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Abstract

Recently, we proposed a weak Galerkin finite element method for the Laplace eigenvalue problem.
In this paper, we present two-grid and two-space skills to accelerate the weak Galerkin method. By
choosing parameters properly, the two-grid and two-space weak Galerkin method not only doubles
the convergence rate, but also maintains the asymptotic lower bounds property of the weak Galerkin
method. Some numerical examples are provided to validate our theoretical analysis.
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1 Introduction

The eigenvalue problem arises from many branches of mathematics and physics, including quantum
mechanics, fluid mechanics, stochastic process and structural mechanics. A variety of applications of
eigenvalue problem, especially the Laplacian eigenvalue problem, are surveyed by a recent SIAM review
paper [11]. Many numerical methods have been developed for the Laplacian eigenvalue problem, such as
finite difference methods [30] and finite element methods [2, 3, 6].

The finite element method is one of the efficient approaches for the Laplacian eigenvalue problem
for its simplicity and adaptivity on triangular meshes. Due to the minimum-maximum principle, the
conforming finite element method always gives the upper bounds for the Laplacian eigenvalues. In order
to get accurate intervals for eigenvalues, it is necessary to have lower bounds of eigenvalues. There are
mainly two ways, the post-processing method [5, 15, 17, 18, 17, 26, 27] and the nonconforming finite
element method [1, 13, 19, 39]. Some specific nonconforming finite element methods provide asymptotic
lower bounds for eigenvalues without solving an auxiliary problem, while it seems difficult to construct a
high order nonconforming element.
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Recently, a new method for solving the partial differential equations, named the weak Galerkin (WG)
method, has been developed. The WG method was first introduced in [29] for the second order elliptic
equation, and was soon applied to many types of partial differential equations, such as the parabolic equa-
tion [16], the biharmonic equation [22, 23, 38], the Brinkman equation [21], and the Maxwell equation [24].
In [32], the Laplacian eigenvalue problem was investigated by the WG method. An astonishing feature
is: it offers asymptotic lower bounds for the Laplacian eigenvalues on polygonal meshes by employing
high order polynomial elements. Comparing with the boundary value problems, the eigenvalue problem
is more difficult to solve since it is actually a special nonlinear equation. Solving eigenvalue problems
need more computational work and memory than solving corresponding boundary value problems. So
how to accelerate the solving speed is a necessary and important topic in computational mathematics.

Two-grid and two-space methods are both efficient numerical methods for nonlinear problems. The
main idea is to approximate a large nonlinear system by solving a small nonlinear system and a large
linear system, and thereby to reduce the computational cost. The two-grid method was first introduced
in [33] to solve a semilinear second order elliptic problem. Soon it was adopted for different kinds of
PDEs [20, 34, 36]. The eigenvalue problem can also be viewed as a nonlinear problem, the corresponding
two-grid method was studied in [35], and some variations have been developed later, such as the shifted-
inverse power method [14, 37], some applications have also been developed for Stokes [7, 10, 31] and
Maxwell eigenvalue problems [40], the second order elliptic eigenvalue problems by the mixed finite
element methods [8], Bose-Einstein problems [12]. The two-space method is proposed for the biharmoinc
eigenvalue problem by the nonconforming finite element methods. Then it is adopted for the Laplacian
eigenvalue problems by the conforming finite element methods [25] and Stokes eigenvalue problems [7].

In this paper, we apply the two-grid [35] and two-space methods to accelerate the WG method for
the Laplacian eigenvalue problems. In this way, the computing complexity of the WG method can be
reduced greatly. Another important nice feature is: by choosing the mesh sizes properly, the two-grid
WG method can still provide lower bounds for the Laplacian eigenvalues. Rigorous theoretical analysis
will be given for the proposed method, and numerical examples will be provided as well.

An outline of the paper goes as follows. In Section 2, we introduce the WG method for the eigenvalue
problem and the corresponding basic error estimates. In Section 3, we give the H−1 error estimate for
the WG method, which plays an important role in the analysis. The two-grid method will be introduced
and analyzed in Section 4. Section 5 is devoted to the two-space method. In Section 6, some numerical
examples are presented to validate our theoretical analysis. Some concluding remarks are given in the
final section.

2 A standard discretization of weak Galerkin scheme

In this section, we state some notation in this paper, introduce the standard WG scheme for Laplacian
eigenvalue problem briefly and present some results from [32]. Throughout this paper, we always use C
to represent a constant independent of mesh sizes H and h, which may have different values according
to the occurrence. The symbol a . b stands for a ≤ Cb for some constant C.

In this paper, for simplicity, we consider the following Laplacian eigenvalue problem: Find (λ, u) such
that  −∆u = λu, in Ω,

u = 0, on ∂Ω,∫
Ω
u2 = 1,

(2.1)

where Ω is a polygon region in Rd (d = 2, 3).

The standard Sobolev space notation are also used in this paper. Let D be any open bounded domain
with Lipschitz continuous boundary in Rd (d = 2, 3). We use the standard definition for the Sobolev
space Hs(D) and their associated inner products (·, ·)s,D, norms ‖ · ‖s,D, and seminorms | · |s,D for any
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s ≥ 0. For example, for any integer s ≥ 0, the seminorm | · |s,D is given by

|v|s,D =

∑
|α|=s

∫
D

|∂αv|2dD

 1
2

with the usual multi-index notation

α = (α1, · · · , αd), |α| = α1 + · · ·+ αd, ∂α =

d∏
j=1

∂αj
xj
.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =

 m∑
j=0

|v|2j,D

 1
2

.

