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Abstract

We develop a systematic approach for surrogate model construction in reduced input pa-

rameter spaces. A sparse set of model evaluations in the original input space is used to

approximate derivative based global sensitivity measures (DGSMs) for individual uncertain

inputs of the model. An iterative screening procedure is developed that exploits DGSM

estimates in order to identify the unimportant inputs. The screening procedure forms an

integral part of an overall framework for adaptive construction of a surrogate in the reduced

space. The framework is tested for computational efficiency through an initial implemen-

tation in simple test cases such as the classic Borehole function, and a semilinear elliptic

PDE with a random source term. The framework is then deployed for a realistic application

from chemical kinetics, where we study the ignition delay in an H2/O2 reaction mechanism

with 19 uncertain rate constants. It is observed that significant computational gains can be

attained by constructing accurate low-dimensional surrogates using the proposed framework.
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1 Introduction

The emerging field of uncertainty quantification (UQ) aims at methodologies for incorpo-

rating, characterizing, quantifying, propagating, and reducing the uncertainties associated

with predictive models and simulations. For situations involving complex physical mod-

els and computationally intensive simulations, surrogate modeling often provides orders of

magnitude speedups in statistical studies. This is done by replacing repeated evaluations of

computationally expensive models by inexpensive evaluations of a surrogate model. Thus,

an efficient approach to construction of surrogate models is of central importance in enabling

efficient uncertainty quantification for computationally intensive models.

Commonly used surrogate modeling approaches use polynomial chaos expansions (PCEs) [1–

3], multivariate adaptive regression splines (MARS) [4], Gaussian processes (GPs) [5], or

Kriging [6]. Many real-world applications involve a large number of model inputs. This

makes the construction of surrogate models difficult or impossible in some cases. However,

in many situations, the variability in model observables of interest is sensitive to only a

small subset of the uncertain inputs. Hence, identifying model inputs that are inessential to

variability in model output is a key step that can help reduce the input parameter dimension

and hence the effort associated with surrogate model construction.

Variance based global sensitivity analysis based on Sobol’ indices [7–10] provides insight

into the relative contributions of the uncertain model inputs to the uncertainty in predictions.

Specifically, such analysis can help reduce the dimensionality of the problem. Computing

Sobol’ indices, however, is a computationally demanding task. Availability of a surrogate

model typically enables efficient computation of Sobol’ indices [11–15]. This has enabled

performing global sensitivity analysis on a wide range of applications including in ocean

modeling [16,17], geosciences [18–20], and chemical kinetics [21–23] to name a few.

While surrogate models provide an efficient way of computing sensitivity indices, con-

structing them in the case of models with high-dimensional inputs can be as expensive as

computing the Sobol’ indices via sampling. In this article, we propose a practical and effi-

cient approach to address this commonly observed “chicken-and-egg” problem in surrogate

modelling for engineering applications. Specifically, we reduce the dimensionality of the in-
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put space using derivative-based global sensitivity analysis [24–28], which enables a tractable

approach for global sensitivity analysis [28]. The links between derivative based global sen-

sitivity measures (DGSMs) and total Sobol’ indices [24, 27, 28] provide a strong basis for

their use in identifying unimportant parameters. In addition to the construction of an ef-

ficient surrogate in the reduced space, dimension reduction highlights key features of the

input-output relationship encapsulated by the model, and allows for an efficient approach to

calibration of the important inputs.

Our approach We present a strategy for identifying and screening uncertain model param-

eters that are significantly less important than the rest, thereby reducing the dimensionality

of the problem and enabling the construction of a reduced-space surrogate (RSS). Our ap-

proach combines DGSMs and surrogate modeling in an iterative manner. To make optimum

use of computational resources, batches of model evaluations are performed iteratively, and

convergence of our DGSM based screening metric is tested successively. Moreover, a series of

verification steps incorporated in our method enable monitoring the accuracy of parameter-

screening and the resulting surrogate model. Our approach is agnostic to the choice of

methodology for constructing the surrogate. However, in the present work, we rely on sparse

polynomial chaos expansions (PCEs) to demonstrate the suitability of the proposed strategy.

Contributions The contributions of this article are as follows: (i) We establish a robust

and practical framework for dimension reduction and surrogate modeling using derivative-

based global sensitivity measures. Our approach is general in that it is applicable to a wide

range of applications. (ii) We present comprehensive numerical results demonstrating the

viability of our strategy using motivating applications: the classic borehole function, and a

semilinear elliptic PDE. (iii) We deploy our strategy in an application problem from chemical

kinetics with 19 uncertain parameters. The problem is studied in multiple regimes. It is

shown that the 19-parameter problem can be efficiently reduced to a 3- or 4-dimensional

problem.
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Paper outline This article is structured as follows. In section 2, we provide a brief

introduction to DGSMs as well as the polynomial chaos methodology used in the present

work. In section 3, we present our proposed approach, where we also provide a detailed

numerical algorithm and a flow diagram to aid practitioners in implementing the presented

framework. Section 4 is devoted to numerical examples examining various aspects of our

approach. This is followed by implementation of our framework in a H2/O2 chemical kinetics

problem, in section 5. Finally, concluding remarks are provided in section 6.

2 Background

In this section, we introduce the notations used in the rest of the article, and present the

requisite background material on derivative-based global sensitivity measures and surrogate

modeling using polynomial chaos expansions.

2.1 Derivative-based global sensitivity analysis

Let G be a mathematical model that is a function of Np uncertain inputs, θ1, θ2, . . . , θNp .

