the cell integrals leads
to optimal convergence rates.

Remark The preservation of divergence does not rely on the specific form of the fluxes
Ẽ, Ê but only on the fact that we have a unique flux Ẽ at all the vertices, and that we
use the same 1-D numerical flux Ê in both the face and cell moment equations.

Remark In the case of Maxwell equations, the electric field has a curl form just like
the induction equation but can also have a source term related to the electric current.
In our notation, this would correspond to the case when the source term M 6= 0. As
discussed in the introduction, we would like to compute the solution and also look at its
divergence since it gives information about the charge density in space. From the proof
of the previous theorem, we have seen that the divergence satisfies equation (14) that
looks like a standard DG scheme for equation (2). The divergence is a tensor product
polynomial of degree k, i.e., div(Bh) ∈ Qk,k, and we can expect div(Bh) to be accurate
to O(hk+1). This is indeed borne out in our numerical tests which shows that we can
compute the charge density to the same order of accuracy as the solution without any
extra effort.
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Figure 5: Four states meeting at a vertex that define a 2-D Riemann problem

3.1 Numerical fluxes and Electric Fields

In order to complete the description of the DG scheme, we have make a choice of the two
types of numerical fluxes needed in the scheme. To specify the numerical fluxes, we have
to identify the characteristic curves in the PDE. Using the zero divergence condition, we
can rewrite the induction equation in the following way

∂Bx

∂t
+ v · ∇Bx +Bx

∂vy
∂y
−By

∂vx
∂y

= 0,
∂By

∂t
+ v · ∇By +By

∂vx
∂x
−Bx

∂vy
∂x

= 0

There is only one set of characteristic curves and they are the integral curves of v and
the velocity field is assumed to be given as a function of space and time coordinates.
Following the upwind principle that information propagates along characteristics, the
1-D numerical flux is given by

Ê =

{
EL if v · n > 0

ER otherwise

where the subscripts L and R denote the left and right states with the normal vector n
pointing from L to R. For example, across the face e∓x , the flux is given by

Ê =

{
vyBx − vxBL

y if vx > 0

vyBx − vxBR
y otherwise

At a vertex, we have four states meeting which is illustrated in figure (5). Note that Bx

is continuous across the vertical faces and By is continuous across the horizontal faces.
The upwinded electric field at the vertices of the two-dimensional mesh is given by

Ẽ =


EDL if vx > 0, vy > 0

EUL if vx > 0, vy < 0

EDR if vx < 0, vy > 0

EUR if vx < 0, vy < 0

13



which can be written in compact form as

Ẽ =
vy
2

(BU
x +BD

x )− vx
2

(BL
y +BR

y )− |vy|
2

(
BU

x −BD
x

)
+
|vx|
2

(
BR

y −BL
y

)
An equivalent expression is given by [12]

Ẽ =
vy
4

(BUL
x +BUR

x +BDL
x +BDR

x )− vx
4

(BUL
y +BUR

y +BDL
y +BDR

y )

− |vy|
2

(
BUL

x +BUR
x

2
− BDL

x +BDR
x

2

)
+
|vx|
2

(
BUR

y +BDR
y

2
−
BUL

y +BDL
y

2

)
(17)

with the understanding that BDL
x = BDR

x , etc. We refer the reader to [25] for a stability
analysis of the first order scheme with the above numerical fluxes. Of course, in the
system case like full MHD, the expressions are not so simple and we point the reader to
the work in [5], [6], [10], [9].

3.2 Boundary condition

The natural way to specify boundary conditions in a DG scheme is through the boundary
fluxes. We have to specify both the fluxes across faces Ê and the vertex fluxes Ẽ. The
state outside the domain may be considered as a ghost state and is filled with given
boundary condition B∗ so that the same numerical flux as used for interior points can be
used on the boundary. At an inflow boundary where v ·n < 0, the flux Ê is determined
from the specified boundary value of B∗(x, y, t) while at an outflow boundary, it is
determined from the interior solution. This is just the upwind principle dictated by the
characteristic curves and the numerical flux Ê automatically takes care of this once the
ghost value is filled with given boundary condition B∗. In case of the corner flux Ẽ, let
us look at an inflow vertex located at the left side of the domain as shown in figure (6a).
Note that we may not have continuity of the normal components across the faces here,
e.g., B∗x = BU

x = BD
x may not be satisfied. We will use the data given in the figure and

apply the formula (17) to compute the corner flux at inflow boundary. Our numerical
experiments show that this leads to a stable scheme and the errors converge at optimal
rates even with non-trivial boundary data. At an outflow boundary located on the right
side of the domain as shown in figure (6b), the two outer states are taken to be same as
the interior states, BUR = BUL and BDR = BDL, and then the formula formula (17)
is used to compute the vertex flux. This is equivalent to computing the flux from the
interior state, and can also be written as