The space H0(D) coincides with L2(D), for which the norm and the inner product are denoted by
‖ · ‖D and (·, ·)D, respectively. When D = Ω, we shall drop the subscript D in the norm and in the inner
product notation.

Let Th be a partition of the domain Ω, and the elements in Th are polygons satisfying the regular
assumptions specified in [29]. Denote by Eh the edges in Th, and by E0

h the interior edges Eh\∂Ω. For
each element T ∈ Th, hT represents the diameter of T , and h = maxT∈Th hT denotes the mesh size.

Now we introduce a WG scheme for the eigenvalue problem (2.1). For a given integer k ≥ 1, define
the WG finite element space

Vh = {v = (v0, vb) : v0|T ∈ Pk(T ), vb|e ∈ Pk−1(e),∀T ∈ Th, e ∈ Eh, and vb = 0 on ∂Ω}.

For each weak function v ∈ Vh, we can define its weak gradient ∇wv by distribution element-wisely as
follows.

Definition 2.1. [28] For each v ∈ Vh, ∇wv|T is the unique polynomial in [Pk−1(T )]d satisfying

(∇wv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T , ∀q ∈ [Pk−1(T )]d, (2.2)

where n denotes the outward unit normal vector.

For the aim of analysis, some projection operators are also employed in this paper. Let Q0 denote
the L2 projection from L2(T ) onto Pk(T ), Qb denote the L2 projection from L2(e) onto Pk−1(e), and Qh
denote the L2 projection from [L2(T )]d onto [Pk−1(T )]d. Combining Q0 and Qb together, we can define
Qh = {Q0, Qb}, which is a projection from H1

0 (Ω) onto Vh.

Now we define three bilinear forms on Vh for any v, w ∈ Vh,

s(v, w) =
∑
T∈Th

h−1+ε
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

as(v, w) = (∇wv,∇ww) + s(v, w),

bw(v, w) = (v0, w0),

where 0 ≤ ε < 1 is a constant [32]. Define the following norm on Vh that

|||v|||2 = as(v, v), ∀v ∈ Vh.

For the simplicity of notation, we introduce a semi-norm ‖ · ‖b by

‖v‖2b := bw(v, v), ∀v ∈ Vh.

With these preparations we can give the following WG algorithm.
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Weak Galerkin Algorithm 1. [32] Find (λh, uh) ∈ R× Vh such that ‖uh‖b = 1 and

as(uh, vh) = λhbw(uh, vh), ∀vh ∈ Vh. (2.3)

Denote V0 = H1
0 (Ω), and define the sum space V = V0+Vh. Now we introduce the following semi-norm

on V that

‖w‖2V =
∑
T∈Th

(
‖∇w0‖2T + h−1

T ‖Qbw0 − wb‖2∂T
)
.

‖ · ‖V indeed defines a norm on V [32]. For the analysis in this paper, we still need to introduce the dual
norm of ‖ · ‖V as follows

‖vh‖−V = sup
w∈V,‖w‖V 6=0

bw(vh, w)

‖w‖V
.

For the standard WG scheme, the following convergence theorem holds true, and which also gives a
lower bound estimate.

Theorem 2.1. [32] Suppose λj,h is the j-th eigenvalue of (2.3) and uj,h is the corresponding eigenfunc-
tion. There exists an exact eigenfunction uj corresponding to the j-th exact eigenvalue λj such that the
following error estimates hold

Ch2k‖uj‖k+1 ≤ λj − λj,h ≤ Ch2k−2ε‖uj‖k+1, (2.4)

‖uj − uj,h‖V ≤ Chk−ε‖uj‖k+1, (2.5)

‖uj − uj,h‖b ≤ Chk+1−ε‖uj‖k+1, (2.6)

when uj ∈ Hk+1(Ω) and h is small enough.

3 Error estimate in negative norm

In this section, we shall analysis the ‖ · ‖−V error estimate for the WG scheme (2.3). First, we need to
establish the ‖ · ‖−V error estimate for the corresponding boundary value problem. Consider the Poisson
equation {

−∆u = f, in Ω,
u = 0, on ∂Ω,

(3.1)

where Ω is a polygon or polyhedra in Rd (d = 2, 3).

The WG method is adopted to solve equation (3.1). For analysis, we define the following norm

|||v|||−1 = sup
w∈Vh,w 6=0

bw(v, w)

|||w|||
.

It is easy to check that ‖ · ‖V is equivalent to ‖ · ‖1 on the space H1
0 (Ω). The relationship between ‖ · ‖V

and ||| · ||| has been discussed in [32], which is presented as follows.

Lemma 3.1. [32] There exist two constants C1 and C2 such that the following inequalities hold for any
w ∈ Vh

C1|||w||| ≤ ‖w‖V ≤ C2h
− ε

2 |||w|||. (3.2)

The WG method for the boundary value problem (3.1) can be described as follows:

4



Weak Galerkin Algorithm 2. Find uh ∈ Vh such that

as(uh, v) = bw(f, v), ∀v ∈ Vh. (3.3)

Suppose u is the exact solution for (3.1) and uh is the corresponding numerical solution of (3.3).
Denote by eh the error that

eh = Qhu− uh = {Q0u− u0, Qbu− ub}.

Then eh satisfies the following equation.

Lemma 3.2. [32] Let eh be the error of the weak Galerkin scheme (3.3). Then we have

as(eh, v) = `(u, v), ∀v ∈ Vh, (3.4)

where

`(u, v) =
∑
T∈Th

〈(∇u−Qh∇u) · n, v0 − vb〉∂T + s(Qhu, v).

