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Abstract In the present paper an optimal control problem

governed by the heat equation is considered, where contin-

uous as well as discrete controls are involved. To obtain the

discrete controls the branch-and-bound method is utilized,

where in each node a relaxed control constrained optimal

control problem has to be solved involving only continu-

ous controls. However, the solutions to many relaxed op-

timal control problems have to be computed numerically.

For that reason model-order reduction is applied to speed-up

the branch-and-bound method. In this work the method of

proper orthogonal decomposition (POD) is used. A posteri-

ori error estimation in each node ensures that the calculated

solutions are sufficiently accurate. Numerical experiments

illustrate the efficiency of the proposed strategy.

1 Introduction

In the present article an optimal control problem is consid-

ered which is motivated by energy efficient building oper-

ation. Energy efficiency is nowadays one driving force for

achieving innovations in improved system and process oper-

ation. Within the European Union, the building sector is the

largest energy consumer accounting for 40% of the overall

energy consumption with a fraction of 60% referring to res-

idential buildings [7]. Similar numbers are available for the

United States, where buildings contribute to about 40% of

the total energy expenditure with a 55% fraction accounting

for residential buildings. According to the National Science

and Technology Council [27], a 70% reduction in building

energy consumption is equivalent to the elimination of the
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total energy expenditure of the US transport sector. Assum-

ing persistent growth rates it can be expected that buildings

will by 2025 be the largest world wide energy consumer and

will by 2050 surpass the energy consumption of industry and

transportation [27,32]. During the life cycle of a building,

84% of provided energy are consumed for the building op-

eration (12% for construction, 4% for maintenance) [31]. As

a result, the proper adjustment of the building operation en-

ables a significant saving of primary and secondary energy.

For this, automation, control and mathematical optimization

are identified as key ingredients to achieve energy efficiency

[9].

Motivated by the importance of energy efficient build-

ing operation, we are discussing a related, but simplified

problem in the present paper. The goal is to reach a certain

desired temperature distribution in a room while choosing

proper insulation materials for the wall boundaries as well

as an optimal underfloor heating strategy. The temperature

is governed by the heat equation, where we do not include

convection for the moment. Since the insulation material has

to be chosen from a discrete set and the heating is described

by a time-continuous control, the optimal control involves

continuous and discrete controls. These kind of problems

are considered in [10,11,23], for instance, for ordinary dif-

ferential equations. For partial differential equations (PDEs)

we refer to the note [20]. In particular, mixed-integer prob-

lems for hyperbolic PDEs are considered, e.g., for problems

for gas transportation systems [14] and traffic flow [15,16].

The new contribution of this work is the application of

reduced-order modeling, which has turned out to be an ef-

ficient method for PDE-constrained optimization; cf. [4,22,

24]. We apply the method of proper orthogonal decompo-

sition (POD) to derive reduced-order models for the PDE-

constrained mixed-integer optimal control problem. To en-

sure the accuracy of the reduced-order approximation, a pos-

teriori error estimation is utilized. Here, we can rely on pre-
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vious work; cf [12,13,26,29]. In order to tackle numerically

the mixed-integer, time-dependent constraints, a branch-and-

bound algorithm was implemented; see [19] and, e.g., [30].

The idea is based on solving a set of correlated relaxation

problems by omitting the integrality conditions and comput-

ing numerically many optimal control problems involving

only continuous free variables.

The paper is organized as follows: In Section 2 we intro-

duce the mixed-integer optimal control problem and review

some theoretical results. The optimal control problem can

be formulated as a pure control constrained minimization

problem. This is explained in Section 3. For the numerical

solution a Galerkin discretization is introduced in Section 4.

In Section 5 the reduced-order modeling based on POD is

described, while the branch-and-bound method is discussed

in Section 6. Section 7 is devoted to numerical experiments

utilizing real weather data from Constance (Germany) and

Lisbon (Portugal). Finally, we draw conclusions in the last

section.

Notation: For two vectors x1,x2 ∈ R
n, we write x1 ≤ x2

if x1
i ≤ x2

i holds for i = 1, ...,n. For two functions f 1, f 2 ∈
Lp(0,T ;Rn) with p ∈ [1,∞], we write f 1 ≤ f 2 if f 1(t) ≤
f 2(t) holds in R

n for almost all t ∈ (0,T ).

2 Problem formulation

We consider a (horizontal cross-section of a) room repre-

sented by a domain Ω ⊂ R
d (d ∈ {2,3}) over a time period

(0,T ) with final time T > 0. Let Ω as well as its boundary

Γ = ∂Ω be split into disjoint subdomains, i.e.,

Ω =
Nc⋃
j=1

Ω j and Γ =
Ni⋃
j=0

Γj. (1)

In (1) each Ω j ( j = 1, ...,Nc) represents a portion of the

building that can be heated individually over time, whereas

each Γj ( j = 1, ...,N i) is a portion of an exterior wall which

has to be equipped with insulation material. The boundary

set Γ0 represents the interior walls of the buildings. Let Q :=
(0,T )×Ω denote the space-time cuboid, y= y(t,x) the tem-

perature inside the building and Σ := (0,T )×Γ . For the def-

inition of Lebesgue and Sobolev spaces we refer the reader

to [8], for instance. We introduce the problem of maintain-

ing a certain desired temperature yd ∈ L2(Q) as closely as

possible while at the same time minimizing the heating and

insulation costs:

J(y,uc,ui) = αQ

2

∫∫
Q
|y(t,x)− yd(t,x)|2 dxdt

+ 1
2

Nc

∑
j=1

αc
j

∫ T

0
|ucj(t)|2 dt + 1

2

Ni

∑
j=1

α i
j |uij − ûij|2

(2a)

Here,

uc =
(
uc1, . . . ,u

c
Nc

) ∈ L2(0,T ;RNc
)

and

ui =
(
ui1, . . . ,u

i
Ni

)
are the controls of the system and stand for the heating over

time and certain choices of insulation material at the wall,

respectively. The parameters αc ∈R
Nc

+ and α i ∈R
Ni

+ are the

costs associated with these controls, where we set R+ :=

{s ∈ R |s > 0}. The reference control ûi ∈ R
Ni

represents

the cheapest insulation material we could possibly choose.

It will become apparent after the model has been introduced

that smaller values of ui correspond to better insulation ma-

terial, so we will only admit controls which are component-

wise smaller than ûi = uib and penalize the deviation from

this reference control. The non-negative scalar αQ repre-

sents the significance we attribute to the temperature with

respect to the investment costs and can be chosen to weight

these two incomparable factors against each other.