The goal of sensitivity analysis is measuring the influence of each component of the input

vector θ =
[
θ1 θ2 . . . θNp

]T
on the model output. In the present work, we consider the

case where the inputs are statistically independent.

Derivative-based global sensitivity analysis is performed by computing derivative based

global sensitivity measures (DGSMs) [24] for each uncertain parameter in the model. Specif-

ically, we consider the following DGSMs,

µi = E

[(
∂G(θ)

∂θi

)2
]
, i = 1, . . . , Np. (1)

Here E denotes expectation over the uncertain parameters. Notice that this formulation

assumes that the function G is differentiable with respect to θi, i = 1, . . . , Np.

If an analytic expression for G is available, the derivative in the above expression can

be computed directly. In real-world applications, however, G is often defined in terms of a

solution of a mathematical model. In the present work, we consider a generic computational

4



model and only assume that the model output depends differentiably on the parameter θ.

A simple approach to computing the gradient is to use finite-differences:

∂G(θ)

∂θi
≈ G(θ1, . . . , θi−1, θi + ∆θi, θi+1, . . . , θd)−G(θ)

∆θi
, i = 1, . . . , Np. (2)

Then, (1) can be evaluated by Monte Carlo (MC) sampling in the uncertain parameter space.

The total number of model realizations or function evaluations needed to compute µi for a

function G of Np random inputs and using N samples is therefore, N × (Np + 1). It is noted

in previous studies [27, 28], and also observed in the numerical experiments in the present

work, that a modest MC sample size is often sufficient for computing (1) with reasonable

accuracy to identify the unimportant inputs. Moreover, the computational efficiency for

estimating µi can be enhanced by using techniques such as automatic differentiation [29] or

adjoint-based gradient computation [30–33].

Consider the total Sobol’ sensitivity index [8],

T (θi) = 1− V[E(G|θ∼i)]
V(G)

, (3)

where θ∼i is the random vector θ with ith component removed, and V denotes the variance.

The total Sobol’ index quantifies the total contribution of θi to variance of the model G.

Components of θ with small total Sobol’ index can be considered inessential and can be

fixed at nominal values. However, computing the total Sobol’ index is a computationally

expensive task for expensive-to-evaluate models with large number of uncertain parameters.

Fortunately, for parameters with continuous distributions, an upper bound on Ti can be

expressed in terms of µi as follows:

T (θi) ≤
Ciµi
V(G)

, (4)

where Ci is the corresponding “Poincaré constant” and V(G) is the total variance of the

model output [26]. The upper bound in the above inequality is proportional to the product

of Ci and µi. For the purpose of parameter screening as discussed later in Section 3, we

consider a normalized product, Ĉiµi to ensure that it lies between 0 and 1:

Ĉiµi =
Ciµi∑
i Ciµi

. (5)
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The Poincaré constant, Ci is specific to the probability distribution of θi. For θi ∼ U [a, b],

Ci = (b − a)2/π2, and for θi ∼ N (µ, σ2), we have Ci = σ2. Here N (µ, σ2) denotes a normal

distribution with mean µ and variance σ2, and U [a, b] denotes a uniform distribution on the

interval [a, b].

2.2 Polynomial chaos expansion

We consider models with Np random inputs, θ1, . . . , θNp that are modeled as statistically

independent random variables. The variables θi will take in physically meaningful ranges; it

is common to parameterize input uncertainties with canonical random variables ξ1, . . . , ξNp ,

which can be then shifted and scaled to obtain the corresponding θ′is. Typical choices for

distribution of ξi include standard normal and uniform distribution on the interval [−1, 1].

Let

f(x) =

Np∏
i=1

fi(xi), x ∈ RNp

where fi are probability density functions of ξi, i = 1, . . . , Np.

Consider a square integrable random variable G : RNp → R; i.e.,
∫
DG(ξ)2 f(ξ)dξ < ∞,

where D is the support of the distribution law of the random vector ξ. The PCE of G is a

mean-square convergent series expansion [1–3] of the form:

G(ξ) =
∞∑
k=0

ckΨk(ξ), (6)

where Ψk’s form a multivariate orthogonal polynomial basis—orthogonal with respect to the

joint probability distribution of ξ. In practice, a truncated expansion is used. Moreover, in

applications, G is a mathematical model of interest that takes a parameter vector θ (with

components in physically meaningful ranges) as input. Therefore, we write the truncated

PC representation of a model G as follows:

G(θ) ≈ GPC(θ) :=

NPC∑
k=0

ckΨk(ξ(θ)), (7)

where ξ(θ) is found by a simple linear transformation.

Computational strategies available for estimating the PC coefficients (ck’s) typically in-

volve techniques based on projection or regression. Projection-based methods consider the
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orthogonal projection of G on the PC basis {Ψk}NPC
k=0 and compute the resulting expan-

sion coefficients via quadrature [3]. Regression-based methods such as least angle regression

(LAR) [34], and least absolute shrinkage and selection operator (LASSO) [35] aim to con-

struct a sparse PCE [36] by solving a penalized least-squares problem. Specifically in the

case of LAR, a penalty term comprising the `1-norm of the PC coefficients is used:

ĉ = argmin Eθ

(NPC∑
k=0

ckΨk(ξ(θ))−G(θ)

)2
+ λ ‖c‖

1
, (8)

where ‖c‖
1

=
∑NPC

k=0 |ck|. The penalty term forces the minimization towards sparse coefficient

vectors resulting in sparse PC representations. In this work, we construct sparse PCEs with

LAR using UQLab [37], a general purpose uncertainty quantification software developed at

ETH Zurich.