Moreover, we have

as(Qhu, v) = `(u, v) + bw(f, v), ∀v ∈ Vh. (3.5)

Theorem 3.1. [32] Assume the exact solution u of (3.1) satisfies u ∈ Hk+1(Ω) and uh is the numerical
solution of the WG scheme (3.3). Then the following error estimate holds true,

|||Qhu− uh||| ≤ Chk−
ε
2 ‖u‖k+1. (3.6)

Now, we come to estimate the error eh in the norm ||| · |||−1. We suppose the partition Th is a trian-
gulation, instead of an arbitrary polytopal mesh. The idea is to introduce a continuous interpolation for
vh ∈ Vh. To this end, we define NT as the vertices of the element T ∈ Th. Here, the notation V Ch is used
to denote the conforming linear finite element space [4, 9]. We need to define an interpolation operator
Πh : Vh → V Ch ⊂ V0 as follows. For each node A in Th, let

K(A) :=
⋃

A∈NT

T

and NA is the number of elements in K(A). Then, for any vh ∈ Vh, the value of Πhvh at the node A is
defined by

(Πhvh)(A) =
1

NA

∑
T∈K(A)

v0|T (A).

Then the function Πhvh ∈ V Ch is determined by its nodal values and the basis for the space V Ch .

Lemma 3.3. For any vh ∈ Vh, we have the following estimate

|Πhvh|1 . ‖vh‖V . (3.7)

Proof. For any T ∈ Th, define

K(T ) :=
⋃

NT∩N ′T 6=∅

T ′.

We only need to prove that

|Πhvh|1,T . ‖vh‖V,K(T ) (3.8)
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since summing (3.8) over T ∈ Th can lead to the desired result (3.7).

Define T̂ the reference element and FT : T → T̂ the affine isomorphism. Denote K(T̂ ) = FT (K(T )).

It follows from the regularity assumption of the mesh that K(T̂ ) is also of unit size. Then we define the
following Banach spaces

V̂h =
{
v̂h : v̂h = vh(F−1

T (x̂)) = vh ◦ F−1
T , ∀vh ∈ Vh|K(T )

}
and M =

{
v̂h : v̂h ∈ V̂h and

∫
T̂
v̂hdT̂ = 0

}
. Obviously the complement of M in V̂h with the L2

inner product is M⊥ =
{
v̂h : v̂h ∈ V̂h and v̂h is a constant on K(T̂ )

}
. We also define the interpolation

operator Π̂T := Πh ◦ F−1
T on K(T̂ ) corresponding the operator Πh on K(T ). Notice that |Π̂T v̂h|1,T̂

defines a seminorm on M and ‖v̂h‖V,K(T̂ ) defines a norm on M . From the equivalence of norms on finite

dimensional Banach spaces, we obtain

|Π̂T v̂h|1,T̂ . ‖v̂h‖V,K(T̂ ), ∀v̂h ∈M.

Furthermore, since |Π̂T v̂h|1,T̂ = ‖v̂h‖V,K(T̂ ) = 0 for all v̂h ∈M⊥, we have

|Π̂T v̂h|1,T̂ . ‖v̂h‖V,K(T̂ ), ∀v̂h ∈ V̂h.

From the property of affine isomorphism, the following inequalities hold

|Πhvh|1,T . h
d
2−1

T |Π̂T v̂h|1,T̂ . h
d
2−1

T ‖v̂h‖V,K(T̂ ) . ‖vh‖V,K(T ).

Then the proof is completed.

Lemma 3.4. For any vh ∈ Vh, we have the following estimate

‖vh −Πhvh‖b . h‖vh‖V .

Proof. Similarly to the proof of Lemma 3.3, we only need to prove that

‖v0 −Πhvh‖T . h‖vh‖V,K(T ), ∀T ∈ Th. (3.9)

First, on the element T , we have the following estimates

‖Π1,T v0 −Πhvh‖2T =

∫
T

∑
Ai∈NT

|v0(Ai)−Πhvh(Ai)|2ϕ2
i dT

. hd
∑

Ai∈NT

|v0(Ai)−Πhvh(Ai)|2, (3.10)

where ϕi is the linear Lagrange basis function corresponding to Ai and Π1,T is the linear Lagrange
interpolation for the finite element space V Ch on the element T .

For each node Ai, denote {T1, T2, · · · , TNi
} the elements in K(Ai) in counter-clock order. From the

definition of Πhvh we can obtain

|v0(Ai)−Πhv(Ai)| ≤
1

Ni

Ni∑
j=1

∣∣∣v0|T (Ai)− v0|Tj
(Ai)

∣∣∣
≤ 1

Ni

Ni∑
j=1

j∑
k=1

∣∣∣v0|Tk
(Ai)− v0|Tk−1

(Ai)
∣∣∣. (3.11)
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From the L∞-L2 inverse inequality, it follows that∣∣∣v0|Tk
(Ai)− v0|Tk−1

(Ai)
∣∣∣ . h−

d−1
2 ‖[[v0]]‖e, (3.12)

where e is the edge between Tk and Tk−1.

Combining (3.10)-(3.12) and the definition of the norm ‖ · ‖V leads to the following estimates

‖Π1,T v0 −Πhvh‖2T . h
∑

e∈K(T )

‖[[v0]]‖2e . h
∑

T∈K(T )

‖v0 − vb‖2∂T . h2‖vh‖2V,K(T ).

Together with ‖v0−Π1,T v0‖2T . h2‖∇v0‖2T , we can obtain the desired result (3.9) easily and the proof is
completed.