The room temperature is described in a simplified man-

ner by a linear heat equation:

yt(t,x)−κΔy(t,x) =
Nc

∑
j=1

ucj(t)χ
c
j (x), (t,x) ∈ Q

κ
∂y
∂n

(t,s) =
Ni

∑
j=1

uijχ
i
j(t,s), (t,s) ∈ Σ

y(0,x) = y◦(x), x ∈ Ω

(2b)

Here, κ ∈ R+ denotes a diffusion coefficient. The shape

functions χc
j ∈ L∞(Ω) ( j = 1, ...,Nc) take non-zero values

only on the subdomain Ω j. Similarly, the functions χ i
j ∈

L∞(Σ) ( j = 1, ...,N i) take non-zero values on the boundary

sets Σ j := (0,T )×Γj ( j = 1, ...,N i). The latter need to be

time-dependent in order to model the transient behavior of

the outside temperature. Note that we have imposed homo-

geneous Neumann boundary conditions on the interior walls

Γ0, which translates to ideal insulation. Finally, we assume

that y◦ ∈ L∞(Ω) is a given initial temperature.

In addition to (2a) and (2b), we introduce bilateral con-

straints for the controls. We choose the control space U :=

L2(0,T ;RNc
)×R

Ni
endowed by the usual Hilbert space prod-

uct topology. Furthermore, we are given lower and upper

bounds uca, ucb ∈ L2(0,T ;RNc
) and uia, uib ∈R

Ni
with uca ≤ ucb

and uia ≤ uib, respectively. Then, we demand that

(uc,ui) ∈ Uad(uia,u
i
b) (2c)

where the admissible set is defined as

Uad(a,b) =
{
(vc,vi) ∈ U

∣∣uca ≤ vc ≤ ucb, a≤ vi ≤ b
}
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for vectors a,b ∈ R
Ni

satisfying a ≤ b. We incorporate the

bounds for the boundary controls ui into the notation of the

admissible set because these will vary throughout the branch-

and-bound method. This is due to the fact that we consider

the case, where there is only a discrete number of insulation

materials to choose from for the controls ui. We represent

this by the following integrality constraint for the boundary

variable:

(uc,ui) ∈ Uint :=
{
(vc,vi) ∈ U

∣∣vi ∈ Z
Ni
}

(2d)

We call (2a)-(2d) the Mixed-Integer Optimal Control Prob-
lem (MIOCP).

3 The reduced optimal control problem

We introduce the spaces H := L2(Ω) and V :=H1(Ω) which

form a Gelfand triple V ↪→ H = H ′ ↪→ V ′, where each em-

bedding is continuous and dense; cf. [8]. It is well-known

[6] that the space

W (0,T ) = L2(0,T ;V )∩H1(0,T ;V ′)

is a Hilbert space endowed with the inner product

〈ϕ,φ〉W (0,T ) =
∫ T

0
〈ϕt(t),φt(t)〉V ′ + 〈ϕ(t),φ(t)〉V dt

for ϕ,φ ∈V . We call y ∈W (0,T ) a weak solution to (2b) if

it holds for all ϕ ∈V and almost all t ∈ (0,T ):

〈yt(t),ϕ〉V ′×V +κ
∫

Ω
∇y(t,x) ·∇ϕ(x)dx =

Nc

∑
j=1

ucj(t)
∫

Ω
χc

j (x)ϕ(x)dx+
Ni

∑
j=1

uij

∫
Γ

χ i
j(t,s)ϕ(s)ds

(3a)

as well as

y(0) = y◦ in H (3b)

In (3a) we denote by 〈· , ·〉V ′×V the dual pairing between

V and its dual space V ′. It is known [6,28] that (3) ad-

mits a unique solution y ∈ Y := W (0,T ) for every control

u = (uc,ui)∈U. Moreover, there is an affine-linear, continu-

ous control-to-state operator S : U→ Y, where y = Su solves

(3) for u ∈U. The operator S has the structure Su = S0u+ ŷ,

where S0 : U→ Y is a linear, bounded operator which maps

a control u ∈ U to the solution of (3) with y◦ = 0. Further,

ŷ ∈W (0,T ) is the solution to (3) with u = 0.

The introduction of the control-to-state operator S and

the admissible set Uad allows us to rewrite (MIOCP) as a

minimization problem in the control variable only:

min Ĵ(u) := J(Su,u) subject to (s.t.) u ∈ Uint
ad (P̂)

with the admisible set Uint
ad = Uad(uia,u

i
b)∩Uint.

Theorem 1 Problem (P̂) admits a unique solution u ∈ Uint
ad .

Proof First of all, let us observe that

Uint
ad =

{
(uc,ui) ∈ U

∣∣uc ∈ [uca,u
c
b],u

i ∈ [uia,u
i
b]∩Z

Ni
}

where uc ∈ [uca,u
c
b] stands for

uca(t)≤ uc(t)≤ ucb(t) in R
Nc

for almost all t ∈ [0,T ]

and the set [uia,u
i
b]∩Z

Ni
is obviously finite. It therefore fol-

lows directly that

min
u∈Uint

ad (u
i
a,uib)

Ĵ(u) =

min
ui∈[uia,uib]∩ZNi

[
min

uc∈[uca,ucb]

{
Ĵ(u)

∣∣u = (uc,ui)
}]

︸ ︷︷ ︸
=:(Q̂ui )

Here, (Q̂ui) is a problem in which the boundary variable ui

is fixed and only the distributed variable uc may vary. It is

then well-known [28] that each linear-quadratic subproblem

(Q̂ui) admits a unique minimizer uc(ui) ∈ [uca,u
c
b] such that

(P̂) has the unique solution

u = argmin
{

Ĵ
(
uc(ui),ui

)∣∣ui ∈ [uia,u
i
b]∩Z

Ni
}

Note that the proof of Theorem 1 could be utilized for

the numerical solution of (P̂): By iterating over all possible

values ui ∈ [uia,u
i
b]∩Z

Ni
, we could solve the problem (Q̂ui)

and then pick the minimal function value. However, this is

generally a bad idea since the computational effort grows

very quickly with the cardinality of the set [uia,u
i
b]∩Z

Ni
and

will not be acceptable but for the most simple of cases. In

Section 6 we will present a better alternative.