Ẽ =

{
EDL if vy > 0

EUL otherwise

which is the upwind principle based on the characteristics.

14
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Figure 6: Vertex states at boundary: (a) inflow vertex on left side of domain, (b) outflow
vertex on right side of domain
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Figure 7: Numbering of dofs for k = 1
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4 Implementation details

The magnetic field Bh will be approximated in RTk in terms of nodal Lagrange poly-
nomials as shown in equation (3). As we have seen, the test functions which define the
moments are not the same as the trial or basis functions. The test functions for the
moments are defined in terms of modal polynomials, each of which has zero mean value
except the first one. To define the test functions, we map a cell to the reference cell
[−1

2 ,+
1
2 ]× [−1

2 ,+
1
2 ] by

ξ =
x− x0

∆x
, η =

y − y0

∆y

where (x0, y0) is the cell center and ∆x, ∆y are the lengths of the sides in the x and y
directions, respectively. For degree k = 0, the test function spaces needed to specify the
face moments are

P0(x) = span{1}, P0(y) = span{1} (18)

and there are no cell moments in this case. For degree k = 1, the test function spaces
are given by

P1(x) = span{1, ξ}, P1(y) = span{1, η}
∂xQ1,1(x, y) = span{1, η}, ∂yQ1,1(x, y) = span{1, ξ} (19)

while for degree k = 2, they are given by

P2(x) = span{1, ξ, ξ2 − 1
12}, P2(y) = span{1, η, η2 − 1

12}
∂xQ2,2(x, y) = span{1, ξ, η, ξη, η2 − 1

12 , ξ(η
2 − 1

12)}
∂yQ2,2(x, y) = span{1, ξ, η, ξη, ξ2 − 1

12 , (ξ
2 − 1

12)η}
(20)

It is also possible to use Lagrange polynomials as test functions but we use the above
modal test functions in all our computations. We will enumerate the nodal degrees
of freedom associated with Bh

x , Bh
y with a single index. In each cell, there is a local

numbering of the dofs. The dofs on the faces are enumerated first in the order e−x , e+
x ,

e−y , e+
y and then the interior dofs are enumerated. E.g, the case of k = 1 is illustrated

in figure (7). The set of moment equations (6)-(9) leads to a matrix problem where the
mass matrix on each cell has the following structure

Mx 0 0 0 0 0
0 Mx 0 0 0 0
0 0 My 0 0 0
0 0 0 My 0 0
Nx

l Nx
r 0 0 Qx 0

0 0 Ny
b Ny

t 0 Qy

 (21)

where Mx, My are (k + 1) × (k + 1) matrices arise from the face moments and the
remaining matrices arise from the cell moments. The face values are decoupled so that
we can solve for the nodal values on each face independently of the other values. Once
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all the face values are obtained, the interior nodal values can be computed solving the
last set of equations which requires inverting the matrices Qx and Qy. The fifth and
sixth rows which correspond to the interior dofs of Bx and By are decoupled from one
another. Note that since the test functions are different from the basis functions, the
mass matrix is somewhat non-standard. E.g., the entries of the first Mx are of the form∫

face
(basis of Bx with support on left face)(basis of Pk(y))dy

while the entries of Qx are of the form∫
cell

(basis of Bx with interior support)(basis of ∂xQk,k)dxdy

and the entries of Nx
l are of the form∫

cell
(basis of Bx with support on left face)(basis of ∂xQk,k)dxdy

We can write the semi-discrete equations for the Bx components in any cell as

d

dt
[Bx]l = (Mx)−1Rx

l ,
d

dt
[Bx]r = (Mx)−1Rx

r

d

dt
[Bx]int = (Qx)−1

[
Rx

int −Nx
l

d

dt
[Bx]l −Nx

r

d

dt
[Bx]r

]
with similar equations for the By components. Here [Bx]l, [Bx]r denote the dofs located
on the left and right faces of the cell and [Bx]int denote the interior dofs. We first
loop over the all the faces and compute the right hand sides (rhs) of the face moment
equations. Then we loop over all the cells and compute the rhs of the cell moment
equations. Finally, we can perform one step of the Runge-Kutta scheme.