Lemma 3.5. For any ϕ ∈ Vh, there exists ϕ̃ ∈ V0 such that

‖ϕ̃‖1 . ‖ϕ‖V and ‖ϕ̃− ϕ‖b . h‖ϕ̃‖1. (3.13)

The proof can be given easily by combining Lemmas 3.3, Lemma 3.4, and taking ϕ̃ = Πhϕ which is a
function in V0.

In order to deduce the error estimate in ‖ · ‖−V , we define the following dual problem{
−∆ψ = ϕ̃, in Ω,

ψ = 0, on ∂Ω,
(3.14)

where ϕ̃ ∈ V0.

Theorem 3.2. Assume u ∈ Hk+1(Ω) is the exact solution of (3.1) and uh is the numerical solution of
the WG scheme (3.3). If the solution ψ of the dual problem (3.14) has H3(Ω)-regularity and k ≥ 2, the
following estimate holds true

|||Qhu− uh|||−1 ≤ Chk+2−ε‖u‖k+1. (3.15)

Proof. Denote eh = Qhu − uh. We choose φ ∈ Vh and φ̃ ∈ V0 such that |||φ||| = 1, |||eh||| = bw(eh, φ), and

φ̃ satisfies the estimates in (3.13). From Lemma 3.2, we have

as(Qhψ, v) = `(ψ, v) + bw(ϕ, v), ∀v ∈ Vh. (3.16)

Taking v = Qhψ in (3.4) and v = eh in (3.16), and subtracting (3.4) from (3.16), we have

(e0, ϕ̃) = `(u,Qhψ)− `(ψ, eh).

Since ψ ∈ H3(Ω), k > 2, and u ∈ Hk+1(Ω), the following estimates hold

`(ψ, eh) =
∑
T∈Th

〈(∇ψ −Qh∇ψ) · n, e0 − eb〉∂T

+
∑
T∈Th

h−1+ε
T 〈QbQ0ψ −Qbψ,Qbe0 − eb〉∂T

≤ Ch2− ε
2 ‖ψ‖3|||eh|||, (3.17)

`(u,Qhψ) =
∑
T∈Th

〈(∇u−Qh∇u) · n, Q0ψ −Qbψ〉∂T

+
∑
T∈Th

h−1+ε
T 〈QbQ0u−Qbu,QbQ0ψ −Qbψ〉∂T
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≤ Chk+2−ε‖ψ‖3‖u‖k+1. (3.18)

Thus, combining (3.17)-(3.18) and Lemma 3.5 leads to

|||eh|||−1 = b(eh, ϕ) ≤ (e0, ϕ̃) + ‖e0‖‖ϕ− ϕ̃‖
≤ Chk+2−ε‖ϕ̃‖1‖u‖k+1

≤ Chk+2−ε‖u‖k+1,

which completes the proof.

From Lemma 3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.1. Under the conditions of Theorem 3.2, the following estimate holds true

‖Qhu− uh‖−V ≤ Chk+2−ε‖u‖k+1. (3.19)

Here, we shall also give the estimate for the projection error ‖u−Qhu‖−V .

Lemma 3.6. When u ∈ Hk+1(Ω), the following estimate holds true

‖u−Qhu‖−V ≤ Chk+2‖u‖k+1.

Proof. From the definition, we know there exists v ∈ V such that

‖u−Qhu‖−V =
bw(u−Qhu, v)

‖v‖V
.

Since V = H1
0 (Ω)⊕(Vh\H1

0 (Ω)), v can be decomposed as v = v1 +v2, where v1 ∈ H1
0 (Ω), v2 ∈ Vh\H1

0 (Ω).
It follows that

‖u−Qhu‖−V =
bw(u−Qhu, v)

‖v‖V

=
bw(u−Qhu, v1)

‖v‖V
+
bw(u−Qhu, v2)

‖v‖V

≤ bw(u−Qhu, v1)

‖v1‖V

≤ C
bw(u−Qhu, v1 −Qhv1)

‖v1‖1
≤ Chk+2‖u‖k+1,

where we used the following error estimates for the projection operator Qh

‖u−Qhu‖b ≤ Chk+1‖u‖k+1 and ‖v1 −Qhv1‖b ≤ Ch‖v1‖1.

Then the proof is completed.

Combining Corollary 3.1 with Lemma 3.6, we have the following error estimate result for the boundary
value problem (3.1).

Theorem 3.3. Under the conditions of Theorem 3.2, the following estimate holds true

‖u− uh‖−V ≤ Chk+2−ε‖u‖k+1. (3.20)

From the Babuška’s theory and the results in [32], the conclusion of Theorem 3.3 can be extended to
the eigenvalue problem which means we have the following error estimate and the proof is similar to [32,
Section 4].
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Theorem 3.4. Suppose λj,h is the j-th eigenvalue of (2.3) and uj,h is the corresponding eigenfunction.
Then there exists an exact eigenfunction uj corresponding to the j-th exact eigenvalue of (2.1) such that
the following error estimate holds

‖uj − uj,h‖−V ≤ Chk+2−ε‖uj‖k+1, (3.21)

where uj ∈ Hk+1(Ω), k ≥ 2, and h is sufficiently small.

4 A two-grid scheme

In this section, we propose a two-grid WG scheme for the eigenvalue problem, and give the corresponding
analysis for the convergence and efficiency of this scheme. Here, we drop the subscript j to denote a
certain eigenvalue of problem (2.1).

