Skip to main content
Log in

An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An efficient numerical method for solving a symmetric positive definite second-order cone linear complementarity problem (SOCLCP) is proposed. The method is shown to be more efficient than recently developed iterative methods for small-to-medium sized and dense SOCLCP. Therefore it can serve as an excellent core computational engine in solutions of large scale symmetric positive definite SOCLCP solved by subspace projection methods, solutions of general SOCLCP and the quadratic programming over a Cartesian product of multiple second-order cones, in which small-to-medium sized SOCLCPs have to be solved repeatedly, efficiently, and robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Equivalently, \((B-C)+(B-C)^{{{\,\mathrm{T}\,}}}\) is symmetric positive definite.

  2. mexeig is available at: www.math.nus.edu.sg/~matsundf/.

  3. LAPACK’s subroutine dsyevd computes all eigenvalues, and optionally, eigenvectors of a real symmetric matrix. It uses the divide-and-conquer algorithm when eigenvectors are desired. Through its MATLAB interface via mexeig, it computes the eigendecomposition of a symmetric matrix much faster than MATLAB’s eig.

  4. http://cvxr.com/cvx.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Progr. 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Demmel, J.W., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Auslender, A.: Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone. Opt. Methods Soft. 18, 359–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  5. Brás, C.P., Fischerb, A., Júdice, J.J., Schönefeldb, K., Seifert, S.: A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem. Appl. Math. Comput. 294, 36–48 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bunch, J.R., Nielsen, C.P., Sorensen, D.C.: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Progr. 104, 293–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.D., Sun, D.F., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cuppen, J.J.M.: A divide and conquer method for the symmetric eigenproblem. Numer. Math. 36, 177–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandes, L.M., Fukushima, M., Júdice, J.J., Sherali, H.D.: The second-order cone eigenvalue complementarity problem. Opt. Methods Soft. 31, 24–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldfarb, D., Scheinberg, K.: Product-form cholesky factorization in interior point methods for second-order cone programming. Math. Progr. 103, 153–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gowda, M.S., Sznajder, R.: Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31, 109–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gowda, M.S., Sznajder, R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18, 461–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hayashi, S., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175, 335–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kong, L.C., Sun, J., Xiu, N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, R.-C.: Solving secular equations stably and efficiently. Technical Report UCB//CSD-94-851, Computer Science Division, Department of EECS, University of California at Berkeley (1993)

  22. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Application of second-order cone programming. Linear Algebra Appl. 284(2), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loewy, R.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49(2), 375–392 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, Z.Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  26. Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  28. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  29. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Opt. Methods Soft. 11, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3-a MATLAB software package for semidefinite programming. Opt. Methods Soft. 11, 545–581 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Progr. 95, 189–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, W.H., Yuan, X.M.: The GUS-property of second-order cone linear complementarity problems. Math. Progr. 141, 295–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, W.H., Zhang, L.-H., Shen, C.: Solution analysis for the pseudomonotone second-order cone linear complementarity problem. Optimization 65(9), 1703–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, W.H., Zhang, L.-H., Shen, C.: On the range of the pseudomonotone second-order cone linear complementarity problem. J. Optim. Theory Appl. 173(2), 504–522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, L.-H., Shen, C., Yang, W.H., Júdice, J.J.: A Lanczos method for large-scale extreme Lorentz eigenvalue problems. SIAM J. Matrix Anal. Appl. 39(2), 611–631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, L.-H., Yang, W.H.: An efficient algorithm for second-order cone linear complementarity problems. Math. Comput. 83, 1701–1726 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, L.-H., Yang, W.H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24(3), 1178–1205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, L.-H., Yang, W.H., Shen, C., Li, R.-C.: A Krylov subspace method for large scale second order cone linear complementarity problem. SIAM J. Sci. Comput. 37(4), A2046–A2075 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their helpful comments and suggestions that improve the presentation. Wang is supported in part by the National Natural Science Foundation of China: NSFC-11461046, NSF of Jiangxi Province: 20161ACB21005 and 20181ACB20001, Zhang is supported in part by the National Natural Science Foundation of China: NSFC-11671246 and NSFC-91730303, and R.-C. Li is supported in part by NSF Grants: CCF-1527104 and DMS-1719620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, X., Zhang, LH. et al. An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem. J Sci Comput 79, 1608–1629 (2019). https://doi.org/10.1007/s10915-019-00907-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00907-4

Keywords

Mathematics Subject Classification

Navigation