3 Methodology

In this section, we outline the underlying framework for adaptively constructing a reduced-

space surrogate (RSS) using sensitivity analysis. The proposed methodology is described as

adaptive since the RSS is constructed only in situations where it is expected to yield com-

putational dividend as discussed further below. The term reduced-space implies that the

surrogate is constructed in a reduced parameter space that sufficiently captures the uncer-

tainty in the model output. We begin by outlining an algorithm for parameter screening to

assess the importance of individual parameters for potential dimension reduction and con-

struction of an RSS. The overall adaptive framework that incorporates parameter screening

as an integral step is thereafter presented. Finally, we present metrics used for assessing the

convergence and accuracy of the RSS followed by a brief discussion on salient features of the

proposed framework.

Parameter screening. In the proposed framework, we adopt a novel approach for

constructing an RSS based on estimating the upper-bound Ĉiµi, given in (4), on total Sobol’

index (T (θi)) for each parameter θi; the screening metrics, {Ĉiµi}Np

i=1, are used to identify

parameters that are relatively unimportant.
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An initial set of n1 samples is used to obtain a rough estimate of the metric. Based

on the associated metric value, an initial rank (Rold
i ) is assigned to each parameter. At

each iteration, a new set of samples is generated based on the joint probability distribution

of θ and corresponding model output at each sample point is computed. The new set of

gradient evaluations combined with prior evaluations is used to update parameter ranks.

Additionally, deviation in the derivative-based sensitivity measure between successive iter-

ations normalized by the measure in the previous iteration is recorded for each parameter.

The iterative process is continued until parameter ranks between successive iterations are

observed to be consistent as well as the maximum deviation among all parameters (∆µs)

is below a certain tolerance (τ). The amount of computational effort associated with the

screening process is limited by the choice of maximum number of iterations, smax.

Key inputs to the screening procedure are as follows: (1) a limiting value τ of the max-

imum relative change in the sensitivity measure between successive iterations; (2) a limit-

ing ratio τscreen of the sensitivity metric relative to its maximum value; (3) a real number

β ∈ (0, 1) to guide the number of new samples dβn1e at each iteration (dβn1e is the smallest

integer greater than or equal to βn1); (4) a set of samples {θk}n1
k=1 for the initial screening step

in the algorithm and the corresponding gradient evaluations {gk}n0
k=1, where gk = ∇θG(θk).

The outputs are the set of active indices Iactive corresponding to the important parameters,

the total number of available model evaluations Ntotal, and the enriched set of gradient

evaluations {gk}Ntotal
k=1 . A general methodology for parameter screening is provided below in

Algorithm 1.

Algorithm 1 Parameter screening with DGSMs: A generalized approach.

Input: τ > 0, τscreen > 0, smin ≥ 1, smax ≥ 1, β > 0, {θk}n1
k=1, {gk}

Ntotal
k=1 .

Output: Iactive, {gk}Ntotal
k=1 , Ntotal.

1: procedure Screening

2: Compute gk = ∇θG(θk), k = Ntotal + 1, . . . , Ntotal + n1.

3: Ntotal = Ntotal + n1

4: Compute µ1,i = 1
Ntotal

∑Ntotal

k=1 (gki )2

5: Compute νi = Ĉiµ1,i, for each θi, i = 1, . . . , Np.
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6: Determine initial ranks: let Rold = {νi1 , νi2 , . . . , νiNp
} such that

νi1 ≥ νi2 ≥ · · · ≥ νiNp
.

7: Set s = 1 and done = false.

8: while done == false AND s ≤ smax do

9: s = s+ 1.

10: Draw ns = dβn1e new samples θk, k = ns−1 + 1, . . . , ns−1 + ns

11: Ntotal = Ntotal + ns.

12: Compute gk = ∇θG(θk), k = ns−1 + 1, . . . , ns−1 + ns.

13: Compute {µs,i}Np

i=1 using the augmented sample {gk}Ntotal
k=1 .

14: Compute νi = Ĉiµs,i, i = 1, . . . Np.

15: Determine new ranks Rnew based on {νi}Np

i=1.

16: Compute ∆µs = max
1≤i≤Np

(
|µs,i − µs−1,i|

µs−1,i

)
.

17: if Rnew = Rold AND ∆µs ≤ τ AND s ≥ smin then

18: done = true

19: else

20: Set Rold = Rnew

21: end if

22: end while

23: Iactive = {i ∈ {1, . . . , Np} :
νi
‖ν‖∞

> τscreen}.

24: end procedure

Adaptive surrogate model construction. We begin by allocating computational

resources for constructing a cross-validation test suite to be used for assessing the accuracy

of the resulting surrogate. Naturally, the resources allocated for this purpose depend upon

the application as well as total amount of available resources. The set of required inputs

for parameter screening are initialized, and model evaluations at n1 random samples in the

full-space are computed. These evaluations are used to construct a surrogate in the full-space

(FSS) using regression-based techniques. If the surrogate is found to be sufficiently accurate

for the given application, the process is terminated. However, it is likely that a full-space
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surrogate constructed using a small number of model evaluations would not provide a faithful

representation of the input-output relationship.