To give a more concrete view of the scheme and to help the reader to check their
own implementation, we give more details about the nodal basis functions for the case
of k = 1, and one can refer to figure (7) for the following discussion. Following the
implementation in deal.II, the nodal basis is defined in terms of the reference cell
[0, 1] × [0, 1]. The nodes on the faces are based on Gauss-Legendre points and are
located at ξ̂0 = 1

2(1 − 1/
√

3) and ξ̂1 = 1
2(1 + 1/

√
3) on the reference cell. The interior

nodes for Bh
x are located at (1

2 , ξ̂0) and (1
2 , ξ̂1), while for Bh

y are located at (ξ̂0,
1
2) and

(ξ̂1,
1
2). Define the 1-D Lagrange polynomials

φ0(ξ) =
(ξ − ξ1)(ξ − ξ2)

(ξ0 − ξ1)(ξ0 − ξ2)
, φ1(ξ) =

(ξ − ξ0)(ξ − ξ2)

(ξ1 − ξ0)(ξ1 − ξ2)
, φ2(ξ) =

(ξ − ξ0)(ξ − ξ1)

(ξ2 − ξ0)(ξ2 − ξ1)

φ̂0(ξ) =
ξ − ξ̂1

ξ̂0 − ξ̂1

, φ̂1(ξ) =
ξ − ξ̂0

ξ̂1 − ξ̂0
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

1
2

1
2 0 0 0 0 0 0 0 0 0 0

− 1
4
√

3
1

4
√

3
0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 − 1
4
√

3
1

4
√

3
0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 − 1
4
√

3
1

4
√

3
0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 − 1
4
√

3
1

4
√

3
0 0 0 0

1
12

1
12

1
12

1
12 0 0 0 0 1

3
1
3 0 0

−
√

3
72

√
3

72 −
√

3
72

√
3

72 0 0 0 0 −
√

3
72

√
3

72 0 0

0 0 0 0 1
12

1
12

1
12

1
12 0 0 1

3
1
3

0 0 0 0 −
√

3
72

√
3

72 −
√

3
72

√
3

72 0 0 −
√

3
72

√
3

72



Table 1: Mass matrix for k = 1

and the solution can be written as

Bh
x = (Bx)0φ0(ξ)φ̂0(η) + (Bx)1φ0(ξ)φ̂1(η) + (Bx)2φ2(ξ)φ̂0(η) + (Bx)3φ2(ξ)φ̂1(η) +

(Bx)8φ1(ξ)φ̂0(η) + (Bx)9φ1(ξ)φ̂1(η)

Bh
y = (By)4φ̂0(ξ)φ0(η) + (By)5φ̂1(ξ)φ0(η) + (By)6φ̂0(ξ)φ2(η) + (By)7φ̂1(ξ)φ2(η) +

(By)10φ̂0(ξ)φ1(η) + (By)11φ̂1(ξ)φ1(η)

where (Bx)j , (By)j are the values at the nodes as numbered in figure (7). Using the
test functions given in (19), the mass matrix on the reference cell is shown in table (1).
We perform the integration on the reference cell [0, 1]× [0, 1] but the test functions were
defined on [−1

2 ,+
1
2 ] × [−1

2 ,+
1
2 ], so the coordinates must be transformed as ξ → ξ − 1

2
and η → η − 1

2 before evaluating the test functions. For a general cell, the block matrix
for the faces e∓x must be scaled by ∆y, those for the faces e∓y must be scaled by ∆x and
the blocks corresponding to the cell moments must be scaled by ∆x∆y.