Weak Galerkin Algorithm 3. Step 1: Generate a coarse grid TH on the domain Ω and solve the
following eigenvalue problem on the coarse grid TH :

Find (λH , uH) ∈ R× VH , such that

as(uH , vH) = λHbw(uH , vH), ∀vH ∈ VH .

Step 2: Refine the coarse grid TH to obtain a finer grid Th and solve one single linear problem on the
fine grid Th:

Find ũh ∈ Vh such that

as(ũh, vh) = λHbw(uH , vh), ∀vh ∈ Vh.

Step 3: Calculate the Rayleigh quotient for ũh

λ̃h =
as(ũh, ũh)

bw(ũh, ũh)
.

Finally, we obtain the eigenpair approximation (λ̃h, ũh).

First, we need the following discrete Poincaré’s inequality for the WG method, which has been proved
in [29].

Lemma 4.1. The discrete Poincaré-type inequality holds true on Vh, i.e.

‖vh‖ . |||vh|||, ∀vh ∈ Vh.

From Theorem 2.1, suppose the eigenfunction u is smooth enough and we have the following estimate
immediately,

h2k . λ− λh . h2k−2ε.

For simplicity, here and hereafter, we assume the concerned eigenvalues are simple. In order to estimate
|λ− λ̃h|, we just need to estimate |λh − λ̃h|.

Lemma 4.2. Suppose (λ̃h, ũh) is calculated by Algorithm 3 and (λh, uh) satisfies (2.3). Then the following
estimate holds

|λ̃h − λh| . |||ũh − uh|||2. (4.1)

9



Proof. From (2.3) and Lemma 4.1, we have

(λ̃h − λh)bw(ũh, ũh) = as(ũh, ũh)− λhbw(ũh, ũh)

= as(ũh − uh, ũh − uh) + 2as(uh, ũh)− as(uh, uh)

−λhbw(ũh − uh, ũh − uh)− 2λhbw(uh, ũh) + λhbw(uh, uh)

= as(ũh − uh, ũh − uh)− λhbw(ũh − uh, ũh − uh)

. |||ũh − uh|||2,

which completes the proof.

Lemma 4.3. Under the conditions of Lemma 4.2, the following estimate holds true

|||ũh − uh||| . H2k−2ε +Hk+γ−ε, when h < H. (4.2)

Here and hereafter γ is defined as follows

γ =


1, when the solution of dual problem (3.14) satisfies

ψ ∈ H2(Ω) or k = 1,
2− ε

2 , when the solution of dual problem (3.14) satisfies
ψ ∈ H3(Ω) and k > 1.

(4.3)

Proof. For all vh ∈ Vh, from equation (2.3), Theorems 2.1, and 3.4 we can obtain

as(ũh − uh, vh) = as(ũh, vh)− as(uh, vh)

= λHbw(uH , vh)− λhbw(uh, vh)

= λHbw(uH , vh)− λHbw(uh, vh) + λHbw(uh, vh)− λhbw(uh, vh)

= λHbw(uH − uh, vh) + (λH − λh)bw(uh, vh)

= λHbw(uH − u, vh) + λHbw(u− uh, vh)

+(λH − λ)bw(uh, vh) + (λ− λh)bw(uh, vh).

If k = 1 or the solution of the dual problem (3.14) has the regularity ψ ∈ H2(Ω), we have

as(ũh − uh, vh) . (‖u− uH‖+ ‖u− uh‖)‖vh‖b + (|λH − λ|+ |λh − λ|)‖vh‖b
. (Hk+1−ε + hk+1−ε)‖vh‖b + (H2k−2ε + h2k−2ε)‖vh‖b
. (Hk+1−ε +H2k−2ε)|||vh|||. (4.4)

If k > 1 and the solution of the dual problem (3.14) has the regularity ψ ∈ H3(Ω), the following estimates
hold

as(ũh − uh, vh) . (‖u− uH‖−V + ‖u− uh‖−V )‖vh‖V + (|λH − λ|+ |λh − λ|)‖vh‖b
. (Hk+2−ε + hk+2−ε)‖vh‖V + (H2k−2ε + h2k−2ε)‖vh‖
. (Hk+2− 3

2 ε +H2k−2ε)|||vh|||. (4.5)

From (4.4)-(4.5) and taking vh = ũh − uh, we can obtain the desired result (4.2) and the proof is
completed.

From Lemmas 4.2 and 4.3, the convergence of |λh − λ̃h| follows immediately.

Lemma 4.4. Suppose (λ̃h, ũh) is calculated by Algorithm 3 and (λh, uh) satisfies (2.3). Then the following
estimate holds

|λ̃h − λh| . H4k−4ε +H2k+2γ−2ε. (4.6)
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With Lemmas 4.3 and 4.4, we arrive at the following convergence theorem.

Theorem 4.1. Suppose (λ̃h, ũh) is calculated by Algorithm 3, h < H and the exact eigenfunctions of (2.1)
have Hk+1(Ω)-regularity. Then there exists an exact eigenpair (λ, u) such that the following estimates
hold true

|||Qhu− ũh||| . H k̄ + hk−ε, (4.7)

|λ̃h − λ| . H2k̄ + h2k−2ε, (4.8)

where k̄ = min{2k − 2ε, k + γ − ε}.

From Theorem 2.1 and Lemma 4.4, we can get the following lower bound estimate.

Theorem 4.2. Suppose the conditions of Theorem 4.1 hold and let k̄ = min{2k − 2ε, k + γ − ε} and δ
be a positive number. If H2k̄ ≤ Ch2k+δ, then we have

λ− λ̃h ≥ 0,

when H and h are sufficiently small.