The available set of model evaluations are utilized and further enhanced during parameter

screening as discussed earlier. At the end of screening, the set of active indices, Iactive, is

used to evaluate α, referred to as the degree of dimension reduction:

α =
|Iactive|
Np

, (9)

where |Iactive| denotes the cardinality of Iactive. Scope for dimension-reduction increases as

α decreases. Hence, if α is considered to be small and computational gains are expected

owing to dimension reduction, the RSS is constructed and verified for accuracy using a

combination of model evaluations used for screening and those associated with the cross-

validation test suite. On the other hand, if α is close to 1, the set of inputs required for

screening are updated as needed, and a new set of n1 samples and corresponding model

evaluations are generated. The FSS is reconstructed using the enriched set of evaluations

and the aforementioned analysis is repeated as illustrated in the flow-diagram in Figure 1

that shows the overall parameter screening and surrogate model construction method.

Assessment of the surrogate. To assess accuracy of the resulting surrogate, one could

estimate the leave-one-out cross validation error as follows:

εLOO =

Nl∑
i=1

(G(θi)−GPC\i(ξ(θi)))
2

Nl∑
i=1

(G(θi)− µ̃)2
, (10)

where Nl is the number of training points, µ̃ = 1
Nl

Nl∑
i=1

G(θi) is the sample mean of the model

response, and GPC\i is the PC surrogate constructed using all but the ith model realization.

From (10), it appears that Nl PCEs are needed to evaluate εLOO. However, in practice

a modified formulation for εLOO [38], independent of GPC\i is used; for an easy reference,

see [37, Eq. (1.27)]. Accuracy of the surrogate could also be assessed by evaluating the

relative `2-norm of the difference in predictions between the model and the surrogate (εL-2),
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Start

Create a cross-validation
test suite using pre-
allocated resources.

Select an appropriate
model output

Initialize: τ , τscreen,
smax, β, Ntotal = 0

Draw n1 samples {θk}n1
k=1

according to f(θ)

Construct regression-based sur-
rogate in full-space (FSS) using
(Ntotal+n1) model evaluations

Assess accuracy of FSS us-
ing the validation test suite

Is
FSS, sufficiently

accurate?

Parameter Screening
N

Is α small
enough?

Update: τ , τscreen, smax,

β; Input: {gk}Ntotal
k=1

N

Construct a reduced-
space surrogate (RSS)

Y

Test RSS accuracy using
evaluations at Ntotal &
the validation test suite

Stop

Y

Figure 1: Flow-diagram outlining the adaptive strategy for constructing reduced-space sur-
rogates.
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as follows:

εL-2 =

[
Nv∑
i=1

(G(θi)−GPC(ξ(θi)))
2

] 1
2

[
Nv∑
i=1

(G(θi))
2

] 1
2

. (11)

Here Nv is the number of sampling points in the full parameter space at which model eval-

uations are available; this, in the case of an RSS, is given by the augmented set of model

evaluations used for validation and screening. Accuracy of the surrogate could be further

investigated by comparing probability density functions (PDFs) of the model output based

on model evaluations in the full parameter space and the RSS predictions corresponding

to a large number of samples (say, 106 for a high-dimensional input space). However, in

realistic problems involving complex, compute-intensive simulations, constructing the PDF

based on model evaluations would be infeasible. A practical alternative would be to compare

a (normalized) histogram based on sparse model evaluations with the surrogate-based PDF

in order to gain some insight into the statistical quality of the surrogate.

Discussion on the proposed methodology. The amount of computational effort as-

sociated with the presented methodology can be mainly attributed to two steps: I. Parameter

Screening, and II. Constructing a converged RSS. Computational gains are realized in situ-

ations where constructing the surrogate in the full parameter space is more expensive than

the combined cost associated with these steps. Determining the optimal allocation of com-

putational resources for these steps, however, is not possible a priori. Hence, in the proposed

framework, we exploit the set of model evaluations used in parameter screening to simulta-

neously construct the FSS while keeping a track of its accuracy using the cross-validation

test suite. This would help address situations where significant dimension reduction is not

possible, and hence, constructing the RSS might result in a computational disadvantage. We

suggest using a small number of samples in the initial screening step (say, n1 = 5) and a

relatively large τ (say, O(10−1)) as a starting point with possible reduction in τ during sub-

sequent screenings. Pseudo-random sampling approaches such as Latin hypercube sampling

(LHS) and quasi Monte Carlo (QMC) could be used to generate samples in the input space.

Careful assessment and decision-making is required on whether or not to proceed with

the construction of the RSS at the end of each screening step. The user should account for
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factors such as the possible degree of dimension reduction, accuracy of the concurrent FSS,

and availability of computational resources.

The applicability of the proposed framework depends upon the choice of the model out-

put. Since the screening metric involves computation of partial derivatives in the full pa-

rameter space, the output must exhibit differentiable dependence on each parameter. It is

therefore likely that for a given application involving multiple outputs, the RSS can only be

constructed for a selected few, using the approach presented above. Hence, it is important

to assess the nature of the input-output relationship for a given model prior to implementing

the present framework.

Additionally, in some cases, the partial derivative of the output with respect to each

uncertain input is not available analytically. In these cases, one could use finite difference

(FD) to approximate the gradient as illustrated in 2. However, since FD requires model

evaluations at neighboring points, the underlying computational cost is expected to increase

by a factor, Np+1, with Np being the number of inputs. A possible, more efficient alternative

to FD, which might be suitable in some cases, involves the use of adjoints for gradient

computation [39]. In the adjoint approach, each gradient evaluation requires a solution of the

state equation (forward solve) and that of the corresponding adjoint equation; see e.g., [30–

32]. The adjoint method, however, requires the availability of an adjoint solver. Another

alternative for efficient gradient computation is the use of automatic differentiation [29].