The code is written using deal.II [15] which is a C++ library that provides building
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blocks to write finite element programs. In general, the velocity v is a function of space
and time, and the integrals in the face and cell moment equations have to be computed
using some quadrature rule. The integrals on the faces are computed using (k+2)-point
Gauss-Legendre quadrature and the cell integrals are computed using (k+ 2)× (k+ 2)-
point Gauss-Legendre quadrature. The time integration is performed by the third order
strong stability preserving RK scheme [39]. The time step is chosen according to the
following condition

∆t =
CFL

(2k + 1) max
(
|vx|
∆x +

|vy |
∆y

)
and in all the test cases, we choose CFL = 0.8. The above formula is motivated by the
time step restrictions normally used in DG schemes and in all our tests, we have found
that the above choice was stable. Of course, a more rigorous stability analysis has to be
performed in a future work.

5 Numerical results

In this section, we provide numerical evidence to the approximation of vector fields
using Raviart-Thomas polynomials. We then use these polynomials to solve induction
equation for cases with zero and non-zero divergence, and numerically show that optimal
convergence orders are achieved.

5.1 Test 1: Approximation of smooth fields

In this section, we test the accuracy of projecting a given divergence-free field onto the
polynomial space RTk using the moments. For the first example titled Test 1a, we use
a divergence-free field given by B = (∂yΦ,−∂xΦ) where

Φ(x, y) = sin(2πx) sin(2πy), (x, y) ∈ [0, 1]× [0, 1]

For the second example titled Test 1b, we take a divergent field given by B = ∇Φ where

Φ(x, y) =
1

10
exp[−20(x2 + y2)], (x, y) ∈ [−1,+1]× [−1,+1]

The error for the first example are shown in tables (2), (3) which shows the optimal
convergence rates consistent with the error estimates given in equation (4). The norm of
the divergence is small; the variation seen is due to the difficulty in accurately computing
a quantity that is zero due to roundoff errors. The errors for second example are shown
in tables (4), (5) and we observe that both the function and its divergence converge at
the same optimal rate.

5.2 Test 2: Smooth test case, divergence-free solution

The initial condition is given by B0 = (∂yΦ,−∂xΦ) where

Φ(x, y) =
1

10
exp[−20((x− 1/2)2 + y2)]
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h ‖B −Bh‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.1250 1.0189e-01 - 3.7147e-14

0.0625 2.5519e-02 2.00 9.5162e-14

0.0312 6.3826e-03 2.00 3.7880e-13

0.0156 1.5958e-03 2.00 1.4840e-12

0.0078 3.9896e-04 2.00 5.8016e-12

Table 2: Test 1a: Approximation error convergence for k = 1

h ‖B −Bh‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.1250 6.7521e-03 - 1.3265e-13

0.0625 8.4659e-04 3.00 3.7389e-13

0.0312 1.0590e-04 3.00 1.3266e-12

0.0156 1.3241e-05 3.00 5.2716e-12

0.0078 1.6552e-06 3.00 2.0924e-11

Table 3: Test 1a: Approximation error convergence for k = 2

h ‖B −Bh‖L2(Ω) ‖div(B)− div(Bh)‖L2(Ω)

0.0625 9.0930e-04 - 2.7438e-02 -

0.0312 2.2445e-04 2.02 6.9076e-03 1.99

0.0156 5.5927e-05 2.00 1.7299e-03 2.00

0.0078 1.3970e-05 2.00 4.3267e-04 2.00

0.0039 3.4918e-06 2.00 1.0818e-04 2.00

Table 4: Test 1b: Approximation error convergence for k = 1

h ‖B −Bh‖L2(Ω) ‖div(B)− div(Bh)‖L2(Ω)

0.0625 4.7750e-05 - 1.8703e-03 -

0.0312 5.9190e-06 3.01 2.3550e-04 2.99

0.0156 7.3827e-07 3.00 2.9491e-05 3.00

0.0078 9.2233e-08 3.00 3.6881e-06 3.00

0.0039 1.1528e-08 3.00 4.6106e-07 3.00

Table 5: Test 1b: Approximation error convergence for k = 2
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(a) (b) (c)

Figure 8: Contour of |Bh| for Test 2a, 10 contours between 0 and 0.3867: (a) initial, (b)
final, k = 1, (c) final, k = 2

and the velocity field is v = (y,−x). The exact solution is a pure rotation of the initial
condition and is given by

B(r, t) = R(t)B0(R(−t)r), R(t) =

[
cos t − sin t
sin t cos t

]
By construction, the exact solution has zero divergence initially and hence at future
times also. We solve this problem on two domain sizes which helps to show that the
method is able to implement non-trivial boundary conditions that depend on both space
and time in a stable and accuracy preserving manner.

