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Abstract

In this paper, we propose a mass conservative semi-Lagrangian finite difference scheme

for multi-dimensional problems without dimensional splitting. The semi-Lagrangian scheme,

based on tracing characteristics backward in time from grid points, does not necessarily

conserve the total mass. To ensure mass conservation, we propose a conservative correction

procedure based on a flux difference form. Such procedure guarantees local mass conserva-

tion, while introducing time step constraints for stability. We theoretically investigate such

stability constraints from an ODE point of view by assuming exact evaluation of spatial

differential operators and from the Fourier analysis for linear PDEs.

The scheme is tested by classical two dimensional linear passive-transport problems,

such as linear advection, rotation and swirling deformation. The scheme is applied to solve

the nonlinear Vlasov-Poisson system using a a high order tracing mechanism proposed in

[Qiu and Russo, 2016]. Such high order characteristics tracing scheme is generalized to the

nonlinear guiding center Vlasov model and incompressible Euler system. The effectiveness

of the proposed conservative semi-Lagrangian scheme is demonstrated numerically by our

extensive numerical tests.
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1 Introduction

Semi-Lagrangian (SL) schemes have been used extensively in many areas of science and

engineering, including weather forecasting [20, 10, 7], kinetic simulations [5, 8] and fluid

simulations [12, 22], interface tracing [4, 21], etc. The schemes are designed to combine the

advantages of Eulerian and Lagrangian approaches. In particular, the schemes are build

upon a fixed set of computational mesh. Similar to the Eulerian approach, high spatial

resolution can be realized by using high order interpolation/reconstruction procedures or by

using piecewise polynomial solution spaces. On the other hand, in each time step evolution,

the scheme is designed by propagating information along characteristics, relieving the CFL

condition. Typically, the numerical time step size allowed for an SL scheme is larger than

that of an Eulerian approach, leading to gains in computational efficiency.

Among high order SL schemes, depending on solution spaces, different classes of methods

can be designed. For example, a finite difference scheme evolves point-wise values and realizes

high spatial resolution by high order interpolation procedures [22, 13], a finite volume scheme

considers integrated cell-averages with high order reconstruction procedures [10, 3], while a

finite element method has piecewise continuous or discontinuous polynomial functions as its

solution space [12, 11, 16, 17, 7]. Each class of the above mentioned SL methods has its

own advantages. For example, the finite element method is more flexible with the geometry

and handling boundary conditions, while the finite difference and finite volume schemes

could perform better in resolving solution structures with sharp gradients, e.g. by using a

weighted essentially non-oscillatory (WENO) procedure. To compare finite difference and

finite volume schemes, finite volume scheme is often considered more physically relevant and

the local mass conservation can be built up in a natural way; while the finite difference

scheme is more flexible and computationally efficient for high-dimensional problems, if one

consider schemes of third order or higher.

In this paper, we consider SL finite difference scheme with local mass conservation prop-

erty. In fact, many existing SL finite difference schemes are built based on tracing charac-

teristics backward in time together with a high order interpolation procedure [1]. Typically

such schemes do not have local mass conservation property, which is fine for some certain

applications. However, for applications in weather forecasting or in kinetic simulations, ig-
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noring local mass conservation could lead to significant loss of total mass, especially when

the solution with sharp gradients becomes under-resolved by the computational mesh [9].

There have been many attempts to preserve the mass conservation of an SL finite differ-

ence scheme with large time stepping sizes, e.g. [13, 15]. However, they are mostly designed

for 1D problems by taking advantage of some special features in a 1D setting. Their gener-

alization to high dimensional problems often relies on dimensional splitting which is subject

to splitting errors. In this paper, we propose and investigate a truly multi-dimensional ap-

proach without dimensional splitting errors. To build an SL finite difference scheme with

local mass conservation, one essential framework that we propose to work with is the flux-

difference form. However, by working with the flux difference form, one often observe time

step constraint for numerical stability. Note that unlike the Eulerian approach, such time

step constraint does not come from the CFL condition (i.e. numerical domain of dependence

should include the physical domain of dependence), but from numerical stability one em-

ployed for temporal integration. As far as we are aware of, there is little work in quantifying

the stability constraint and in optimizing the numerical strategies balancing stability, accu-

racy and computational efficiency. This paper aims to fill such gap, by understanding such

time step constraints. In particular, we investigate the stability of time integration schemes

based on a linear stability analysis around the imaginary axis in the complex plane, assum-

ing the spatial differentiation is exact. We optimize quadrature rules for time integration

by maximizing the stability interval along the imaginary axis. We further employ Fourier

analysis to study the numerical stability of a fully-discretized scheme. The schemes are ap-

plied to 2D passive-transport problems, as well as to nonlinear Vlasov-Poisson (VP) by using

a high order characteristics tracing scheme proposed in [14]. Further more, we apply the

scheme to the nonlinear guiding center Vlasov system and the incompressible Euler system

in vorticity stream function formulation, for which we propose a high order characteristics

tracing scheme following the idea in [14]. Finally, we would like to mention a few of our pre-

vious work related to stability of SL finite difference schemes in flux-difference form. In [15],

a special treatment is introduced to relieve the time step constraint for 1D passive transport

problems. However, such treatment is not possible for general high dimensional problems. In

[2], the time step constraint is studied by Fourier analysis for an SL finite difference scheme
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coupled with integral deferred correction framework.

The paper is organized as follows. The SL finite difference scheme in flux-difference

form is described in Section 2. The stability of time integration with quadrature rule is

investigated in Section 3, assuming exact evaluation of spatial differentiation operators. We

also optimize temporal integration rules. In Section 4, we study the numerical stability of a

fully discretized scheme by Fourier analysis. In Section 5, numerical tests are performed for

2D linear passive-transport problems. In Section 6, we apply the scheme to the nonlinear

VP system, the guiding center Vlasov equation and incompressible Euler system.

2 A mass conservative SL finite difference scheme

In this section, we describe an SL finite difference scheme based on a flux-difference form

to locally preserve mass. The scheme starts from a standard non-conservative procedure

with backward characteristics tracing and high order spatial interpolation. Then a conser-

vative correction is performed by a flux-difference formulation. We describe the scheme in

a 1D linear setting, noting that its extension to nonlinear and high dimensional problems is

straightforward, as long as characteristics can be properly traced backward in time, e.g. see

our numerical examples in Section 5.

We consider a 1D linear advection equation,

∂f

∂t
+
∂f

∂x
= 0, f(x, 0) = f 0(x), x ∈ [−π, π]. (2.1)

For simplicity, we assume a periodic boundary condition. We assume a uniform discretization

in space with xj = j∆x, j = 1 . . . , nx and let fnj be an approximation of the solution at time

tn and position xj. We describe below the conservative SL procedure to update {fn+1
j }nx

j=1

from {fnj }nx
j=1.