4 Galerkin discretization of the state equation

System (3) represents a problem posed in infinite-dimen-

sional function spaces. It is solved in practice by a discretiza-

tion method. Given linearly independent spatial basis func-

tions ϕ1, . . . ,ϕm ∈V , the space V is replaced by an m-dimen-

sional subspace V h = span{ϕ1, ...,ϕm}. We endow V h with

the V -topology. Since V h is of finite dimension, V h can be

identified with (V h)′ so we have an isomorphism

L2(0,T ;V h)∩H1(0,T,(V h)′) ∼= H1(0,T,V h)

A Galerkin method is employed to replace the infinite-di-

mensional problem (3) by a finite-dimensional version for

almost all t ∈ (0,T ). Typically, m is a very large number.

Thus, we refer to the solution of the resulting system as a

high-fidelity solution: A function yh ∈ H1(0,T ;V h) is called

a high-fidelity solution to (3) if it holds for every ϕh ∈V h
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〈yh
t (t),ϕ

h〉V ′×V +κ
∫

Ω
∇yh(t,x) ·∇ϕh(x)dx =

Nc

∑
j=1

ucj(t)
∫

Ω
χc

j (x)ϕ
h(x)dx+

Ni

∑
j=1

uij

∫
Γ

χ i
j(t,s)ϕ

h(s)ds
(4a)

as well as

yh(0) = Phy◦ (4b)

where Ph : H →V h is a linear projection operator.

Example 1 Let us present a possible choice for the operator

Ph. For any w ∈ H the element vh = Phw ∈V h is given as

〈vh,ϕh
i 〉H = 〈w,ϕh

i 〉H (i = 1, . . . ,m)

Utilizing the representation vh = ∑m
j=1 vh

jϕh
j ∈V h the coeffi-

cient vector vh = (vh
1, . . . ,v

h
m)

� ∈R
m is uniquely determined

as the solution to the linear system

Mhvh = wh

with the mass matrix Mh = ((〈ϕh
j ,ϕh

i 〉H)) ∈ R
m×m and the

right-hand side wh = (〈w,ϕh
1 〉H , . . . ,〈w,ϕh

m〉H)
� ∈ R

m. ♦

It follows by the same arguments as for (3) that there

exists a unique solution yh ∈ H1(0,T ;V h) to (4). In addi-

tion, there is an affine-linear, continuous control-to-state op-

erator Sh : U → Y, where yh = Shu solves (4) for u ∈ U.

Again, we introduce the linear and bounded operator Sh
0 :

U → H1(0,T ;V h) ⊂ Y which maps a control u ∈ U to the

solution of (4) with y◦ = 0 and ŷh ∈ H1(0,T ;V h) is the so-

lution to (4) with u = 0.

In the numerical realization (P̂) is replaced by the fol-

lowing discretized minimization problem

min Ĵh(u) := J(Shu,u) s.t. u ∈ Uint
ad (P̂h)

To solve (P̂h) we apply the branch-and-bound method; cf.

Section 6. This requires to solve many relaxed optimal con-

trol problems of the following type

min Ĵh(u) s.t. u ∈ Uad(a,b) (P̂h
ab)

where no integrality condition is present and the vectors a,

b belong to [uia,u
i
b] ⊂ R

Ni
. It follows that the reduced cost

Ĵh – considered as a function on U – is continuously Fréchet

differentiable; cf. [28]. Its gradient ∇Ĵh(u) at a point u =
(uc,ui) ∈ U is given as

∇Ĵh(u) =

(
∇cĴh(u)

∇iĴh(u)

)
∈ U (5)

In (5) we use the notation

∇cĴh(u) =

⎛⎜⎝ αc
1 uc1(·)+

∫
Ω χc

1(x)ph(·,x)dx
...

αc
NcucNc(·)+ ∫

Ω χc
Nc(x)ph(·,x)dx

⎞⎟⎠

and

∇iĴh(u) =

⎛⎜⎝ α i
1(u

i
1 − ûi1)+

∫ T
0

∫
Γ χ i

1(x)ph(t,x)dxdt
...

α i
Ni(uiNi − ûiNi)+

∫ T
0

∫
Γ χ i

Ni(x)ph(t,x)dxdt

⎞⎟⎠
where the dual variable ph ∈ H1(0,T ;V h) satisfies the dual

or adjoint problem

−〈ph
t (t),ϕ

h〉V ′×V +κ
∫

Ω
∇ph(t,x) ·∇ϕh(x)dx =∫

Ω
αQ(yh(t,x)− yd(t,x)

)
ϕh(x)dx ∀ϕh ∈V h

(6a)

as well as

ph(T ) = 0 (6b)

with yh = Shu. Using similar arguments as for (3) it can be

shown that (6) has a unique solution ph for any u ∈ U. An-

other way to write the gradient is by using the solution op-

erators Sh and Sh
0. In particular, we have the structure

∇Ĵh(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αc
1 uc1(·)

...

αc
NcucNc(·)

α i
1(u

i
1 − ûi1)
...

α i
Ni(uiNi − ûiNi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+αQSh∗

0 (Shu− yd) (7)

where Sh∗
0 : W (0,T )→U is the adjoint operator of Sh

0 : U→
W (0,T ). From (7) we can immediately see that Ĵh is even

twice Fréchet differentiable with constant second derivative

(∇2Ĵh)v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αc
1 vc1(·)

...

αc
NcvcNc(·)
α i

1vi1
...

α i
NiviNi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+αQSh∗

0 Sh
0v (8)

From (8) it follows directly that ∇2Ĵh is uniformly coercive

with

〈(∇2Ĵh)v,v〉U ≥ α ‖v‖2
U

where

α = min
{

αc
1 , . . . ,α

c
Nc ,α i

1, . . . ,α
i
Ni

}
> 0 (9)

Since (P̂h
ab) is a linear-quadratic optimal control problem

with bilateral constraints. Moreover, Ĵh is strictly convex

and Uad(a,b) is a convex set. Hence, there exists a unique
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minimizer uab ∈ Uad(a,b). Further, uab satisfies the first-

order sufficient optimality conditions

〈∇Ĵh(uab),u−uab〉U ≥ 0 for all u ∈ Uad(a,b) (10)

Suppose that û ∈ Uad(a,b) be an arbitrarily admissible con-

trol with û �= uab. Then, û does not satisfy (10). However,

there exists a perturbation function ξ = (ξ c,ξ i)∈U (cf. [21]

and [1,5]) such that

〈∇Ĵh(û)+ξ ,u− û〉U ≥ 0 for all u ∈ Uad(a,b) (11)

The function ξ can be computed as stated in the next theo-

rem.