5.2.1 Test 2a: Large domain

We compute the numerical solution on the computational domain [−1,+1] × [−1,+1]
upto a final time of T = 2π at which time the solution comes back to the initial condition.
At the boundary, the solution is nearly zero due to exponential decay of the solution.
Figure (8) shows the contours of the solution at the final time and the mesh of 64× 64
cells used in this simulation is inlaid in the background. We clearly see the improvement
in the solution when we go from k = 1 to k = 2, corresponding to second and third
order schemes respectively. The problem is solved on a sequence of refined meshes and
the corresponding error norms are shown in tables (6) and (7), which shows the design
order of accuracy is being achieved.

5.2.2 Test 2b: Small domain

We compute the numerical solution on the computational domain [0, 1] × [0, 1] upto a
final time of T = π/2. Due to this finite domain, the solution at the boundary is non-
trivial. Figure (9) shows sample solution on a grid of 64 × 64 cells; the initial solution
profile is located at the lower part of the domain and at the final time, this has rotated by
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h ‖Bh −B‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.0312 2.1427e-03 - 6.0137e-14
0.0156 3.2571e-04 2.71 1.8566e-13
0.0078 5.9640e-05 2.45 5.8486e-13
0.0039 1.3209e-05 2.17 1.8853e-12

Table 6: Convergence of error for Test 2a with k = 1

h ‖Bh −B‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.0625 2.4003e-04 - 4.9081e-14
0.0312 2.5212e-05 3.25 1.4299e-13
0.0156 3.0946e-06 3.02 4.5663e-13
0.0078 3.8448e-07 3.00 1.5058e-12

Table 7: Convergence of error for Test 2a with k = 2

90 degrees in counter-clockwise direction and part of the solution has exited the domain.
We also compute the solution on a sequence of successively refined grids and the error
is shown in tables (8) and (9) respectively for the second and third order cases. These
results indicate that the design order of accuracy has been achieved even in the presense
of non-trivial boundary conditions.

5.3 Test 3: Smooth test case, divergent solution

In this problem, we generate an exact solution by the method of manufactured solutions.
The exact solution is taken to be

B(x, y, t) =

[
cos t − sin t
sin t cos t

]
B0(x, y)

where

B0 = ∇φ, φ =
1

10
exp(−20(x2 + y2))

h ‖Bh −B‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.0312 6.5882e-04 - 2.8687e-14
0.0156 1.4979e-04 2.13 9.8666e-14
0.0078 3.6394e-05 2.04 3.2902e-13
0.0039 9.0308e-06 2.01 1.1356e-12

Table 8: Convergence of error for Test 2b with k = 1
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(a) (b) (c)

Figure 9: Contour of |Bh| for Test 2b, 10 contours between 0 and 0.3867: (a) initial, (b)
final, k = 1, (c) final, k = 2

h ‖Bh −B‖L2(Ω) ‖div(Bh)‖L2(Ω)

0.0625 1.4110e-04 - 2.4986e-14
0.0312 1.7238e-05 3.03 7.9129e-14
0.0156 2.1442e-06 3.00 2.5910e-13
0.0078 2.6749e-07 3.00 9.2720e-13

Table 9: Convergence of error for Test 2b with k = 2
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(a) (b) (c)

Figure 10: Contour plot of Bx for Test 3 showing 16 contours between -0.3838 and
+0.3838: (a) initial condition, (b) final, k = 1 and (c) final, k = 2

h ‖Bh −B‖L2(Ω) ‖div(B)− div(Bh)‖L2(Ω)

0.0312 8.5550e-04 - 6.9076e-03 -
0.0156 1.8915e-04 2.17 1.7299e-03 1.99
0.0078 3.8730e-05 2.29 4.3267e-04 1.99
0.0039 7.8346e-06 2.30 1.0818e-04 1.99

Table 10: Convergence of error for Test 3 with k = 1

and the velocity field is taken as

v = ∇>ψ, ψ =
1

π
sin(πx) sin(πy)