Proof. From Theorem 2.1 we have

λ− λh ≥ Ch2k.

According to Lemma 4.4, the following estimates hold

|λ̃h − λh| ≤ CH2k̄ ≤ Ch2k+δ.

When h is sufficiently small, it follows that

λ− λ̃h = λ− λh + λh − λ̃h ≥ λ− λh − |λ̃h − λh|
≥ Ch2k − Ch2k+δ ≥ 0,

which completes the proof.

5 A two-space scheme

In this section, we shall give a two-space WG scheme for problem (2.1), where different polynomial spaces
are employed on the same mesh.

Denote the finite element spaces

V 1
h = {v = (v0, vb) : v0|T ∈ Pk1(T ), vb|e ∈ Pk1−1(e),∀T ∈ Th, e ∈ Eh, and vb = 0 on ∂Ω},

V 2
h = {v = (v0, vb) : v0|T ∈ Pk2(T ), vb|e ∈ Pk2−1(e),∀T ∈ Th, e ∈ Eh, and vb = 0 on ∂Ω}.

Denote (λ2
h, u

2
h) the numerical solution of the standard WG scheme, which satisfies

as(u
2
h, vh) = λ2

hbw(u2
h, vh), ∀vh ∈ V 2

h . (5.1)

In the two-space method, the spaces V 1
h and V 2

h are defined on the same mesh, with different degrees
of polynomials.
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Weak Galerkin Algorithm 4. Step 1: Solve the eigenvalue problem in the space V 1
h :

Find (λ1
h, u

1
h) ∈ R× V 1

h such that

as(u
1
h, vh) = λ1

hbw(u1
h, vh), ∀vh ∈ V 1

h .

Step 2: Solve one single linear problem in the space V 2
h :

Find ûh ∈ V 2
h such that

as(ûh, vh) = λ1
hbw(u1

h, vh), ∀vh ∈ V 2
h .

Step 3: Calculate the Rayleigh quotient

λ̂h =
as(ûh, ûh)

bw(ûh, ûh)
.

Finally, we obtain the eigenpair approximation (λ̂h, ûh).

The proof is similar to the two-grid algorithm, and we just need to interpret Lemmas 4.2 and 4.3 into
the two-space case.

Lemma 5.1. Suppose (λ̂h, ûh) is calculated by Algorithm 4 and (λ2
h, u

2
h) satisfies (5.1). Then the following

estimate holds

|λ̂h − λ2
h| . |||ûh − u2

h|||2. (5.2)

Lemma 5.2. Suppose (λ̂h, ûh) is calculated by Algorithm 4, (λ2
h, u

2
h) satisfies (5.1) and k1 < k2. When

the exact solution u ∈ Hk2+1(Ω), the following estimate holds true

|||ûh − u2
h||| . h2k1−2ε + hk1+γ−ε. (5.3)

Proof. For all vh ∈ V 2
h , from formula (5.1), Theorems 2.1 and 3.4, we can obtain

as(û
2
h − u2

h, vh) = as(û
2
h, vh)− as(u2

h, vh)

= λ1
hbw(u1

h, vh)− λ2
hbw(u2

h, vh)

= λ1
hbw(u1

h, vh)− λ1
hbw(u2

h, vh) + λ1
hbw(u2

h, vh)− λ2
hbw(u2

h, vh)

= λ1
hbw(u1

h − u2
h, vh) + (λ1

h − λ2
h)bw(u2

h, vh)

= λ1
hbw(u1

h − u, vh) + λ1
hbw(u− u2

h, vh)

+(λ1
h − λ)bw(u2

h, vh) + (λ− λ2
h)bw(u2

h, vh).

If k1 = 1 or the solution of the dual problem (3.14) has the regularity ψ ∈ H2(Ω), we have

as(û
2
h − u2

h, vh) . (‖u− u1
h‖+ ‖u− u2

h‖)‖vh‖b + (|λ1
h − λ|+ |λ2

h − λ|)‖vh‖b
. (hk1+1−ε + hk2+1−ε)‖vh‖b + (h2k1−2ε + h2k2−2ε)‖vh‖b
. (h2k1−2ε + hk1+1−ε)|||vh|||. (5.4)

If k1 > 1 and the solution of the dual problem (3.14) has the regularity ψ ∈ H3(Ω), the following estimates
hold

as(û
2
h − u2

h, vh) . (‖u− u1
h‖−V + ‖u− u2

h‖−V )‖vh‖V + (|λ1
h − λ|+ |λ2

h − λ|)‖vh‖b
. (hk1+2−ε + hk2+2−ε)‖vh‖V + (h2k1−2ε + h2k2−2ε)‖vh‖
. (h2k1−2ε + hk1+2− 3

2 ε)|||vh|||. (5.5)

From (5.4)-(5.5) and taking vh = ûh − u2
h, we can obtain the desired result (5.3) and the proof is

completed.
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With Lemmas 5.1 and 5.2, we can get the following estimate easily.

Theorem 5.1. Suppose (λ̂h, ûh) is calculated by Algorithm 4, (λ, u) satisfies (2.1) and k1 ≤ k2. When
the exact solution u ∈ Hk2+1(Ω), the following estimate holds true

|λ̂h − λ| . hk̂ + h2k2−2ε,

where k̂ = min{4k1 − 4ε, 2k1 + 2γ − 2ε}.

From Theorem 2.1 and Lemma 5.2, we can get the following lower bound estimate.