Theorem 2 Let û=(ûc, ûi)∈Uad(a,b) be an arbitrary con-
trol satisfying û �= uab. We define ξ (û) = (ξ c(û),ξ i(û)) ∈ U

by

ξ c
j (û)(t)

=

⎧⎨⎩
max{0,−(∇cĴh(û)) j(t)} if ûcj(t) = (uca) j(t)
min{0,−(∇cĴh(û)) j(t)} if ûcj(t) = (ucb) j(t)
−(∇cĴh(û)) j(t) otherwise

(12a)

for j = 1, . . . ,Nc and

ξ i
j(û) =

⎧⎪⎪⎨⎪⎪⎩
0 if a j = b j
max{0,−(∇iĴh(û)) j} if ûij = a j

min{0,−(∇iĴh(û) j} if ûij = b j

−(∇iĴh(û) j otherwise

(12b)

for j = 1, . . . ,N i. Then, ξ (û) satisfies (11) and the a posteri-
ori error estimator holds

‖û−uab‖U ≤ ΔU(û) =
1

α
‖ξ (û)‖U (13)

with the coercivity constant α from (9).

Proof First of all, it holds for every v ∈ U:

〈∇Ĵh(û)+ξ (û),v− û〉U

=
Nc

∑
i=1

∫ T

0
(∇cĴh(û)(t)+ξ c(û)(t))i(vci (t)−uci (t))dt

+
Ni

∑
j=1

(∇iĴh(u)+ξ i(u)) j(vij −uij)≥ 0

directly from Definition (12). For more details we refer the

reader to [29]. By especially choosing v = u and adding it to

(10), we obtain

0 ≤ 〈∇Ĵh(u), û−u〉U+ 〈∇Ĵh(û)+ξ (û),u− û〉U
=−〈∇Ĵh(û)−∇Ĵh(u), û−u〉U−〈ξ (û), û−u〉U

Now we utilize the fact that Ĵh is twice Fréchet differentiable

and apply the mean value theorem, resulting in

0 ≤−〈(∇2Ĵ)(û−u), û−u〉+ |〈ξ (û), û−u〉U|
≤ −α ‖u−u‖2

U+‖ξ (û)‖U‖û−u‖U
Dividing by ‖û − u‖U > 0 and rearranging the inequality

results in (13) we conclude the proof. �

5 Reduced-order modeling

To solve (P̂h
ab) many realizations of the operator Sh are nec-

essary. For this reason we make use of a reduced-order ap-

proach, where we replace (4) by a low-dimensional reduced-

order model (ROM). In this work we utilize the proper or-

thogonal decomposition (POD) method to compute the ROMs;

cf. [18].

5.1 The POD method

Assume that we have chosen a control u ∈ Uad(a,b) and

we would like to build a localized surrogate model which

is highly accurate for the data associated with this control.

Let yh = Shu and ph denote the associated solutions to (4)

and (6), respectively. Then we consider the linear space of

snapshots

Vh = span
{

yh(t), ph(t)
∣∣ t ∈ [0,T ]

}⊂V h ⊂V

with d= dimVh ≤ m.

Remark 1 Note that not only the state but also the adjoint

is included in the snapshot set. This is motivated by conver-

gence results stated in [13,17], for example. Moreover, time

derivatives are not added to the snapshot set thanks to the

a-priori error analysis carried out in [25] and [13]. ♦

For any finite � ≤ d we are interested in determining a

POD basis of rank � which minimizes the mean square er-

ror between yh(t), ph(t) and their corresponding �-th partial

Fourier sums in the resulting subspace on average in [0,T ]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min

∫ T

0

∥∥∥yh(t)−
�

∑
i=1

〈yh(t),ψh
i 〉V ψh

i

∥∥∥2

V
dt

+
∫ T

0

∥∥∥ph(t)−
�

∑
i=1

〈ph(t),ψh
i 〉V ψh

i

∥∥∥2

V
dt

s.t. {ψh
i }�i=1 ⊂V h, 〈ψh

i ,ψ
h
j 〉V = δi j (1 ≤ i, j ≤ �)

(P�)

A solution {ψh
i }�i=1 to (P�) is called POD basis of rank �. Let

us introduce the linear, compact, selfadjoint and nonnegative

operator Rh : V →V h by

Rhψ =
∫ T

0
〈yh(t),ψ〉V yh(t)+ 〈ph(t),ψ〉V ph(t)dt

Then, it is well-known (cf. [13]) that a solution {ψh
i }�i=1 to

(P�) is given by the eigenvectors associated with the � largest

eigenvalues of Rh:

Rhψh
i = λ h

i ψh
i (1 ≤ i ≤ �), λ h

1 ≥ . . .≥ λ h
� ≥ λ h

�+1 ≥ . . .≥ 0
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Moreover, the POD basis {ψh
i }�i=1 of rank � satisfies ψh

i ∈
V h for 1 ≤ i ≤ � and∫ T

0

∥∥∥yh(t)−
�

∑
i=1

〈yh(t),ψh
i 〉V ψh

i

∥∥∥2

V
dt

+
∫ T

0

∥∥∥ph(t)−
�

∑
i=1

〈ph(t),ψh
i 〉V ψh

i

∥∥∥2

V
dt =

d

∑
i=�+1

λ h
i

Remark 2 (Discrete POD method) It was already mentioned

in Section 4 that in the numerical implementation, the space

V is replaced by the high-fidelity space V h. Apart from that,

the integral in (P�) has to be approximated numerically. Let

a time grid be given by 0 = t1 < .. . < tn = T along with

quadrature weights γ1, . . . ,γn > 0 satisfying ∑n
j=1 γ j = T . Fur-

ther, suppose that yhn
j and phn

j are approximations of yh(t j)

and ph(t j), respectively, at the time instance t j ( j = 1, . . . ,n).