In an Eulerian finite difference method, typically one would firstly approximate the spatial

derivative by a flux difference form to ensure mass conservation, then the system of ODEs

will be evolved in time by a high order numerical integrator such as the Runge-Kutta (RK)

method via the method of lines. In the SL setting, however, we propose to perform the time
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integration based on quadrature rules first,

fn+1
j = fnj −

∂

∂x

(∫ tn+1

tn
f(x, t)dt

)
|x=xj ≈ fnj −

∂

∂x
(F(x))|xj , (2.2)

where we let

F(x)
.
=

s∑
`=1

f(x, tn + c`∆t)b`∆t (2.3)

as a quadrature approximation of
∫ tn+1

tn
f(x, t)dt. Here (c`, b`), ` = 1, . . . , s are the nodes and

weights of an accurate quadrature formula and f(xj, t
n + c`∆t), ` = 1 · · · s (we call it stage

values) can be approximated via a non-conservative SL scheme via backward characteristics

tracing and high order spatial interpolation. For the linear equation (2.2), f(xj, t
n + c`∆t)

can be traced back along characteristics to tn at f(xj − c`∆t/∆x, tn), whose value can be

obtained via a WENO interpolation from neighboring grid point values {fnj }nx
j=1, see our

description for different interpolation procedures in Section 4. Then a conservative scheme,

based on a flux-difference form, can be proposed in the spirit of the work by Shu and Osher

[19]. In particular, the scheme can be formulated as

fn+1
j = fnj −

1

∆x
(F̂j+ 1

2
− F̂j− 1

2
), (2.4)

where F̂j+ 1
2

comes from WENO reconstruction of fluxes from {Fj}nxj=1 with Fj
.
= F(xj). We

refer to [18] for the basic principle and detailed procedures of WENO reconstruction. Also,

Section 4 provides detailed discussions on different reconstruction procedures. It can be

shown that the mass conservation is locally preserved due to the flux difference form (2.7).

Such conservative correction procedure can be directly generalized to problems with non-

constant velocity fields in a multi-dimensional setting without any difficulty, e.g. rotation

and swirling deformation. In additional to the procedures described above, a high order

ODE integrator such as a Runge-Kutta method can be employed to locate the foot of a

characteristic accurately. For example, we consider a 2D problem with a prescribed velocity

field a(x, y, t) and b(x, y, t)

ft + (a(x, y, t)f)x + (b(x, y, t)f)y = 0.

Let the set of grid points

x1 < · · · < xi < · · · < xnx , y1 < · · · < yj < · · · < yny (2.5)
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be a uniform discretization of a 2D rectangular domain with xi = i∆x and yj = j∆y.

The foot of characteristic emanating from a 2D grid point, say (xi, yj) at t`
.
= tn + c`∆t

can be located by solving the following final-value problem accurately with a high order

Runge-Kutta method,

dx

dt
= a(x, y, t),

dy

dt
= b(x, y, t), x(t`) = xi, y(t`) = yj. (2.6)

Once the foot of characteristic located, say at (x?i , y
?
j ), then f(xi, yj, t

`) can be evaluated by

approximating f(x?i , y
?
j , t

n) via a high order 2D WENO interpolation procedure [18]. A 2D

conservative scheme based on a flux-difference form can be formulated as

fn+1
ij = fnij −

1

∆x
(F̂i+ 1

2
,j − F̂i− 1

2
,j)−

1

∆y
(Ĝi,j+ 1

2
− Ĝi,j− 1

2
), (2.7)

where F̂i± 1
2
,j comes from WENO reconstruction of fluxes from {Fij}nx

i=1 for all j with

Fij
.
= F(xi, yj) ≈ ∆t

s∑
`=1

f(xi, yj, t
n + c`∆t)b`.

The procedure for WENO reconstruction is the same as the 1D case for all j and we again

refer to the review paper [18]. Similarly, Ĝi,j± 1
2

comes from WENO reconstruction of fluxes

from {Fij}ny

j=1 for all i.

To generalize the conservative SL scheme to nonlinear systems, a problem-dependent

high order characteristics tracing procedure needs to be designed for solving the final-value

problem in the form of equation (2.6), but with the velocity field depending on the unknown

function f . In many cases, a high order Runge-Kutta method could not be directly applied.

In [14], a high order multi-dimensional characteristics tracing scheme for the VP system is

proposed and can be applied in the above proposed conservative SL framework. In Section 6

we present numerical results and generalize the characteristics tracing procedure for the

VP system to a guiding center Vlasov system and incompressible Euler system in vorticity

stream function formulation.

We close this section by making the following remark to motivate our discussions in the

following two sections. There are two sources in the scheme formulation that contribute

to the stability issue of the above proposed SL scheme. One is the discretization by the

quadrature rule (2.3). This part of stability is viewed as an ODE stability (assuming exact
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evaluation of spatial operators) and is investigated carefully in Section 3. The other source

can be explained by observing the following situation: if one changes the time stepping size

slightly (could be arbitrary small), the root of characteristics xj− c`∆t/∆x could come from

a different grid cell, leading to a different interpolation stencil in the implementation. This

aspect is associated with spatial discretization and is investigated in Section 4.

3 Temporal discretization and stability.

3.1 Linear stability functions and stability regions

We first investigate the linear stability of quadrature rules for temporal discretization (2.3)

in an ODE setting, by assuming an exact evaluation of spatial derivative in eq. (2.2). In

particular, we look for the evolution of a Fourier mode, identified by a Fourier variable

ξ ∈ [−π, π], assuming exact evaluation of spatial interpolation and reconstruction procedure

mentioned above. Such a discrete Fourier mode at time tn = n∆t, will be denoted by,

fnξ (x) = (Q(ξ))neixξ/∆x, i =
√
−1,

where Q(ξ) is the amplification factor associated with ξ. After plugging such ansatz into the

scheme with c` and b`, ` = 1, · · · s for temporal discretization, we obtain

Q(ξ) = 1− iξ
s∑
`=1

b`e
−ic`ξ. (3.1)

The scheme is stable if

|Q(ξ)| ≤ 1, ∀ξ ∈ [−π, π].

Such stability property is closely related to the linear stability of the quadrature rule, which

can be studied by the stability region for a scalar linear ODE,

z′ = yz, z(0) = 1, ∀y ∈ C.