Using the framework proposed in this section, we aim to construct a reliable surrogate in

the most efficient manner within the constraints of the computational budget. However, it

might be possible that for a given application, the RSS is not found to be sufficiently accurate.

In such a scenario, we suggest enriching the set of important inputs by incorporating the least

unimportant model input as determined after a series of screening steps, and re-constructing

the RSS. This process could be repeated depending upon the availability of resources and

the desired accuracy of the surrogate.
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4 Motivating Examples

In section 3, we presented a framework for constructing an RSS (if deemed advantageous)

by identifying unimportant parameters based on estimates of the screening metric, Ĉiµi, for

individual parameters. In this section, we motivate the proposed methodology by applying

it to two test problems, namely, the borehole function, and a semilinear elliptic PDE. Model

evaluations in these test problems are inexpensive. Therefore, we are able to compare the

relative importance of model parameters based on the screening metric (computed by sam-

pling the model) with those obtained from converged estimates of T (θi) (computed using

the surrogate constructed in the full parameter space (FSS)). Additionally, to illustrate the

computational gains, we compare convergence trends as a function of training runs for the

RSS and the FSS using εLOO in Eq. 10. Furthermore, as discussed earlier in section 3, we

compare PDFs of the model output, obtained using the RSS, the FSS, as well as true model

evaluations, for the purpose of verification.

4.1 Borehole function

The borehole function [40] is a benchmark reference problem in sensitivity analysis. It models

the discharge of water (Q) through a borehole in terms of geometrical and physical inputs:

Q =
2πTu(Hu −Hl)

ln(r/rw)
[
1 +

2LTu
ln(r/rw)r2wKw

+
Tu
Tl

] . (12)

The radius of influence, r is fixed at 3698.30 m whereas all other parameters in the right

hand side of (12) are considered as uncertain. Hence, Q = Q(θ) with

θ =
[
rw L Tu Hu Tl Hl Kw

]T
,

being the vector of uncertain parameters. Table 1 provides distributions of the uncertain

input parameters.

Table 1: Description and distributions of uncertain inputs in the borehole function given
by (12).
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Parameter Distribution

Borehole radius, rw (m) N (0.1,0.016)
Borehole length, L (m) U [1120,1680]
Transmissivity of upper aquifer, Tu (m2/yr) U [63070,115600]
Potentiometric head of upper aquifer, Hu (m) U [990,1110]
Transmissivity of lower aquifer, Tl (m2/yr) U [63.1,116]
Potentiometric head of lower aquifer, Hl (m) U [700,820]
Borehole hydraulic conductivity, Kw (m/yr) U [9855,12045]

Cheap function evaluations of the discharge Q(θ) enables construction of the FSS with

minimal effort. FSS predictions at a large set of MC samples in the input space are used to

obtain converged estimates of T (θi). Shown in Figure 2 (left) are estimates of these indices

corresponding to the uncertain parameters in the borehole function using 106 MC samples in

the input parameter space. These estimates are used to verify fidelity of parameter screening

based on the methodology presented in Section 3.

Figure 2: Left: Sobol’ total sensitivity index, T (θi) for uncertain parameters in the borehole

discharge function in (12). Right: Estimates of the screening metric (Ĉiµi), plotted against
number of samples. Also included in the legend are estimates of T (θi) in each case in the
legend.

In Figure 2 (right), we plot estimates of the screening parameter Ĉiµi for a wide range

of the number of samples used for approximating µi using (1). Estimates for Ĉiµi are found

to be in excellent agreement with T (θi) even when small number of samples (5–10) are

used. Consequently, the relative importance of uncertain parameters in the borehole function
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is found to be consistent with predictions based on the Sobol’ index. In the considered

intervals for the uncertain parameters, it is clear that the discharge is insensitive to Tu and

Tl. Moreover, the sensitivity to Kw is also small. We exploit these findings to reduce the

dimensionality of the problem: we can discount the variabilities in Tu, Tl, and Kw by fixing

them at their respective nominal values.

Our goal as discussed earlier is to gain computational advantage by constructing surro-

gates in a reduced input parameter space. To this end, we use LAR to construct PCEs in

5D and 4D spaces by fixing {Tu, Tl} in the former and additionally fixing Kw in the latter

at their respective mean values. In Figure 3 (left), we compare convergence of PCEs con-

structed in the full space (7D) with those constructed in the two reduced spaces (4D and

5D) using εLOO (Eq. 10).

Figure 3: Left: A comparison of order of the leave-one-out-error (εLOO) as a function of
number of regression samples used for constructing the PCE in 4, 5, and 7 dimensions.
Right: A comparison of PDFs of the discharge, Q, generated using 106 samples from the
marginal distributions of the uncertain parameters in each case.

As expected, it is observed that the PCE constructed in the 4D space converges at a

much faster rate. For instance, if a PCE with O(10−4) accuracy is sought, we need function

evaluations at only about 50 sample points in the 4D parameter space whereas the number

of samples needed in the full 7D space seems much higher. Latin hypercube sampling (LHS)

was used in each case. It must be pointed out that the error in Figure 3 (left) is not expected
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to decrease monotonically with the increase in sample size owing to the penalty term in the

regularized optimization problem in Eq. 8.