For instance, yhn
j and phn

j are computed by applying an im-

plicit Euler method to (4) and (6), respectively. Then, the

discrete version of (P�) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
n

∑
j=1

γ j

∥∥∥yhn
j −

�

∑
i=1

〈yhn
j ,ψhn

i 〉V ψhn
i

∥∥∥2

V

+
n

∑
j=1

γ j

∥∥∥phn
j −

�

∑
i=1

〈phn
j ,ψhn

i 〉V ψhn
i

∥∥∥2

V

s.t. {ψhn
i }�i=1 ⊂V h, 〈ψhn

i ,ψhn
j 〉V = δi j (1 ≤ i, j ≤ �)

(14)

Analogously to the continuous problem (P�), a solution to

(14) is given by the eigenvectors to the � largest eigenvalues

of the operator Rhn : V →V h by

Rhnψ =
n

∑
j=1

γ j
(〈yhn

j ,ψ〉V yhn
j + 〈phn

j ,ψ〉V phn
j
)

which is an approximation of Rh. ♦

5.2 The POD Galerkin scheme

Now let us suppose that we have computed a POD basis

{ψh
i }�i=1 ⊂ V h of rank �. We define the finite dimensional

subspace

V h� = span{ψh
1 , . . . ,ψ

h
� } ⊂V h

Then the POD solution operator Sh� : U→ H1(0,T ;V h�) is

defined as follows: yh� = Sh�u with yh�(t) ∈ V h� solves for

almost all t ∈ [0,T ] the POD Galerkin scheme

〈yh�
t (t),ψh〉V ′×V +κ

∫
Ω

∇yh�(t,x) ·∇ψh(x)dx

=
Nc

∑
j=1

ucj(t)
∫

Ω
χc

j (x)ψ
h(x)dx

+
Ni

∑
j=1

uij

∫
Γ

χ i
j(t,s)ψ

h(s)ds

(15a)

for all ψh ∈V h� as well as

yh�(0) = Ph�y◦ (15b)

In (15a) we have used the following linear, H-orthogonal

projection Ph� : H →V h� is given as:

Ph�ϕ minimizes inf
ϕh�∈V h�

‖ϕ −ϕh�‖H for given ϕ ∈ H

Note that for every ϕ ∈V the projection Ph�ϕ ∈V h� is given

as

Ph�ϕ =
�

∑
i=1

ciψh
i

where the coefficients ci, i = 1, . . . , �, solve the linear system

�

∑
j=1

〈ψh
j ,ψ

h
i 〉H c j = 〈ϕ,ψh

i 〉H for i = 1, . . . , �

The adjoint equation (6) is also reduced in a similar way;

cf. [13]. Now, (P̂h
ab) is replaced by its POD Galerkin approx-

imation. We consider the optimal control problem

min Ĵh�(u) := J(Sh�u,u) s.t. u ∈ Uad(a,b) (P̂h�
ab)

with vectors a,b ∈ [uia,u
i
b]⊂ R

Ni
satisfying a≤ b.

Remark 3 Thanks to the reduced-order approach, (P̂h�
ab) can

be solved computationally much faster than (P̂h
ab). Here, we

can rely on existing techniques for linear-quadratic prob-

lems; cf. [13]. In our numerical experiments we solve (P̂h
ab)

only for the root node of the branch-and-bound method, i.e.,

a= uia and b= uib. The obtained optimal state and adjoint are

utilized as snaphots in Vh for the computation of the POD

basis of rank �. Then, the reduced-order approximation Ĵh�

of Ĵh is computed and in the following nodes of the branch-

and-bound method we solve (P̂h�
ab) to get the associated op-

timal control u�ab ∈ Uad(a,b) with a,b ∈ [uia,u
i
b] satisfying

a ≤ b. Then, by setting û = u�ab the error between u�ab and

uab can be estimated by the a posteriori error presented in

Theorem 2. Moreover, the a priori error in the root node can

be estimated as [13]:

‖u�ab−uab‖2
U ≤C

d

∑
i=�+1

λ h
i ‖ψh

i −Ph�ψh
i ‖2

V

If the error is too large, we increase the number � of POD

basis functions. ♦
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6 Branch-and-Bound method

Our model requires that all the boundary controls ui are inte-

ger, while the distributed controls uc are allowed to be con-

tinuous within given bilateral control constraints. In order

to deal with the mixed-integer, time-dependent constraints,

a branch-and-bound algorithm was implemented (see Algo-

rithm 1). The idea is based on solving a set of correlated

relaxation problems by omitting the integrality conditions

and computing numerically the following type of problem:

min Ĵ(u) s.t. u ∈ Uad(a,b) (P̂ab)

For (P̂h
ab) we have Ĵ= Ĵh and for (P̂h�

ab) we take Ĵ= Ĵh�.

Algorithm 1 [Branch-and-Bound Method]

1: Set an upper bound Upp= ∞ and initialize the heap of open prob-
lems H = /0;

2: Add the root node relaxation (P̂ab) with a= uia, b= uib to H ;
3: while H �= /0 do
4: Select a problem (P̂ab) from H and H := H \(P̂ab);
5: Solve relaxation (P̂ab) and let the solution be uab = (ucab,u

i
ab);

6: if (P̂ab) is infeasible then
7: Node can be pruned;
8: else if Ĵ(uab)> Upp then
9: Node can be pruned;

10: else if uiab is integral then
11: Update incumbent solution: Upp= Ĵ(uab), u = uab;
12: else
13: BranchOnVariable uiab ∈ [aI ,bI ] (i ∈ I).
14: end if
15: end while
16: return optimal solution u or error message (if no feasibe solution

is found).

Suppose that uab = (ucab,u
i
ab)∈Uad(a,b) is a solution to

(P̂ab). If the j-th component uiab, j ( j ∈ {1, . . . ,N i}) of uiab ∈
R

Ni
is not integer, we branch on the variable uiab as follows:

Set

ã j := �uiab, j� ≥ uia, j, b̃=
(
a1, . . . ,a j−1, ã j,a j+1, . . . ,aNi

)
b̃ j := �uiab,j� ≤ uib, j, ã=

(
b1, . . . ,b j−1, b̃ j,b j+1, . . . ,bNi

)
Then, add the corresponding subproblems (P̂ab̃) and (P̂ãb)
to H .

Since the relaxation problem can always be solved to its

optimality and the set of integer boundary controls is finite,

it follows immediately that the branch-and-bound algorithm

terminates at an optimal solution after solving a finite num-

ber of nodes or with a certificate that the problem (P̂ab) has

no solution.