Considering the quadrature rule with c` and b`, ` = 1, · · · s, the associated stability function

is

R(y) = 1 + y

s∑
`=1

b`e
c`y, (3.2)
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with which the stability region can be drawn by the set {y ∈ C; |R(y)| ≤ 1}. Comparing

equations (3.1) and (3.2), one has Q = R(−iξ), with ξ ∈ [−π, π]. Thus the stability of a

quadrature rule in a conservative SL scheme for a linear advection equation is closely related

to the stability on the imaginary axis. In order to guarantee stability, we look for the largest

interval I∗
.
= [−y∗, y∗] of the imaginary axis such that |R(iy)| ≤ 1, ∀y ∈ I∗. The bound

y∗/π (3.3)

quantifies the maximum CFL number for the SL scheme that guarantees stability.

Below, we report the stability regions for the following commonly used quadrature rules

in the left panel of Fig. 3.1.

1. midpoint: q1 = 1/2, w1 = 1.

2. trapezoidal: q1 = 0, q2 = 1, w1 = w2 = 1/2.

3. Simpson: q1 = 0, q2 = 1/2, q3 = 1, w1 = w3 = 1/6, w2 = 2/3.

4. two-point Gauss-Legendre formulas (GL2): q1 = 1
2
− 1

2
√

3
, q2 = 1

2
+ 1

2
√

3
, w1 = w2 = 1/2.

As it is apparent from the plot, midpoint and Simpson’s rule do not include a portion of the

imaginary axis, while the trapezoidal rule and the two-point Gauss-Legendre rule do. The

boundary of the stability region of the trapezoidal rule intersects the imaginary axis at π,

and therefore the maximum CFL number that guarantees linear stability for the conservative

scheme is 1. The two point Gauss-Legendre quadrature formula provides a wider stability

interval, since in this case y∗ ≈ 5.43, giving a maximum CFL number of approximately

5.43/π = 1.72. Higher order Gauss-Legendre quadrature formulas, hereafter denoted by

GLs, where s indicates the number of nodes, may provide wider stability interval, as is

illustrated in the right panel of Fig. 3.1. To better appreciate the stability region, we plot

in Fig. 3.2 ρ2 − 1 as a function of y. GL4 is observed to have better stability property, as

ρ2− 1 ≤ 0 for an interval with boundary y∗ ≈ 6.2765 leading to a maximum CFL number of

approximately 6.2765/π = 1.99. Gauss-Legendre rule formulas with odd number of points,

such as GL3 and GL5, are unstable near the origin, see the right panel of Fig. 3.1 as well as

Fig. 3.2.

8



Figure 3.1: Stability region for midpoint, trapezoidal, Simpson’s and two-point Gauss-
Legendre rules (left) and GLs with s = 2, 3, 4, 5 (right).

Figure 3.2: R(iy)2 − 1 vs y for GL3, GL4, GL5 formulas. GL3 and GL5 is observed to be
unstable.
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3.2 Maximize the stability interval on imaginary axis

In order to analyze the stability of quadrature formulas, let us consider the expression R(iy)

from eq. (3.2), and write it in the form

R(iy) = 1 + iy(Cs(y) + iSs(y)) = 1− ySs(y) + iyCs(y) (3.4)

where

Cs(y) ≡
s∑
`=1

b` cos(c`y), Ss(y) ≡
s∑
`=1

b` sin(c`y). (3.5)

The stability condition therefore becomes

|R(iy)|2 = 1− 2ySs(y) + y2
(
C2
s (y) + S2

s (y)
)
≤ 1.

Such condition can be written in the form

yFs(y) ≥ 0, where Fs(y) ≡ Ss(y)− 1

2
y
(
C2
s (y) + S2

s (y)
)
. (3.6)

The problem of finding quadrature formulas with the widest stability region can be stated

as: determine the coefficients b = (b1, . . . , bs) and c = (c1, . . . , cs) so that the interval in

which (3.6) is satisfied is the widest.

Rather than directly solving this optimization problem, we consider a particular case of

quadrature formulas, i.e. those for which the nodes are symmetrically located with respect

to point 1/2 in the interval [0, 1]. Among such formulas we restrict to the case in which s

even, as the schemes are observed to be unstable for odd s, see Fig. 3.2.

Let us denote by c̃` = 1 − 2c`, ` = 1, . . . , s. Then c` = (1 − c̃`)/2. Since the nodes are

symmetric and the quadrature formula is interpolatory, we have

c̃` = −c̃s−`+1, b` = bs−`+1. (3.7)

The absolute stability function R(iy) can then be written, after simple manipulations

R(iy) = 1− 2y sin(y/2)C̃s(y) + 2iy cos(y/2)C̃s(y),

where

C̃s(y) ≡
s/2∑
`=1

b` cos(c̃`y/2),
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leading to

|R(iy)|2 = 1− 4y sin(y/2)C̃s(y) + 4y2C̃2
s (y). (3.8)

The function Fs(y) can then be written, after simple manipulations

Fs(y) = 2C̃s(y)
(

sin(y/2)− yC̃s(y)
)
. (3.9)

Then the stability condition (3.6) becomes

C̃s(y)
(

sin(y/2)− yC̃s(y)
)
≥ 0.

Because function Fs contains the product between two factors, the condition to ensure that

the function does not change sign at roots is that the two factors vanish simultaneously

at simple roots, therefore C̃s(y) has to vanish also at the same points yk > 0 at which

sin(y/2) − yC̃s(y) = 0. There is no need to impose that C̃s vanishes at the origin, since,

because of symmetry, yFs(y) does not change sign at the origin.

In order to determine the coefficients that define the quadrature formula for maximizing

the stability interval on imaginary axis, we proceed as follows. Because of the symmetry

constraints (3.7), we have to find s coefficients, i.e. b1, . . . , bs/2 and c̃1, . . . , c̃s/2 by imposing

a total of s conditions. Such conditions will be a balance between accuracy and stability. If

we want that the quadrature formulas have degree of precision s − 1, i.e. if we want that

they are exact on polynomials of degree less or equal to s− 1, we have to impose

1

2

∫ 1

−1

ζ2k dz =
s∑
`=1

b`(c̃`)
2k, k = 0, . . . , s/2− 1. (3.10)

We only impose the condition for even polynomials, since odd polynomials are automatically

satisfied because of symmetry. The condition that C̃s(y) vanishes when sin(y/2) − yC̃s(y)

vanishes becomes

C̃s(2πk) = 0, k = 1, . . . , s/2. (3.11)

For k = 0 the stability condition (3.11) is marginally satisfied since C̃s(0) =
∑s/2

`=1 b` = 1/2.