As discussed earlier in this section, the reduced-space PCE’s are verified for predictive

accuracy in a least-squares sense and a probabilistic sense. Estimates for εL-2 based on 50

samples in the validation test suite were found to be 0.0551 and 0.0112 for the 4D and

5D PCE’s, respectively. In other words, the 4D PCE is accurate within 5.52% and the 5D

PCE is accurate within 1.12% of predictions based on the borehole function. Note that εLOO

however, is lower in the case of 4D PCE (Figure 3). This illustrates the trade-off between

accuracy and computational efficiency for the present problem. Generally, the required level

of accuracy is problem dependent. The present framework allows for moving towards higher

fidelity reduced-space surrogates based on the ranking of the parameter sensitivities.

Figure 3 (right) illustrates a comparison of the PDFs of the discharge, Q obtained by

propagating 106 random samples through the 7D PCE in the original input parameter do-

main as well as the reduced-space PCEs constructed in 4 and 5 dimensions. A normalized

histogram plot using 1000 model evaluations in the validation test suite is also included. It

is evident from this plot that the PDFs agree quite favorably with each other as well as the

original model-based histogram with respect to the modal estimate as well as the uncertainty

associated with Q. Consequently, it can be said that the reduced-space PCE is verified in

a probabilistic sense. In other words, the mode as well as the uncertainty in the output is

reliably captured and predicted by the reduced-space PCE.

4.2 Semilinear elliptic PDE with random source term

We consider the following semilinear elliptic PDE:

−κ∆u+ cu3 = q in Ω,

u = 0 on ∂Ω.
(13)

Here Ω = (0, 1)× (0, 1), u is the state variable, and κ and c are coefficients of the diffusion

term and the nonlinear term in the above equation, respectively. We consider uncertainties

in κ, c, and the source term. The right hand side function q is defined by

q(x, y) =
N=8∑
i=1

αi sin

(
iπx

8

)
cos

(
iπy

8

)
, (14)
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where αi, i = 1, . . . , 8 are random coefficients. Hence, u = u(θ), where

θ =
[
κ c α1 α2 · · · α8

]T
is the vector of uncertain parameters. Distributions of the uncertain input parameters are

tabulated in Figure 4 (left). The solution of (13) for a fixed set of values of the uncertain

parameters is also illustrated.

θi Distribution

κ U [0.05,0.1]
c U [1.0,2.0]
αi U [0.0,4.0]

Figure 4: Left: Table providing distributions of the individual uncertain parameters in (13).
Right: Solution of the 2D semilinear elliptic PDE (13) using κ = 0.075, c = 1.5, and αi = 4.0

We aim to construct a reduced-space surrogate for the following QoI:

F(θ) =
1

|D|

∫
D

u(x;θ) dx, (15)

where D is the region [2/5, 3/5] × [2/5, 3/5] ⊂ Ω, and |D| denotes the area of D. While

this model is considerably more complex than the previous numerical examples, it can still

be solved efficiently. The equation was discretized using finite differences, and Newton’s

method was used to solve the resulting nonlinear system on a 100×100 2D cartesian grid. We

computed converged estimates of the Sobol total-effect index T (θi), reported in Figure 5 (left)

using FSS predictions at 106 MC samples in the input space. The FSS was constructed using

model predictions at 500 training points in the 10-dimensional input space. Corresponding

value of εLOO was found to be 9.729×10−4. Sensitivity predictions based on the screening

metric, Ĉiµi, plotted in Figure 5 (right), are found to be in close agreement with T (θi), even

for the case when N = 5. As N is increased from 5 to 20, estimates of the screening metric
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Figure 5: Left: Sobol’ total sensitivity index, T (θi) for uncertain parameters in the semi-

linear elliptic PDE (13). Right: Estimates of the screening metric (Ĉiµi) for each uncertain
parameter, obtained using N = 5, 10, 15, and 20 samples in the full parameter space.

are observed to converge. Based on the trends observed in Figure 5, it can be said that

the uncertainty in the QoI in (15) is largely dependent on c, α2, α3, α4, and α5. These

observations underscore the potential for computational gains by constructing an RSS in

the 5D parameter space. We illustrate the comparison of convergence characteristics of the

PCEs constructed in the full parameter space (10D) and the reduced space (5D) in Figure 6

(left). As expected, the RSS converges considerably faster. Using model evaluations at

90 sample points, εLOO is found to be two orders of magnitude smaller than that in the

case of full-surrogate (O(10−4) versus O(10−2)). Consequently, the computational effort for

constructing the RSS in the present test problem is expected to be much smaller.

Once again, we verify the accuracy of the RSS by estimating εL-2 using model evaluations

at 1000 independent MC samples in the 10D parameter space. The RSS was found to be

accurate within 5%. In order to bolster confidence in the RSS, we compare PDFs of the QoI

as well as a normalized histogram plot based on sparse model evaluations in the validation

test-suite, in Figure 6 (right). While the two PDFs are in favorable agreement, the modal

estimate and the spread in the QoI based on the histogram is also captured by them. Hence,

the RSS could be used with a reasonable degree of confidence to quantify the uncertainty in

F(θ) thereby leading to a computational advantage in this case.
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Figure 6: Left: Logarithm of εLOO is plotted against sample size for PCEs constructed in
10 and 5 dimensions to compare their convergence characteristics. Right: PDF of the QoI,
F(θ) in (13) is plotted using the full-surrogate and the reduced-space PC surrogate.

5 Application: H2/O2 Reaction Kinetics

The proposed framework in section 3 is implemented to the H2/O2 reaction mechanism

provided in [41]. The H2/O2 reaction is gaining a lot of attention as a potential source of

clean energy for applications such as transportation [42]. The mechanism comprises of 19

reactions including chain reactions, dissociation/recombination reactions, and formation and

consumption of intermediate species as provided below in Table 2.