6.1 Branching Strategies

We choose the strong branching strategy for computing our

test cases. Let Ic ⊂ {1, . . . ,N i} denote the set of all candi-

dates of variables to be branched on. By branching, we are

interested in increasing the lower bound of our problem as

much as possible in order to reduce the size of the branch-

and-bound tree. The idea of strong branching is to solve all

the possible child subproblems each time when a branch-

ing is necessary. Suppose that we branch on the variable ui
(i ∈ Ic) and let Ĵ+i and Ĵ−i be the optimal objective values of

the child subproblems. We compute D−
i and D+

i by

D−
i = Ĵ−i − Ĵi and D+

i = Ĵ+i − Ĵi,

where Ĵi denotes the optimal objective value at the parent

node. We then choose the branching candidate i ∈ Ic which

maximizes the so-called score function

si := μ min(D−
i ,D

+
i )+(1−μ)max(D−

i ,D
+
i ),

where μ ∈ [0,1] is a fixed parameter.

Strong branching is particularly effective in reducing the

number of nodes in the branch-and-bound searching tree,

but the computational burden of solving each added sub-

problem could be significantly large. Practically, it may be

more efficient to solve the subproblems not exactly but only

approximately. Or even better, one could also estimate the

measure D±
i based on some a priori information and do not

need to solve the subproblems at all for maximizing the

score function. Nevertheless, as we will see later, strong

branching performs sufficiently well for our test cases, since

the computation at nodes is not too expensive and the size

of branch-and-bound tree is relatively small.

6.2 Node Selection

We distinguish three strategies: depth-first search, best search

and a combination of the two.

Depth-first search selects the deepest node in the tree,

in our case this will be the last node added to the heap of

open problems. An advantage of this strategy is that we have

to store as few as possible open problems, but unfortunately

if no upper bound is found it will solve many nodes with a

lower bound that is actually larger than the solution, leading

to a poor performance.

Best-bound search selects the node with the best lower

bound. This strategy minimizes the number of explored nodes

for a fixed sequence of branching decisions, as these would

have been solved independently of the upper bound. On the

other hand more open problems have to be stored and mostly

an integer solution will not be found until the end of the

search. Hence if the solution time is limited, it might not

find any feasible point at all.

Two-phase method starts with the depth-first strategy

until a feasible point for (P̂ab) was found and then continues
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Fig. 1 The domain Ω with interior walls (dashed lines), outer walls
(solid lines) and a window at 0.3 ≤ x1 ≤ 0.7,x2 = 1 (dotted line).

with the best-search strategy. We store very few informa-

tion about each node only, so the search tree will stay man-

ageable, but otherwise one could also think about switching

back.

7 Numerical experiments

We will consider a squared room Ω := (0,1)2 with two in-

terior walls and two outer walls and a window in the middle

of one of the latter as shown in Fig. 1. The boundary con-

trol ui ∈Z
3 corresponds to the choices of insulation material

for the three exterior boundary segments: the long outer wall

around the up-right corner Γ1, the window Γ2 and the short

outer wall Γ3. For the window the insulation material shall

be more expensive and the heat transition will be increased.

This is represented by

α i
1 = 0.1, α i

2 = 0.2, α i
3 = 0.1

and

χ i
j(t,s) =−α i

j
(
22− ya(t)

)
, (t,s) ∈ Σ j, j = 1,2,3

The boundary control is restricted by uia = (1,2,1) from be-

low as the window part cannot be isolated as well as the

walls and uib = (10,10,10) from above. The distributed con-

trol uc represents an underfloor heating, either one heating

tile or four squared tiles in counterclockwise order starting

from the lower-left corner. It is allowed to rank from 0 to 10

and can vary over time. Unless specified otherwise αc = 0.3
and αQ = 10. The desired temperature will be yd = 22◦C

and the initial inside temperature y◦ = 18◦C.

The triangulation of Ω satisfies a maximal mesh size of

0.05 and consists of m = 721 unknowns. All arising optimal

control problems are solved with the projected Newton-CG

method. As stated in Remark 3 we run a full optimization

in the first node, from which we compute a POD basis of

maximal rank d with the MATLAB built-in eigenvalue de-

composition. The number � of POD basis elements is then

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

8

9

10

11

12

13

14

15

16

17

Fig. 2 Run 1: Set of temperature measurements (circles) from Kon-
stanz from midnight till midnight on May 3rd and splinewise interpo-
lated outside temperature ya (solid line).

chosen individually at each node such that for the energy

holds

E(�) =
∑�

i=1 λ h
i

∑d
i=1 λ h

i
> 0.99999 (16)

Recall that the error between the POD suboptimal control

to the optimal one computed by the full optimization can be

estimated in terms of E(�) provided the POD basis is de-

rived from the full optimization; cf. [13]. If the a-posteriori

estimate is larger than the tolerance 1, then we enlargen the

POD basis by a few basis vectors such that E(�)> 0.9999999.

At each node the optimization will start from the canonic

projection of the previously optimal (and after the branch-

ing infeasible) control onto the set of feasible controls. The

variable to branch upon will be selected from the set of can-

didates according to the strong branching strategy. The node

selection will be performed by the two-phase method.

The implementation is done by using MATLAB Release

2016a and all test runs are performed on a 2.5 GHz Intel in-

side core i5 processor with 8 GB RAM.

7.1 Weather data of Constance, Germany

Throughout this subsection we will consider an outside tem-

perature based on measurements in Konstanz on May 3rd as

illustrated in Fig. 21.

Run 1. We start with one underfloor heating tile acting on

the whole domain Ω . Solving this problem without model

reduction, i.e. solving (P̂h), required 28.37 seconds and yields

the same branching decisions and the same optimal bound-

ary control as solving the reducednorder model which was

performed by the POD method in 17.07 seconds with 5 nodes

in the branch-and-bound tree and 8 solved linear-quadratic

1http://www.wetterdienst.de/Deutschlandwette
r/Konstanz Universitaetsstadt/Aktuell; access on
May 5, 2017
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Fig. 3 Run 1: Optimal distributed control uc over time.
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Fig. 4 Run 1: Temperature y at final time T = 1 in Ω .

optimal control problems. For each node it was sufficient to

choose �= 4 in order to satisfy (16), but in nodes 2, 3 and 5

the a-posteriori estimator was larger than 1 and thus we re-

solved these with an enlarged POD basis of rank 6. The opti-

mal boundary control is a quite good insulation ui = (1,2,3)
and the optimal distributed control (see Fig. 3) displays the

heating during the day. In the beginning we have to heat at

maximum as the initial temperature is only 18◦, during the

day it is sufficient to heat less especially as then the outside

temperature rises. The heat distribution at the final time T is

shown in Fig. 4. It seems sufficiently warm and colder near

the window.