Eqs. (3.10) and (3.11) constitute a nonlinear set of equations for the s coefficients b1, . . . , bs/2

and c̃1, . . . , c̃s/2. Because the equations are nonlinear, we have to resort to Newton’s method

for its solution. In practice, for large values of s, it is hard to find an initial guess which
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Figure 3.3: Left: plot of |R(iy)|2−1 for the symmetric quadrature formulas with s = 4, 8, 12.
Right: plot of stability regions for the corresponding quadrature formulas. These formulas
show a wide stability interval on the imaginary axis, thus allowing, in principle, large CFL
numbers.

lies in the convergence basin of Newton’s method. We had to resort to a relaxed version of

Newton’s method, coupled with continuation techniques, in order to solve the system.

We numerically compute nodes and weights for s = 2, 4, 6, 8, 10, 12 and check a posteriori

whether the stability condition is actually satisfied. The following phenomena are observed:

• s = 2: the quadrature nodes and weights are consistent with those in the two-point

Gauss-Legendre formula.

• s = 4, 8, 12: In Fig. 3.3 we plot the functions |Rs(iy)|2 − 1 (left panel) and the

corresponding stability regions in the complex plane (right panel) for s = 4, 8, 12. A

wide interval with stability on the imaginary axis is shown. We report the coefficients

in Table 3.1. Only s/2 coefficients are reported, since the other satisfy the symmetry

relation (3.7). We also report the maximum CFL number a∗ = y∗/π (see eq. (3.3)).

• s = 6 and s = 10: In Fig. 3.4, we plot the functions |Rs(iy)|2− 1 for s = 6 and s = 10.

It is observed that Rs(iy)|2 ≥ 1 for any interval containing the origin, i.e. these two

quadrature formulas are not stable.
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Figure 3.4: Plot of |R(iy)|2 − 1 for the symmetric quadrature formulas with s = 6, 10. Such
formulas are not stable because the stability region do not contain a portion of the imaginary
axis.

Table 3.1: Weights and nodes of accurate and stable quadrature formulas. Each formula is
exact for polynomials of degree not greater than s− 1. The maximum CFL number a∗ that
guarantees stability in the theoretical Fourier analysis is reported.

s = 4, a∗ = 4.8125674352016
1 0.199889211759008 0.083205952308564
2 0.300110788240992 0.347904700949451

s = 8, a∗ = 9.4130380474585
1 0.058702317190867 0.023248965963790
2 0.119923212650690 0.114686793929813
3 0.154113350301760 0.253867587586135
4 0.167261119856682 0.415892817555109

s = 12, a∗ = 13.7671988660496
1 0.027182888487959 0.010668025829619
2 0.059633412276882 0.054560771376909
3 0.084799522112170 0.127471263371368
4 0.101625491473440 0.221353922812027
5 0.111259037829236 0.328318059665840
6 0.115499647820313 0.442082833046309
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The stability regions for the quadrature formulas obtained for s = 4, 8, 12 reported in

Table 3.1 are computed under the assumption that one considers the exact space dependence

of the Fourier mode, so that the only error is in time integration. In reality there are several

other causes of errors, that may affect the stability region of the quadrature. In the next

section, we take spatial discretization into account and quantify the corresponding stability

interval.

4 Spatial discretization.

There are two spatial discretization processes in the scheme. One is the WENO interpolation

in approximating f(xj, t
n + c`∆t) = f(xj − c`∆t/∆x, tn) from neighboring grid point values

{fnj }nx
j=1. The other is the WENO reconstruction in obtaining numerical fluxes F̂j+ 1

2
in (2.7)

from {Fj}nxj=1. In this paper, we consider the following two classes of spatial discretizations.

• Odd order approximations. For the linear equation (2.1), we use a right-biased stencil

to approximate f(xj− c`∆t/∆x, tn) and use a left-biased stencil for reconstructing the

flux F̂j+ 1
2
. For example, for a first order scheme with ∆t/∆x < 1, f(xj − c`∆t/∆x, tn)

is approximated from the interpolation stencil {fj} and the numerical flux F̂j+ 1
2

is

approximated from the reconstruction stencil {Fj}. With such stencil arrangement,

the SL scheme is reduced to a first order upwind scheme when ∆t/∆x < 1,

fn+1
j = fnj −∆t/∆x(fnj − fnj−1).

Third, fifth, seventh and ninth order schemes can be constructed by including one,

two, three, four more points symmetrically from left and from right, respectively, in

the interpolation and reconstruction stencils. We list them as follows.

Third order : {fj−1, fj, fj+1}, {Fj−1,Fj,Fj+1}.
Fifth order : {fj−2, fj−1, fj, fj+1, fj+2}, {Fj−2,Fj−1,Fj,Fj+1,Fj+2}.
Seventh order : {fj−3, fj−2, fj−1, fj, fj+1, fj+2, fj+3},

{Fj−3,Fj−2,Fj−1,Fj,Fj+1,Fj+2,Fj+3}.
Ninth order : {fj−4, fj−3, fj−2, fj−1, fj, fj+1, fj+2, fj+3, fj+4},

{Fj−4,Fj−3,Fj−2,Fj−1,Fj,Fj+1,Fj+2,Fj+3,Fj+4}.
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• Even order approximations. For the linear equation (2.1), we use symmetric stencils to

approximate f(xj − c`∆t/∆x, tn) by interpolation and to approximate F̂j+ 1
2

by recon-

struction. For example, for a second order scheme with ∆t/∆x < 1, f(xj−c`∆t/∆x, tn)

is approximated from the interpolation stencil {fj−1, fj} and the numerical flux F̂j+ 1
2

is approximated from the reconstruction stencil {Fj,Fj+1}. Fourth, sixth and eighth

order schemes can be constructed by including one, two, three more points symmet-

rically from left and from right, respectively, in the interpolation and reconstruction

stencils. We list them as follows.

Fourth order : {fj−2, fj−1, fj, fj+1}, {Fj−1,Fj,Fj+1,Fj+2}.
Sixth order : {fj−3, fj−2, fj−1, fj, fj+1, fj+2},

{Fj−2,Fj−1,Fj,Fj+1,Fj+2,Fj+3}.
Eighth order : {fj−4, fj−3, fj−2, fj−1, fj, fj+1, fj+2, fj+3},

{Fj−3,Fj−2,Fj−1,Fj,Fj+1,Fj+2,Fj+3,Fj+4}.

Remark 4.1. We follow the same principle in the interpolation and reconstruction proce-

dures in more general settings, for example the situation when the time stepping size is

greater than the CFL restriction, i.e ∆t/∆x ≥ 1 for eq. (2.1). For general high dimen-

sional problems, e.g. the Vlasov equation, similar procedures can be applied in a truly

multi-dimensional fashion.