Theorem 5.2. Suppose the assumptions of Theorem 5.1 hold true and let k̂ = min{4k1−4ε, 2k1+2γ−2ε}
and δ be a positive number. If k̂ > 2k2, we have

λ− λ̂h ≥ 0

when h is sufficiently small.

Proof. From Theorem 2.1, we have

λ− λh ≥ Ch2k2 .

According to Lemma 5.2, the following inequalities hold

|λ̂h − λh| ≤ Chk̂ ≤ Ch2k2+δ.

When h is sufficiently small, it follows that

λ− λ̂h = λ− λh + λh − λ̂h ≥ λ− λh − |λ̂h − λh|
≥ Ch2k2 − Ch2k2+δ ≥ 0,

which completes the proof.

6 Numerical Experiments

In this section, we present two numerical examples of Algorithms 3 and 4 to check the efficiencies of
Algorithms 3 and 4 for the eigenvalue problem (2.1).

6.1 Two-gird method

In the first example, we consider the problem (2.1) on the unit square Ω = (0, 1)2. It is known that the
eigenvalue problem has the following eigenpairs

λ = (m2 + n2)π2, u = sin(mπx) sin(nπy),

where m, n are arbitrary positive integers. The first four different eigenvalues are λ1 = 2π2, λ2 = 5π2,
λ3 = 8π2 and λ4 = 10π2, where algebraic or geometric multiplicities for λ1 and λ3 are 1 and for λ2 and
λ4 are both 2.

The uniform mesh is applied in the following examples, H and h denote mesh sizes. Numerical results
for different choices of the parameter ε and the degree k of polynomial are presented. The corresponding
numerical results are showed in Tables 1-6. In Tables 1-2, the polynomial degree k = 1, and ε is set to be
0 and 0.1, separately. From Theorem 4.1, we know the convergence order for eigenvalue approximation
is 2− 2ε which is shown from the numerical results included in Tables 1 for ε = 0 and 2 for ε = 0.1. In
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Table 1: The eigenvalue errors λ− λ̃h for Example 1 with k = 1, ε = 0.
H 1/4 1/8 1/16
h 1/16 1/64 1/256

λ1 − λ̃1,h 2.1554e-1 1.3006e-2 8.0627e-4
order 4.0507 4.0118

λ2 − λ̃2,h 1.3687e+0 8.2219e-2 4.8684e-3
order 4.0572 4.0780

λ3 − λ̃3,h 1.3687e+0 7.8229e-2 4.8240e-3
order 4.1290 4.0194

λ4 − λ̃4,h 3.1148e+0 2.0798e-1 1.2318e-2
order 3.9046 4.0776

λ5 − λ̃5,h 4.3750e+0 3.0337e-1 1.8860e-2
order 3.8501 4.0077

λ6 − λ̃6,h 4.0896e+0 3.0980e-1 1.8206e-2
order 3.7225 4.0889

Table 2: The errors for the eigenvalue approximation λ̃h for Example 1 with k = 1, ε = 0.1.
H 1/4 1/8 1/16
h 1/16 1/64 1/256

λ1 − λ̃1,h 2.7369e-1 1.8802e-2 1.3194e-3
order 3.8636 3.8330

λ2 − λ̃2,h 1.7347e+0 1.1960e-1 8.0009e-3
order 3.8584 3.9019

λ3 − λ̃3,h 1.7347e+0 1.1339e-1 7.9261e-3
order 3.9353 3.8386

λ4 − λ̃4,h 3.9686e+0 3.0206e-1 2.0167e-2
order 3.7157 3.9048

λ5 − λ̃5,h 5.7315e+0 4.4163e-1 3.1474e-2
order 3.6980 3.8106

λ6 − λ̃6,h 5.1859e+0 4.5160e-1 2.9977e-2
order 3.5215 3.9131

Tables 3-6, the polynomial degree k = 2 and ε = 0.1. The mesh size h is selected to be H2 in Tables 3-4,
and H

3
2 in Tables 5-6. The convergence orders for the eigenvalues, the trip-bar norm of eigenfunctions

are presented. The convergence orders in Tables 3-4 coincide with that pblackicted in Theorem 4.1. Since
the choices of k = 2, ε = 0.1 and h = H2 or h = H

3
2 do not satisfy the condition of Theorem 4.2, it

is not surprising that the eigenvalue approximations λ̃j,h (j = 1, ..., 6) are not the lower bounds of the
corresponding exact eigenvalues (see Tables 3 and 5).

Furthermore, the choice of ε can really affect the convergence order which means the error estimates
in (4.2), (4.6), (4.7), and (4.8) are reasonable.

6.2 Two-space method

In the second example, the analytic solution is the same as (6.1). The polynomials of degree k1 = 1, k2 = 2
and k1 = 2, k2 = 3 are employed in V 1

h and V 2
h , respectively. The parameter ε is chosen to be 0.2. The

results are listed in Figures 1-2 for the case k1 = 1, k2 = 2 and ε = 0.2 and Tables 3-4 for k1 = 2, k2 = 3
and ε = 0.2.
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Table 3: The eigenvalue errors λh − λ̃h for Example 1 with k = 2, ε = 0.1.
H 1/4 1/8 1/16
h 1/16 1/64 1/256