In Fig. 5 we can observe that it is the coldest near the win-

dow (solid line) where the temperature also falls below the

initial 18◦C in the beginning and reaches its maximum at ap-

proximately 21◦C. In the lower left corner where the inner

walls meet (dashed line) it is the warmest and from noon on

the temperature is already above the desired 22◦C. Also we

can notice it is warmer in the middle of the room (dash-dot

line) than in the middle of the right outer wall (dotted line)

where it is remarkably warmer than at the window due to the

better insulation.

Fig. 6 shows the first POD basis element ψh
1 which captures

the main information about the heat distribution, warmer in

the lower-left corner and colder in the up-right area.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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22.5

Fig. 5 Run 1: Temperature during the day at certain points in Ω , near
the window (solid line), in the middle of the right-outer wall (x2 ≈ 0.5,
dotted line), in the middle of the room (dash-dot line) and in the lower-
left corner (dashed line).
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Fig. 6 Run 1: First POD basis element ψh
1 .
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Fig. 7 Run 1: Second POD basis element ψh
2 .

The second POD basis element Fig. 7 clearly shows the lo-

cation of the window where it is cold and again the warm

lower-left corner. In the third POD basis element Fig. 8 we

see a warm up-right corner where the optimal insulation was

very good (ui1 = 1). The further POD basis elements are

higher in frequency already; cf. Fig. 9-Fig. 11. We illustrate

search tree as it was built during the branch-and-bound algo-

rithm for this example and discuss a few nodes. The numbers

represent the order in which they were chosen according to
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Fig. 8 Run 1: Third POD basis element ψh
3 .
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Fig. 9 Run 1: Fourth POD basis element ψh
4 .
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Fig. 10 Run 1: Fifth POD basis element ψh
5 .
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Fig. 11 Run 1: Sixth POD basis element ψh
6 .
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Fig. 12 Run 1: Error between high- and low-dimensional solution
(cross) and the a-posteriori estimator (circle) at each of the treated
nodes 2 to 5. The parent node was solved fully as well for the POD
method.

node
∣∣Ĵh(ū)− Ĵh(ū�)

∣∣
2 1.0410 e-05
3 1.2020 e-05
4 0.2800 e-02
5 9.6805 e-06

Table 1 Run 1: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

the two-phase method and the left node denotes the down-

child and the right node the up-child.

1
/ \
3 2
/ \
5 4

Solving the parent node (1) with uia =
(

1,2,1
)

and uib =(
10,10,10

)
gives the optimal solution

(
1,2,3.8668

)
with

cost functional value Ĵh = 35.4414. As the third component

violates the integrality constraint it is the only branching

candidate for which both child nodes are solved according to

the strong branching method. The next node to be explored

is due to the two-phase method the up-child (2) with lower

bound a = (1,2,4) whose solution (1,2,4) is integer with

cost functional value 35.4724 giving the current global up-

per bound. After a few more steps – solving the down-child

(3), branching on variable ui2 and solving the two arising

children (4) and (5) – we found the optimal solution in the

node (5) with lower cost functional value 35.3356 and opti-

mal integer solution (1,2,3).
For comparison we solved all nodes as well without the

model reduction and computed the error ‖ū− ū�‖U which

is plotted alongside the a posteriori estimator in Fig. 12. In

Tab. 1 we dispayed the difference in the objective for the op-

timal control and the suboptimal POD control at each node.

Splitting the domain into four heating tiles, i.e. Nc= 4, yields

the optimal integer solution ui = (1,2,1) when solving the
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Fig. 13 Run 2: Weather data: hourly Lisbon forecast (circles) on May
6th and cubic interpolation (solid line).

parent node within 12.55 seconds already. That means the

outside temperature is so cold that instantly the best insula-

tion is chosen and the optimization terminates without the

need of the branch-and-bound algorithm. Hence we con-

tinue with another example.

7.2 Weather data from Lisbon, Portugal

Longing for some warmer weather we choose an outside

temperature ya from Lisbon, Portugal, ranging from 13◦ to

21◦C, see Fig. 132 based on the hourly weather forecast on

May 6th.
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Fig. 14 Run 2: Temperature at certain points in the room over time,
near the window (solid), in the middle of the right-outer wall (dotted),
in the middle of the room (dash-dotted) and in the lower left corner
(dashed line).

Run 2. With the POD method the problem was solved within

21.69 seconds (compared to 48.34 seconds for (P̂h)) with

6 nodes in the branch-and-bound tree and 16 relaxations

solved with usually four basis elements. In nodes 2, 4, 5

and 6 the a-posteriori estimate was larger than the tolerance

of 1, thus we resolved these nodes with 6 basis elements.

The resulting optimal control is ui = (1,5,8), i.e. the insula-

tion material is a lot cheaper than it had to be for the colder

outside temperature in Konstanz, which conveniently meets

our expectations. Looking at Fig. 14 we see that it is again

the coldest near the window and the warmest in the lower

left corner. As the first boundary segment has a very good

insulation, we can observe similar temperatures in the mid-

dle of the room (dash-dotted line) and at the middle of the

right outer wall (dotted). Compared to Fig. 5 the cheaper in-

sulation leads to an increased loss of warmth near the win-

dow, especially in the beginning. The branch-and-bound tree

looks like this:

1
\
2
/ \
4 3
/ \
6 5

The down-child of the parent node was solved during the

strong branching algorithm, but then pruned as its cost func-

tional value was greater than the global upper bound for the

integer valued solution found in the up-branch. Nodes 3, 5

and 6 all gave integer-valued solutions, the optimal one was

found in node 6.

Run 3. We consider the Lisbon outside temperature as in

the previous run, but with four heating tiles now. The com-

2https://www.timeanddate.com/weather/portuga
l/lisbon; access on May 6, 3027
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Fig. 15 Run 2: Error (x) and estimator (o). At node 2, 4, 5 and 6 the
basis got updated, i.e. two additional basis vectors were used to resolve
the node.

node
∣∣Ĵh(uFE)− Ĵh(uPOD)

∣∣
2 8.5704 e-05
3 4.9662 e-07
4 1.9766 e-05
5 2.9137 e-05
6 2.1637 e-05

Table 2 Run 2: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

node
∣∣Ĵh(uFE)− Ĵh(uPOD)

∣∣
2 3.0322 e-05
3 6.1947 e-05
4 2.4099 e-08

Table 3 Run 3: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

putational time was 14.48 seconds for the POD method and

31.23 seconds for the FE method. The branch-and-bound

algorithm needs 4 nodes and 10 linear-quadratic problems

were solved. The basis got updated from 4 to 7 basis ele-

ments as the a-posteriori estimate was larger than required

tolerance in nodes 2 and 3. The resulting optimal boundary

control is ui =
(

1,4,6
)

and the optimal time-dependent dis-

tributed control uc is displayed in Fig. 16 and in a closer

view inFig. 17.