To access the stability property of the conservative method, we perform Fourier analysis

via the linear equation (2.1) with x ∈ [0, 2π] and periodic boundary condition. In particular,

we make the ansatz fnj = f̂neijξ with i =
√
−1 and ξ ∈ [0, 2π]. Plugging the ansatz into

the SL conservative scheme as described in Section 2, we obtain f̂n+1(ξ) = Qλ(ξ)f̂
n(ξ) with

Qλ(ξ) being the amplification factor for the Fourier mode associated with ξ and λ = ∆t
∆x

. To

ensure linear stability, it is sufficient to have

|Qλ(ξ)| ≤ 1, ∀ξ ∈ [0, 2π], ∀λ ∈ [0, λ?], for some λ?. (4.1)

We seek for λ? by numerically checking the inequality (4.1) for 100 discretized grid points

on ξ ∈ [0, 2π], and by gradually increasing λ with a step size of 0.01 starting from λ = 0.

Taking the machine precision into account in our implementation, we check the inequality

|Qλ(ξ)| ≤ 1 + 10−11 instead. We tabulate such λ? in Table 4.1 for different quadrature
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formulas as discussed in Section 3 and with different choices of spatial interpolation and

reconstruction stencils with odd and even order respectively. One can observe that the

second order trapezoidal rule and the fourth order GL2 perform much better than the mid-

point rule in terms of stability, especially when the orders for spatial approximations are high.

The time stepping sizes allowed for stability of fully discretized schemes with s = 4, 8, 12 are

observed to be much less than the one provided by ODE stability analysis in the previous

section.

In the following, we take the linear advection equation ut + ux = 0 with a smooth initial

function sin(2πx) on the domain [0, 1], to test the CFL bounds in Table 4.1. Here for better

illustration, only linear interpolation and linear reconstruction are used. We consider schemes

that couple GL2 for temporal integration with third and fourth order spatial approximations.

Errors and orders of convergence at a final integration time T = 100.1 are recorded in Table

4.2. Clear third order and fourth order spatial accuracy are observed at the corresponding

upper bounds for CFL (1.22 for third order and 1.84 for fourth order as in Table 4.1.)

The code will blow up with the CFL increased by 0.01 at the corresponding time, which

confirms the validity of the CFL bounds in the table. We have similar observations for

other orders of schemes, but omit to present them to save space. Although even order

schemes comparatively have larger CFL bounds than odd order ones, for solutions with

discontinuities, we can observe that odd order schemes with upwind mechanism can resolve

the discontinuities better. We present numerical solutions of our schemes with linear weights

for advecting a step function in Fig. 4.1. Due to the above considerations, we use the scheme

with the 5th order spatial approximation and with two-point Gaussian rule for temporal

integration in the following numerical sections.

5 Numerical tests on 2D linear passive-transport prob-

lems

In this section, the conservative truly multi-dimensional SL scheme will be tested for passive

transport equations, such as linear advection, rotation and swirling deformation. Since the

velocity of the field is given a priori, characteristics can be traced by a high order Runge-

Kutta ODE integrator.
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Table 4.1: Upper bounds of CFL for FD SL scheme with odd and even order interpolation
and reconstruction. The amplification factor is bounded by 1 + 10−11. N = 100.

temp/spatial 1st 3rd 5th 7th 9th exact
mid-point 1.00 1.00 0.14 0.04 0.02 0.00
trapezoid 1.99 1.68 1.52 1.44 1.38 1.00
Simpson 1.33 1.50 1.35 0.71 0.37 0.00

GL2 1.00 1.22 1.19 1.16 1.15 1.72
s=4 1.00 1.37 1.27 1.22 1.19 4.81
s=8 1.00 1.35 1.26 1.21 1.18 9.41
s=12 1.00 1.37 1.25 1.21 1.18 13.76

temp/spatial 2nd 4th 6th 8th 10th exact
mid-point 2.00 0.04 0.01 0.00 0.00 0.00
trapezoid 1.29 1.26 1.24 1.22 1.20 1.00
Simpson 3.00 2.91 0.83 0.34 0.20 0.00

GL2 1.85 1.84 1.84 1.83 1.83 1.72
s=4 1.96 1.97 1.98 1.98 1.98 4.81
s=8 1.99 1.99 1.99 1.99 1.99 9.41
s=12 1.99 1.99 1.99 1.99 2.00 13.76

Table 4.2: Accuracy test of the linear advection equation ut + ux = 0 with the initial
function sin(2πx) for the 3rd order scheme with CFL = 1.22 at T = 100.1 and 4th order
with CFL = 1.84 at T = 1001.1.

Scheme N L1 error order L∞ error order

3rd order

240 4.12E-04 – 6.47E-04 –
480 5.15E-05 3.00 8.09E-05 3.00
960 6.44E-06 3.00 1.01E-05 3.00
1920 8.04E-07 3.00 1.26E-06 3.00

4th order

120 1.76E-03 – 2.77E-03 –
240 1.10E-04 4.00 1.73E-04 4.00
480 6.89E-06 4.00 1.08E-05 4.00
960 4.76E-07 3.85 7.48E-07 3.85
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Figure 4.1: Numerical solution for the linear advection equation ut + ux = 0 with an initial
step function at T = 100.1. Left: 3rd order with CFL = 1.22 and 5th order with CFL =
1.19; Right: 4th order and 6th order with CFL = 1.84. N = 800. Here linear interpolation
and linear reconstruction are used without WENO.

In this and next sections, we use 5th order spatial approximations with WENO (i.e.

WENO interpolation and WENO reconstruction) for evaluating flux functions in (2.7). We

use GL2 for temporal integration, while characteristics are traced back in time by Runge-

Kutta to locate feet of characteristics. For a general two dimensional problem ut + f(u)x +

g(u)y = 0, the time step is taken as

∆t = CFL/(a/∆x+ b/∆y),

where a = max |f ′(u)| and b = max |g′(u)|. From Table 4.1, the CFL number is 1.22 for a 3rd

order spatial discretization and 1.19 for the 5th order. In the following, we take CFL = 1.15

without specification.

Example 5.1. We first test our problem for the linear equation ut +ux +uy = 0 with initial

condition u(x, y, 0) = sin(x) sin(y). The exact solution is u(x, y, t) = sin(x − t) sin(y − t).

For this example, the roots of characteristics are located exactly. Table 5.1 and Table 5.2

presents spatial and temporal order of convergence of the proposed scheme. Both 5-th order

spatial accuracy and 4-th order temporal accuracy from GL2 can be observed.