The reaction rate for the ith reaction as a function of temperature is given as follows:

ki(T ) = AiT
ni exp(−Ea,i/RT ), (16)

where Ai is the pre-exponent, ni is the index of T , Ea,i is the activation energy corresponding

to the ith reaction, and R is the universal gas constant. The TChem [43] software package is

used to model homogeneous ignition at constant pressure for a range of initial conditions for

the fuel-oxidizer mixture. During the simulation, the fuel-oxidizer mixture goes through a

radical build-up phase followed by a sharp increase in temperature as heat is released during

the thermal runaway. We focus on quantifying the uncertainty in the ignition delay due to

uncertainty associated with the pre-exponent, Ai, for each reaction. The ignition delay is

defined as the inflection point on the temperature profile during the thermal runaway. The
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Reaction # Reaction

R1 H + O2 
 O + OH

R2 O + H2 
 H + OH

R3 H2 + OH 
 H2O + H

R4 OH + OH 
 O + H2O

R5 H2 + M 
 H + H + M

R6 O + O + M 
 O2 + M

R7 O + H + M 
 OH + M

R8 H + OH +M 
 H2O + M

R9 H + O2 + M 
 HO2 + M

R10 HO2 + H 
 H2 + O2

R11 HO2 + H 
 OH + OH

R12 HO2 + O 
 O2 + OH

R13 HO2 + OH 
 H2O + O2

R14 HO2 + HO2 
 H2O2 + O2

R15 H2O2 + M 
 OH + OH + M

R16 H2O2 + H 
 H2O + OH

R17 H2O2 + H 
 HO2 + H2

R18 H2O2 + O 
 OH + HO2

R19 H2O2 + OH 
 HO2 + H2O

Table 2: Reaction mechanism for H2/O2 from [41]
.
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total number of uncertain parameters in the present case is 19. The Ai’s are considered

to be uniformly distributed in the interval: [0.9A∗i , 1.1A
∗
i ]; A

∗
i being the nominal estimate

corresponding to the ith reaction. The set of nominal values used in the computations, for

parameters in (16) are provided in [41].

While the dimensionality of the problem is relatively moderate, constructing a surrogate

in the 19-dimensional parameter space could still be expensive. Hence, we explore the

possibility of constructing a reduced-space surrogate (RSS) using the framework presented

in section 3. In the present study, we focus on two scenarios: fuel(H2)-rich, and fuel(H2)-lean.

Consider the global reaction:

2H2 + O2 → 2H2O (17)

The equivalence ratio φ is defined as follows:

φ =
(MH2/MO2)obs
(MH2/MO2)st

(18)

The numerator in the right-hand-side represents the observed (obs) fuel-oxygen mass ratio

at a given condition and the denominator represents the stoichiometric (st) ratio of the same

quantity. Hence, φ = 1 at stoichiometric conditions. The equivalence ratio can be altered

by changing the amount of O2 in the mixture. In the case of a lean mixture, (17) can be

written as follows:

2H2 + αO2 → 2H2O + (α− 1)O2 (α > 1) (19)

Similarly, for the case when the mixture if fuel rich, (17) is modified as follows:

2H2 + αO2 → 2αH2O + 2(1− α)H2 (α < 1) (20)

Eqs. (19) and (20) can be generalized as follows:

2H2 + αO2 → 2 min(1, α)H2O + max(α− 1, 0)O2 + max(0, 2− 2α)H2 (21)

From the above set of chemical equations, the relationship between φ and α can be easily

obtained as φ = 1
α

. Since φ > 1 corresponds to a rich mixture, and φ < 1 corresponds to a

lean mixture, we consider φ = 2.0 and 0.5 to investigate the two scenarios respectively.

We apply the parameter screening algorithm with the following parameters: τscreen, smin,

smax, β are fixed at 0.2, 3, 10, and 1.0 respectively for both cases. Additionally, the value of

22



τ is considered to be 1.0×10−17 and 5.0×10−17 in the rich and lean case respectively. Such a

small value of τ for this application is a consequence of the nature of convergence exhibited

by the sensitivity measures. Moreover, the screening procedure is carried out for atleast smin

number of iterations in order to bolster our confidence in the estimates.

Following the steps outlined in the flow-diagram in Figure 1, model evaluations are ini-

tially generated at n1 = 5 samples. The evaluations are used to construct a regression-based

surrogate in the full-space. As expected, the surrogate is found to be highly inaccurate.

Moreover, unlike the test problems in section 4, we do not estimate the Sobol total-effect

sensitivity indices in the interest of following the overall framework closely. Hence, we pro-

ceed to the screening step to estimate the screening metric for the uncertain pre-exponents,

Ai’s. Results are plotted below in Figure 7 (top row) for both cases. Furthermore, we

illustrate the decay in the value of ∆µs with iterations in Figure 7 (bottom row).

The screening metric estimates in the above plots are observed to converge with only a

few samples (5–10). Moreover, out of the 19 uncertain pre-exponents, only A1, A9, A15, and

A17 seem to be important in the fuel-rich case, whereas, only A1, A9, and A15 seem important

in the fuel-lean case, based on the value of τscreen. These observations are indicative of the

potential for significant reduction in the dimensionality of this problem. A reduced-space

surrogate constructed using the proposed framework could thus lead to large computational

gains. The decay of ∆µs with iterations is expected and builds our confidence in the screening

procedure in both cases.