λ1 − λ̃1,h 3.2380e-4 1.8403e-6 8.5157e-9
order 7.4590 7.7556

λ2 − λ̃2,h -6.9598e-2 -2.2124e-4 -8.7753e-7
order 8.2973 7.9779

λ3 − λ̃3,h -6.5952e-2 -1.8022e-4 -7.0453e-7
order 8.5155 7.9989

λ4 − λ̃4,h -1.5619e+0 -5.5200e-3 -2.1488e-5
order 8.1445 8.0050

λ5 − λ̃5,h -2.8009e+0 -1.0533e-2 -3.7459e-5
order 8.0549 8.1354

λ6 − λ̃6,h -5.3281e-1 -1.8470e-3 -5.4252e-6
order 8.1723 8.4113

Table 4: The eigenfunction errors for Example 1 with k = 2, ε = 0.1.
H 1/4 1/8 1/16
h 1/16 1/64 1/256

|||Qhu1 − ũ1,h||| 4.2020e-2 2.5571e-3 1.6773e-4
order 4.0385 3.9303

|||Qhu2 − ũ2,h||| 3.4429e-1 1.9352e-2 1.2275e-3
order 4.1531 3.9786

|||Qhu3 − ũ3,h||| 3.4382e-1 1.9351e-2 1.2275e-3
order 4.1512 3.9786

|||Qhu4 − ũ4,h||| 2.1940e+0 1.3372e-1 8.3730e-3
order 4.0363 3.9973

|||Qhu5 − ũ5,h||| 2.7400e+0 1.6506e-1 9.9455e-3
order 4.0531 4.0528

|||Qhu6 − ũ6,h||| 2.7293e+0 1.6504e-1 9.9455e-3
order 4.0476 4.0526

Table 5: The eigenvalue errors λh − λ̃h for Example 1 with k = 2, ε = 0.1.
H 1/4 1/16 1/64
h 1/8 1/64 1/512

λ1 − λ̃1,h 1.3127e-2 4.1262e-6 2.5784e-9
order 5.8177 5.3221

λ2 − λ̃2,h 1.3204e-1 7.3767e-5 2.3883e-8
order 5.4029 5.7964

λ3 − λ̃3,h 8.1757e-2 5.4651e-5 1.8027e-8
order 5.2734 5.7829

λ4 − λ̃4,h -1.0040e+0 2.4182e-4 8.0721e-8
order 6.0098 5.7744

λ5 − λ̃5,h -1.7621e+0 4.8559e-4 1.5872e-7
order 5.9126 5.7895

λ6 − λ̃6,h 1.0614e-1 5.1734e-4 1.5931e-7
order 3.8403 5.8325
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Table 6: The eigenfunction errors for Example 1 with k = 2, ε = 0.1.
H 1/4 1/16 1/64
h 1/8 1/64 1/512

|||Qhu1 − ũ1,h||| 1.2856e-1 1.9489e-3 3.3757e-5
order 3.0218 2.9257

|||Qhu2 − ũ2,h||| 6.8967e-1 7.9977e-3 1.3471e-4
order 3.2151 2.9458

|||Qhu3 − ũ3,h||| 6.8499e-1 7.9974e-3 1.3471e-4
order 3.2102 2.9458

|||Qhu4 − ũ4,h||| 2.4166e+0 1.8197e-2 2.7328e-4
order 3.5265 3.0286

|||Qhu5 − ũ5,h||| 3.0868e+0 2.5302e-2 3.8628e-4
order 3.4653 3.0167

|||Qhu6 − ũ6,h||| 3.0298e+0 2.5299e-2 3.8628e-4
order 3.4520 3.0167

Figure 1: The eigenvalue errors λh − λ̂h for Example 2 with k1 = 1, k2 = 2 and ε = 0.2.

The convergence orders shown in Figures 1-4 are consistent with the results in Theorems 5.1 and 5.2.
Even the choices of k1 = 1, k2 = 2 and ε = 0.2 do not satisfy the condition of Theorem 5.2, the eigenvalue
approximations by the two-space method are still the lower bounds of the exact eigenvalues.

6.3 L-shape

In the third example, we consider the problem (2.1) on the L-shape domain Ω = (−1, 1)2/[0, 1)2. Since
the exact eigenvalues are unknown. We only check the eigenvalues λ̃j,h (j = 1, ..., 6). The corresponding
numerical results are shown in Table 7. From Table 7, we find that the two-grid method defined in
Algorithm 3 is accurate and provides lower bounds.

7 Concluding remarks and ongoing work

In this paper, we propose and analyze the two-grid and two-space schemes for the eigenvalue problem
by the WG method. Based on our analysis, the eigenpair approximations by the two-grid and two-space
methods possess the same reasonable accuracy as the direct WG approximations, but the calculation cost
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Figure 2: The errors for the eigenfunction approximations |||uh − ûh||| for Example 2 with k1 = 1, k2 = 2
and ε = 0.2.

Figure 3: The eigenvalue errors λh − λ̂h for Example 2 with k1 = 2, k2 = 3 and ε = 0.2.

is significantly reduced. From the numerical examples, we also find that the eigenvalue approximations
by the two-grid method have the same lower bound property as the direct WG approximations, if we
choose the grid or space properly.

In the future work, we are going to study the shift-inverse power method and multigrid method for
the Laplacian eigenvalue problem, and other kinds of eigenvalue problems, such as biharmonic eigenvalue
problems and Stokes eigenvalue problems.

References

[1] Maria G. Armentano and Ricardo G. Duran. Asymptotic lower bounds for eigenvalues by noncon-
forming finite element methods. ETNA, Electron. Trans. Numer. Anal., 17:93–101, 2004.

[2] I. Babuska and J. Osborn. Handbook of Numerical Analysis, Vol II, Part1. Elsevier Science Pub-
lishers, North-Holland, 1991.

17



Figure 4: The errors for the eigenfunction approximations |||uh − ûh||| for Example 2 with k1 = 2, k2 = 3
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