Example 5.2. Now we consider two problems defined on the domain [−π, π]2. One is the
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Table 5.1: Errors and orders for the linear equation in space. T = 1.2. CFL = 1.15.

Nx ×Ny 20× 20 40× 40 60× 60 80× 80 100× 100
L1 error 2.76E-4 8.38E-6 1.11E-6 2.64E-7 8.68E-8

order – 5.04 4.99 4.98 4.99

Table 5.2: Errors and orders for the linear equation in time. Nx = Ny = 200. T = 1.

CFL 1.1 1.0 0.9 0.8 0.7
L1 error 3.34E-9 2.27E-9 1.49E-9 9.29E-10 5.46E-10

order – 4.07 3.97 4.02 3.98

rigid body rotating problem

ut − yux + xuy = 0,

the other is the swirling deformation flow problem

ut −
(

cos2
(x

2

)
sin(y)g(t)u

)
x

+
(

sin(x) cos2
(y

2

)
g(t)u

)
y

= 0,

with g(t) = cos(πt/T )π. Both have the initial condition, which includes a slotted disk, a

cone as well as a smooth hump, see Fig. 5.1 (top) and Fig. 5.2 (top).

For the rigid body rotating problem, its period is 2π. In Fig. 5.1, we have shown the

results at a half period and one period. As we can see, the shape of the bodies are well

preserved. For the swirling deformation flow problem, after a half period the bodies are

deformed, but they regain its initial shape after one period, see Fig. 5.2.

6 Numerical tests of nonlinear systems

In this section, we test the conservative SL scheme on the nonlinear VP system, the guid-

ing center Vlasov system and the incompressible Euler system in vorticity stream function

formulation. Despite different application backgrounds, the latter two systems are indeed

in almost the same mathematical formulation, only with different signs in the Poisson’s

equation.
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Figure 5.1: Rigid body rotating problem. Mesh size: 128×128. Top: T = 0; middle: T = π;
bottom: T = 2π. Contour plots: 10 equally spaced lines.
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Figure 5.2: Rigid body rotating problem. Mesh size: 128 × 128. Top: T = 0; middle:
T = 0.75; bottom: T = 1.5. Contour plots: 10 equally spaced lines.
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6.1 VP system

Arising from collisionless plasma applications, the VP system

∂f

∂t
+ v · ∇xf + E(x, t) · ∇vf = 0, (6.1)

and

E(x, t) = −∇xφ(x, t), −∆xφ(x, t) = ρ(x, t)− 1, (6.2)

describes the temporal evolution of the particle distribution function in six dimensional phase

space. f(x,v, t) is the probability distribution function which describes the probability of

finding a particle with velocity v at position x at time t, E is the electric field, and φ is

the self-consistent electrostatic potential. The probability distribution function couples to

the long range fields via the charge density, ρ(t, x) =
∫
R3 f(x, v, t)dv, where we take the

limit of uniformly distributed infinitely massive ions in the background. In this paper, we

consider the VP system with 1-D in x and 1-D in v. Periodic boundary condition is imposed

in x-direction, while zero boundary condition is imposed in v-direction. The equations for

tracking characteristics are
dx

dt
= v,

dv

dt
= E, (6.3)

where E nonlinearly depends on f via the Poisson system (6.2). To locate the foot of

characteristics accurately, we apply the high order procedure proposed in [14].

Next we recall several norms in the VP system below, which should remain constant in

time.

1. Mass:

Mass =

∫
v

∫
x

f(x, v, t)dxdv.

2. Lp norm 1 ≤ p <∞:

‖f‖p =

(∫
v

∫
x

|f(x, v, t)|pdxdv
) 1

p

. (6.4)

3. Energy:

Energy =

∫
v

∫
x

f(x, v, t)v2dxdv +

∫
x

E2(x, t)dx, (6.5)

where E(x, t) is the electric field.
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4. Entropy:

Entropy =

∫
v

∫
x

f(x, v, t) log(f(x, v, t))dxdv. (6.6)

Tracking relative deviations of these quantities numerically will be a good measure of the

quality of numerical schemes. The relative deviation is defined to be the deviation away

from the corresponding initial value divided by the magnitude of the initial value. We also

check the mass conservation over time
∫
v

∫
x
f(x, v, t)dxdv, which is the same as the L1 norm

if f is positive. However, since our scheme is not positivity preserving, the time evolution of

the mass could be different from that of the L1 norm due to the negative values appearing

in numerical solutions.

In our numerical tests, we let the time step size ∆t = CFL ·min(∆x/vmax,∆v/max(E)),

where CFL is specified as 1.15, and let vmax = 6 to minimize the error from truncating the

domain in v-direction.

Example 6.1. (Weak Landau damping) For the VP system, we first consider the weak

Landau damping with the initial condition:

f(t = 0, x, v) =
1√
2π

(1 + α cos(kx)) exp(−v
2

2
), (6.7)

where α = 0.01 and k = 0.5. The length of the domain in the x-direction is L = 2π
k

, which is

similar in the following examples. In Fig. 6.1, we plot the time evolution of the electric field

in L2 norm and L∞ norm, the relative derivation of the discrete L1 norm, L2 norm, kinetic

energy and entropy.

Example 6.2. (Strong Landau damping) The initial condition of strong Landau damping is

still to be (6.7), with α = 0.5 and k = 0.5. Similarly in Fig. 6.2, we plot the time evolution

of electric field in L2 norm and L∞ norm, the relative derivation of the discrete L1 norm,

L2 norm, kinetic energy and entropy. The mass conservation is indicated by the bottom

straight line in the L1 norm figure.

Example 6.3. (Two stream instability) Now we consider the two stream instability problem,

with an unstable initial distribution function given by:

f(t = 0, x, v) =
2

7
√

2π
(1 + 5v2)(1 + α((cos(2kx) + cos(3kx))/1.2 + cos(kx)) exp(−v

2

2
) (6.8)
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,

,

Figure 6.1: Weak Landau damping. Time evolution of the electric field in L2 norm and L∞

norm (top), discrete L1 norm and L2 norm (middle), kinetic energy and entropy (bottom).
Mesh: 128× 128.
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Figure 6.2: Strong Landau damping. Time evolution of the electric field in L2 norm and L∞

norm (top), discrete L1 norm and L2 norm (middle), kinetic energy and entropy (bottom).
Mesh: 128× 128. The straight red line indicates mass conservation.
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,

Figure 6.3: Two stream instability at T = 53. Mesh: 128× 128. Contour plots: 10 equally
spaced lines.

where α = 0.01 and k = 0.5. We plot the numerical solution at T = 53 in Fig. 6.3. While

the time evolution of electric field in L2 norm and L∞ norm, the relative derivation of the

discrete L1 norm, L2 norm, kinetic energy and entropy are shown in Fig. 6.4.