A reduced-space surrogate (RSS) was constructed in 4D for the fuel-rich case, and in 3D

for the fuel-lean case. Figure 8 illustrates a comparison of convergence characteristics for the

PCEs constructed in the full-space and the reduced-space for the fuel-rich case. Note that the

plot is generated using the implementation of least angle regression (LAR) for sparse PCEs

in UQLab. The leave-one-out cross validation error is observed to drop initially and plateau

with the increase in training points for the 19-dimensional PCE. However, in the case of

4-dimensional PCE, the error exhibits a monotonic behavior and is found to be smaller than

O(10−5) at 60 training points. Clearly, the RSS shows a much faster rate of convergence.

Similar trends (not included) were observed in the fuel-lean case.

Based on εL-2 estimates using the cross-validation set, the RSS was found to be accurate
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Figure 7: Top: Estimates of Ĉiµi for Ai’s in the case of fuel-rich mixture (left) and fuel-lean
mixture (right). Bottom: The value of ∆µs during three iterations within the screening step
are plotted for the case of fuel-rich mixture (left) and fuel-lean mixture (right).
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Figure 8: A semi-log plot of εLOO as a function of number of model evaluations in the full-
space (19D) and the reduced-space (4D) for the fuel (H2)-rich case i.e. φ = 2.0.

within 1.8% in the fuel-rich case, and within 3.1% in the fuel-lean case. Model evaluations at

1000 samples in the test suite are further used to plot a normalized histogram of the ignition

time in Figure 9. To verify the accuracy of the RSS in a probabilistic-sense, we compare the

histogram plot with a PDF of ignition time using surrogate predictions at 106 samples in

the reduced space in both cases. Clearly, the RSS captures the spread as well as the modal

Figure 9: A normalized histogram based on model evaluations at 1000 samples is plotted
along with a PDF of ignition delay for the fuel-rich case (left) and the fuel-lean case (right).

estimate of the ignition delay in both scenarios. Hence, the proposed framework has enabled
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significant dimension reduction and construction of an accurate RSS for multiple scenarios

pertaining to the H2/O2 reaction mechanism.

6 Summary and Conclusion

In this work, we have presented an efficient and practical approach for constructing a reduced-

space surrogate for scientific and engineering applications. Dimension reduction is accom-

plished by identifying uncertain parameters that contribute relatively less towards the uncer-

tainty in the quantity of interest. These parameters deemed as unimportant are determined

using a screening metric (5) involving derivative-based sensitivity measures. Initially, the

metric is estimated using model evaluations at a small set of samples in the parameter

domain. These estimates are refined by subsequent enrichment of the sample set during

the screening procedure presented in Algorithm 1. The outcome of parameter screening is

assessed for the scope of dimension reduction. In a favorable scenario, a reduced-space surro-

gate (RSS) is constructed. The RSS is tested for accuracy in a least-squares sense as well as a

probabilistic sense using a cross-validation test suite. In the proposed framework, a surrogate

in the full-space (FSS) is constructed in tandem with parameter screening using the available

set of model evaluations. Both, RSS and FSS are constructed using regression-based sparse

PCEs. Simultaneous construction of the FSS ensures that the computational effort associ-

ated with the proposed framework does not overshoot the effort required to construct the

FSS directly. Hence, the RSS is constructed only in situations where computational gains

are expected.

Parameter screening methodology was implemented to low-to-moderate dimensional test

problems and an accurate RSS was constructed to demonstrate potential for computational

gains in each case. Furthermore, the overall framework was implemented to a relatively

higher dimensional application involving kinetics of the H2/O2 reaction mechanism. Signif-

icant dimension reduction (19 dimensions to 3 or 4 dimensions) was accomplished for two

different scenarios involving a fuel-rich and a fuel-lean mixture. In both cases, the resulting

RSS was able to capture the input-output relationship as well as the uncertainty in the quan-
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tity of interest with reasonable accuracy. Additional highlights of the proposed framework

are as follows:

1. Although PCEs were used in this work, the proposed framework is agnostic to the

choice of the surrogate model construction method.

2. Substantial computational gains are expected in situations involving compute-intensive

simulations even if the scope for dimension reduction is small.

3. Significant gains can be realized in situations where multiple surrogates need to be

constructed as illustrated in the kinetics application. Other possible scenarios may

include inverse problems involving parameter estimation in a Bayesian setting.

4. Dimension reduction based on the proposed methodology could help reduce the effort

required for model calibration wherein only the important parameters are calibrated.

Based on the results presented for the test problems and the kinetics application, the

proposed framework seems quite promising in its potential for identifying the unimportant

model inputs. These observations could be exploited to construct efficient model surrogates

in a reduced input space. However, it is important to remain cognizant about the limitations

of the framework as well. For instance, the quantity of interest is required to be differentiable

with respect to each parameter in the considered domain. This condition once satisfied,

enhances the accuracy of the PCE-based surrogates as well. Additionally, the proposed

framework does not account for the existence of possible correlations between the uncertain

inputs of the model. However, while the assumption of independent inputs is not always

justified, in many cases, correlations between inputs are not well understood a priori, and

assuming mutual independence could be reasonable at least in initial screening using DGSMs.

On the other hand, if approximate correlations are known, we recommend using a Gaussian

process or Kriging-based surrogate since it provides a means for incorporating the correlation

between inputs. Implementation to applications involving strongly correlated parameters

could enhance the applicability of the proposed framework. We consider that to be a potential

direction for future studies related to this work.
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