Note that by construction, the solution has non-zero divergence. The right hand side
source term M is computed from the above solution using the formula M = −∂B

∂t +
∇ × (v × B). The problem is solved on the domain [−1,+1] × [−1,+1] until a final
time of T = 2π. The x component of the solution on a grid of 64× 64 cells is shown in
figure (10) for the second and third order schemes. The solution contours rotate around
the origin and at the final time, the contours should coincide with the initial condition.
The figures show very similar contours at the final time and we see the third order being
slightly better. The convergence of the error in the solution and its divergence is shown
in tables (10), (11), respectively for the case of k = 1 and k = 2. We see that both the
solution and its divergence converge at the optimal rate of k+1. This shows that in case
of CED, we can compute the charge density also to optimal accuracy since it depends
on the divergence of the solution.
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h ‖Bh −B‖L2(Ω) ‖div(B)− div(Bh)‖L2(Ω)

0.0625 3.4775e-04 - 1.8703e-03 -
0.0312 3.3408e-05 3.38 2.3550e-04 2.99
0.0156 3.0287e-06 3.46 2.9491e-05 2.99
0.0078 2.7345e-07 3.47 3.6881e-06 2.99

Table 11: Convergence of error for Test 3 with k = 2

5.4 Test 4: Discontinuous test case

The scheme developed so far is not suitable for computing discontinuous solutions since
we need some form of limiting to control the Gibbs oscillations. However, due to the
discontinuous Galerkin and upwind nature of the scheme, it should still be stable for a
linear PDE like the induction equation in the sense that the computations should not
blow up and any oscillations should be restricted to regions close to the discontinuities.
We will show in this test case that the scheme indeed achieves these objectives. We take
the potential

Φ(x, y) =

{
2y − 2x if x > y

0 otherwise

and the velocity field is v = (1, 2). This leads to a discontinuous magnetic field with the
discontinuity along the line x = y and the initial magnetic field is given by

B0 =

{
(2, 2) if x > y

(0, 0) if x < y

The exact solution is obtained by a translation of the initial condition and is given by

B(x, y, t) = B0(x− t, y − 2t)

We compute this solution on a grid of 128 × 128 cells upto a final time of T = 0.5
units. The solutions for degree k = 0, k = 1 and k = 2 are shown figure (11) in terms
of surface plots of the x component of Bh. For k = 0, the solution is non-oscillatory
and corresponds to a first order scheme. Note that even though this corresponds to
linear variation inside the cell, the solutions are non-oscillatory as we expect from a
first order method. For higher order schemes, we see that there are oscillations around
the discontinuity line and also near the inlet portion where the discontinuity hits the
boundary. In other regions we do not observe the spread of these oscillations which
indicates the DG scheme has a stabilizing effect. At this final time, the divergence norm
of the solution is 3.9055e-13, 2.7616e-12 and 8.1331e-12 respectively for the three cases,
showing that even in this case the divergence-free property is maintained by the scheme.
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(a) (b)

(c) (d)

Figure 11: Solution for Test 4 on grid of 128× 128 cells: (a) initial condition, (b) k = 0,
(c) k = 1, (d) k = 2
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6 Summary and Conclusions

A new type of DG scheme has been proposed to deal with problems involving a divergence
constraint by utilizing approximating polynomials spaces based on Raviart-Thomas poly-
nomials. These polynomials naturally provide divergence-free approximations on any
mesh provided the data satisfies this property. By carefully evolving the moments used
to construct the approximating polynomials by a DG scheme, we are able to preserve the
divergence-free property at future times also without any extra reconstruction process
or modification of solution. When the divergence is non-zero, it is computed to same
accuracy as the solution which is useful to approximate the electric field in Maxwell
equations. The DG schemes require multi-dimensional fluxes which have been recently
proposed in the literature for various systems like MHD and CED. The use of fluxes
obtained from a Riemann solver is seen to lead to stable schemes for induction equation
that show optimal convergence rates in numerical tests. The present paper is devoted
to the mathematical aspects of satisfying the involution constraint inherent in Faraday’s
law with the help of a specially-formulated DG scheme. In future work we will show
how this synthesis between DG schemes and multidimensional Riemann solvers yields
superior DG schemes for several involution-constrained systems like MHD and CED with
extensions to unstructured, isoparametric and adaptive grids.
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