Example 6.4. (Symmetric two stream instability) We consider the symmetric two stream

instability with the initial condition:

f(t = 0, x, v) =
1

2vth
√

2π

[
exp

(
−(v − u)2

2v2
th

)
+ exp

(
−(v + u)2

2v2
th

)]
(1 + α cos(kx)) (6.9)

with α = 0.05, u = 0.99, vth = 0.3 and k = 2
13

. We plot the numerical solution at T = 70

in Fig. 6.5. The time evolution of the electric field in L2 norm and L∞ norm, the relative

derivation of the discrete L1 norm, L2 norm, kinetic energy and entropy are reported in Fig.

6.6. Similarly, the mass conservation is indicated by the straight line on the bottom in the

L1 norm figure.

6.2 The guiding center Vlasov model

Consider the guiding center approximation of the 2D Vlasov model [23, 6],

∂ρ

∂t
+ E2

∂ρ

∂x
− E1

∂ρ

∂y
= 0, (6.10)

or equivalently in a conservative form as

∂

∂t
ρ+

∂

∂x
(ρE2) +

∂

∂y
(−ρE1) = 0, (6.11)

26



,

,

,

Figure 6.4: Two stream instability. Time evolution of the electric field in L2 norm and L∞

norm (top), discrete L1 norm and L2 norm (middle), kinetic energy and entropy (bottom).
Mesh: 128× 128.
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,

Figure 6.5: Symmetric two stream instability at T = 70. Mesh: 256 × 128. Contour plots:
10 equally spaced lines.

where E = (E1, E2) = −∇Φ with Φ determined from the Poisson’s equation

4Φ = −ρ.

We assume a uniform set of 2D grid points as specified in eq. (2.5). The equations for tracking

characteristics emanating from a grid point (xi, yj) at some future time tn+1 (without loss of

generality),
dx(t)

dt
= E2,

dy(t)

dt
= −E1, x(tn+1) = xi, y(tn+1) = yj. (6.12)

Below we generalize the characteristics tracing procedures in [14] to the guiding center model,

which can be directly applied to the incompressible Euler equations in the following sub-

section. In particular for the system (6.12), we propose a scheme to locate the foot of

characteristics (x?i,j, y
?
i,j) at tn. Once the foot of characteristic is located, then a 2D inter-

polation procedure can be employed to approximate the solution value ρ(x?i,j, y
?
i,j, t

n). We

remark that solving (6.12) with high order temporal accuracy is challenging. Especially, the

E depends on the unknown function ρ via the 2-D Poisson’s equation in a global rather

than a local fashion, and it is difficult to evaluate E for some intermedia time stages, i.e.

Runge-Kutta methods cannot be used directly.

In our notations, the superscript n denotes the time level, the subscripts i and j denote the

location at (xi, yj). e.g. En
1,i,j = E1(xi, yj, t

n). The superscript (p) denotes the formal order

of temporal approximation. For example, in eq. (6.13) below, x
n,(1)
i,j (or y

n,(1)
i,j ) approximates

x?i,j (or y?i,j) with first order. d
dt

= ∂
∂t

+ ∂x
∂t

∂
∂x

+ ∂y
∂t

∂
∂y

denotes the material derivative along
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Figure 6.6: Symmetric two stream instability. Time evolution of the electric field in L2 norm
and L∞ norm (top), discrete L1 norm and L2 norm (middle), kinetic energy and entropy
(bottom). Mesh: 256× 128. The straight red line indicates mass conservation.
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characteristics. We use a spectrally accurate fast Fourier transform (FFT) for solving the

2-D Poisson’s equation (6.2).

We start from a first order scheme for tracing characteristics (6.12), by letting

x
n,(1)
i,j = xi − E2(xi, yj, t

n)∆t; y
n,(1)
i,j = yj + E1(xi, yj, t

n)∆t. (6.13)

They are first order approximations to x?i,j and y?i,j. Let

ρ
n+1,(1)
i,j = ρ(x

n,(1)
i,j , y

n,(1)
i,j , tn), (6.14)

which can be obtained by a high order spatial interpolation. Based on {ρn+1,(1)
i,j }, we can

compute

E
n+1,(1)
i,j = (E

n+1,(1)
1,i,j , E

n+1,(1)
2,i,j ),

by using FFT based on the 2-D Poisson’s equation (6.2). Note that E
n+1,(1)
i,j approximates

En+1
i,j with first order temporal accuracy.

A second order scheme can be built upon the first order one, by letting

x
n,(2)
i,j = xi −

1

2

(
E
n+1,(1)
2,i,j + E2(x

n,(1)
i,j , y

n,(1)
i,j , tn)

)
∆t, (6.15)

y
n,(2)
i,j = yj +

1

2

(
E
n+1,(1)
1,i,j + E1(x

n,(1)
i,j , y

n,(1)
i,j , tn)

)
∆t. (6.16)

Here E(x
n,(1)
i,j , y

n,(1)
i,j , tn) can be approximated by a high order spatial interpolation. (x

n,(2)
i,j , y

n,(2)
i,j )

can be shown to be second order approximations to (x?i,j, y
?
i,j) by a local truncation error

analysis.

Finally, a third order scheme can be designed based on a second order one, by letting

x
n,(3)
i,j = xi − En+1,(2)

2,i,j ∆t+
∆t2

2

(2

3
(
dE2

dt
)
n+1,(2)
i,j +

1

3

dE2

dt
(x

n,(2)
i,j , y

n,(2)
i,j , tn)

)
; (6.17)

y
n,(3)
i,j = yj + E

n+1,(2)
1,i,j ∆t−∆t2

2

(2

3
(
dE1

dt
)
n+1,(2)
i,j +

1

3

dE1

dt
(x

n,(2)
i,j , y

n,(2)
i,j , tn)

)
; (6.18)

which are third order approximations to x?i,j and y?i,j, see Proposition 6.5 below. Here

d

dt
Es =

∂Es
∂t

+
∂Es
∂x

E2 −
∂Es
∂y

E1, s = 1, 2 (6.19)

are material derivatives along characteristics. Notice that on the r.h.s. of eq. (6.19), the

partial derivatives are not explicitly given. The spatial derivative terms can be approximated
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by high order spatial approximations, while the time derivative term ∂E
∂t

can be approximated

by utilizing the Vlasov equation. In particular, taking partial time derivative of the 2-D

Poisson’s equation gives

∆φt = −(E2ρ)x + (E1ρ)y. (6.20)

After obtaining E by solving the original Poisson’s equation (6.2), the right hand side of

(6.20) can be constructed by a high order central finite difference scheme, e.g., 6th order

central finite difference scheme. Then we can solve (6.20) by FFT to get ∂E
∂t

= −((φt)x, (φt)y).

With such a procedure, both ∂E
∂t

(x
n,(2)
i,j , y

n,(2)
i,j , tn) and

(
∂E
∂t

)n+1,(2)

i,j
can be obtained.

Proposition 6.5. x
n,(3)
i,j and y

n,(3)
i,j constructed in equations (6.17)-(6.18) are third order

approximations to x?i,j and y?i,j in time.

Proof. It can be checked by Taylor expansion

x?i,j = xi −
dx

dt
(xi, yj, t

n+1)∆t+

(
2

3

d2x

dt2
(xi, yj, t

n+1) +
1

3

d2x

dt2
(x?i,j, y

?
i,j, t

n)

)
∆t2

2
+O(∆t4)

= xi − En+1
2,i,j∆t+

(
2

3

dE2

dt
(xi, yj, t

n+1) +
1

3

dE2

dt
(x?i,j, y

?
i,j, t

n)

)
∆t2

2
+O(∆t4)

= xi − (E
n+1,(2)
2,i,j +O(∆t3))∆t+

(
2

3
(
dE2

dt
)
n+1,(2)
i,j (6.21)

+
1

3

dE2

dt
(x

n,(2)
i,j , y

n,(2)
i,j , tn) +O(∆t3)

)
∆t2

2
+O(∆t4)

(6.17)
= x

n,(3)
i +O(∆t4).

The second last equality is due to the fact that a second order scheme (with superscript

(2)) gives locally third order approximations. Hence x
n,(3)
i,j (similarly y

n,(3)
i,j ) is a fourth order

approximation to x?i,j (similarly y?i,j) locally in time for one time step. The approximation is

third order in time globally. .

Example 6.6. (Kelvin-Helmholtz instability problem). This example is the 2-D guiding

center model problem with the initial condition

ρ0(x, y) = sin(y) + 0.015 cos(kx) (6.22)

and periodic boundary conditions on the domain [0, 4π]× [0, 2π]. We let k = 0.5, which will

create a Kelvin-Helmholtz instability.
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Figure 6.7: Kelvin-Helmholtz instability problem. Mesh size 128 × 128. T = 40. Contour
plots: 10 equally spaced lines.
.

For this example, we show the surface and contour plots for the solution at T = 40 in

Fig. 6.7, similar to the results in [6]. The mesh size is 128× 128.

6.3 Incompressible Euler equation

Example 6.7. We first consider the incompressible Euler system on the domain [0, 2π] ×

[0, 2π] with an initial condition ω0(x, y) = −2 sin(x) sin(y). The exact solution will stay

stationary with ω(x, y, t) = −2 sin(x) sin(y). Similarly as in Table 5.1 and Table 5.2, the 5th

order spatial accuracy and 3rd order temporal accuracy are clearly observed in Table 6.1

and Table 6.2 respectively. Here for the temporal accuracy, 7th order linear interpolation

and linear reconstruction are used.

Example 6.8. (The vortex patch problem). In this example, we consider the incompressible

Euler equations with the initial condition given by

ω0(x, y) =


−1, π

2
≤ x ≤ π

4
≤ y ≤ 3π

4
;

1, π
2
≤ x ≤ 5π

4
≤ y ≤ 7π

4
;

0, otherwise.

(6.23)

We show the surface and contour plots of ω at T = 5 in Fig. 6.8. The mesh size is 128×128.

Example 6.9. (Shear flow problem). This example is the same as above but with following
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Table 6.1: Errors and orders for the incompressible Euler equation in Example 6.7. T = 1.2.

Nx ×Ny 20× 20 40× 40 60× 60 80× 80 100× 100
L1 error 1.00E-2 3.01E-4 3.80E-5 8.79E-6 2.84E-6

order – 5.06 5.10 5.09 5.07

Table 6.2: Errors and orders for the incompressible Euler equation in Example 6.7. Nx =
Ny = 128. T = 1.

CFL 1.15 1.05 0.95 0.85
L1 error 4.80E-9 3.65E-9 2.69E-9 1.92E-9

order – 3.03 3.04 3.04

Figure 6.8: Vortex patch problem. Mesh size 128 × 128. T = 5. Contour plot: 10 equally
spaced lines.

initial conditions

ω0(x, y) =

{
δ cos(x)− 1

ρ
sech2((y − π/2)/ρ)2, y ≤ π;

δ cos(x) + 1
ρ
sech2((3π/2− y)/ρ)2, y > π.

(6.24)

where δ = 0.05 and ρ = π
15

. We show the surface and contour plots of ω at T = 6 (top) and

T = 8 (bottom) in Fig. 6.9. The mesh size is 128× 128.

7 Conclusion

In this paper, we propose a conservative semi-Lagrangian finite difference scheme based on

a flux difference formulation. We investigate its numerical stability from the linear ODE
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Figure 6.9: Shear flow problem. Mesh size 128 × 128. T = 6 (top) and T = 8 (bottom).
Contour plots: 10 equally spaced lines.
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and PDE point of view via Fourier analysis. The upper bound of time step constraints

have been found in the linear setting and have been numerically verified. These upper

bounds are only slightly greater than those from the Eulerian approach, unfortunately. The

schemes are applied to passive transport problems as well as nonlinear Vlasov systems and

the incompressible Euler system to showcase its effectiveness. A new characteristics tracing

procedure for the guiding center Vlasov system and incompressible Euler system is proposed,

mimicking the characteristic tracing mechanism in [14].
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behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic

field, Communications in Computational Physics, 18 (2015), pp. 263–296.

35



[7] W. Guo, R. D. Nair, and J.-M. Qiu, A conservative semi-Lagrangian discontinuous

Galerkin scheme on the cubed sphere, Monthly Weather Review, 142 (2014), pp. 457–

475.

[8] W. Guo and J.-M. Qiu, Hybrid semi-Lagrangian finite element-finite difference meth-

ods for the Vlasov equation, Journal of Computational Physics, 234 (2013), pp. 108–132.

[9] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, and O. Coulaud,

Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–

Maxwell system, Journal of Computational Physics, 185 (2003), pp. 512–531.

[10] S.-J. Lin and R. B. Rood, Multidimensional flux-form semi-Lagrangian transport

schemes, Monthly Weather Review, 124 (1996), pp. 2046–2070.

[11] K. Morton, A. Priestley, and E. Suli, Stability of the Lagrange-Galerkin method

with non-exact integration, RAIRO-Modélisation mathématique et analyse numérique,
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