All heating tiles have to heat at maximum in the beginning

to get near the desired temperature and less during the day

when the room is already warm and also the outside tem-

perature is higher. The lower-left heating tile uc1 (solid) and

uc2 (dashed) have to heat less than the upper-right uc3 (dash-

dot) where we have half of the window but a good insulation

(ui1 = 1) and upper-left uc4 (dotted), where we have a half of

the window and the cheapest insulation (ui3 = 6) and conse-

quently, have to heat the most.

In Fig. 18 we can observe that even at the warmest point

in the room, the lower-left corner, we barely reach 21.5◦C

which is significantly lower than it was in the second run in

which we had one heating tile. This is because we did not

consider the size of the heating tiles in our cost functional

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 16 Run 3: Distributed controls over time, the two heating tiles in
the lower half have to heat less than the two in the upper half of the
room.
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Fig. 17 Run 3: A closer look at the distributed controls over time:
lower-left uc1 (solid) and lower-right uc2 (dashed), upper-right uc3 (dash-
dot) and upper-left uc4 (dotted).
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Fig. 18 Run 3: Temperature at certain points in the room, the window
(solid), in the middle of the right outer wall (dotted), in the middle
(dash-dot) and in the lower left corner (dashed).

which means as we kept αc = 0.3 for all four heating tiles,

the heating costs were four times higher.

Run 4. Hence, choosing all four αc = 0.075 gives similar

temperatures as in Fig. 14 and and a similar optimal ui =
(1,6,7) (compared to ui = (1,5,8) in the one-tile case). The

computation required 21.44 seconds with 7 nodes and 15
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Fig. 19 Run 3: Error (x) and estimator (o) at each of the solved nodes,
�= 7 for nodes 2 and 3 and �= 4 in the last node.
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Fig. 20 Run 4: Error (x) and estimator (o) at each of the solved nodes
for αc = 0.075. The basis was updated at nodes 2 to 6 from 4 to 9 basis
elements in order to satisfy the increased energy bound.

node
∣∣Ĵh(uFE)− Ĵh(uPOD)

∣∣
2 8.9129 e-05
3 1.4692 e-04
4 2.5850 e-05
5 9.2066 e-05
6 8.2975 e-05
7 2.3617 e-07

Table 4 Run 4: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

optimization problems solved.

Run 5. Another option would be to punish the difference to

the desired temperature more, for example we took αQ = 20

instead of 10. As displayed in Fig. 21 the temperature dif-

ference within the room is significantly smaller and the cho-

sen optimal insulation is ui = (1,2,5) is a better one since

heating is more expensive again (αc = 0.3 for all heating

tiles). The elapsed time was 17.45 seconds with 4 nodes in

the branch-and-bound tree and 12 relaxations solved.. In all

nodes the a-posteriori estimate was too large for � = 3, so

we took 6 basis elements.

Run 6. As well we try the one-tile Lisbon situation with an

increased αQ = 20 and the error alongside with the a pos-
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Fig. 21 Run 5: Temperature at certain points in the room, the window
(solid), in the middle of the right outer wall (dotted), in the middle
(dash-dot) and in the lower left corner (dashed).
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Fig. 22 Run 5: Error (x) and estimator (o) at each of the solved nodes
for αQ = 20.

node
∣∣Ĵh(uFE)− Ĵh(uPOD)

∣∣
2 2.7761e-05
3 7.1499e-06
4 9.2719e-05

Table 5 Run 5: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

node
∣∣Ĵh(uFE)− Ĵh(uPOD)

∣∣
2 2.7603 e-05
3 1.0342 e-04
4 1.8425 e-06
5 5.3310 e-05
6 3.4490 e-05
7 4.2517 e-05

Table 6 Run 6: Difference in cost function values for FE-optimal con-
trol and POD-FE-optimal control.

teriori estimator can be seen in Fig. 23. The computation

required 25.81 seconds where the branch-and-bound algo-

rithm had to explore 7 nodes in which 17 relaxations were

solved in total with �= 5 in all nodes. The optimal boundary

control is ui = (1,4,5) which means a better insulation as in

Run 2 (where we chose ui = (1,5,8) for a lower αQ = 10).
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Fig. 23 Run 6: Error (x) and estimator (o) at each of the solved nodes
for αQ = 20.

Run FE time POD time # nodes # relaxations

1 28.37 17.07 5 8
2 48.34 21.69 6 16
3 31.23 14.48 4 10
4 45.80 21.44 7 15
5 37.78 17.45 4 12
6 47.02 25.81 7 17

Table 7 Comparison of computational costs for solving the high-
dimensional model (P̂h) and the low-dimensonal POD-based model.
For the latter the number of explored nodes and solved relaxations is
denoted.

7.3 Comparison of the computational cost

In Tab. 7 we can see that the POD method is usually twice

as fast, and both computational times depend on the number

of explored nodes. The FE method might sometimes need to

solve less relaxations, as some of the nodes were resolved in

the POD method with a larger POD basis.

8 Conclusion and Outlook

In this work, we have applied a standard Branch-and-Bound

algorithm to a linear-quadratic Mixed-Integer Optimal Con-

trol Problem (MIOCP) which was motivated by the physical

challenge of heating a room which is subject to heat loss

through the exterior walls. The distributed controls repre-

senting an underfloor heating were chosen as continuous and

time-dependent, whereas the boundary controls were only

allowed to take discrete values, thereby indicating a certain

choice of insulation material. By branching repeatedly on

these latter control variables, it became necessary to repeat-

edly solve a relaxed version of the MIOCP which is just a

standard linear-quadratic optimal control problem. We have

employed a POD-Galerkin ansatz for this relaxed problem

where the initial data is collected by optimizing once on the

mother node of the Branch-and-Bound tree. Replacing the

full problem with this reduced-order surrogate for all subse-

quent nodes has shown to lead to a speedup in all numerical

experiments. Even though this speedup only turned out to be

of a factor 2, what was more significant was the observation

that this is a strategy which appears to work qualitatively.

We are also confident that a much higher speedup can be

achieved by turning towards more complex models which

require more solves of the state equation. Such increased

complexity could arise for finer spatial and time grids, a

higher number of discrete control variables leading to big-

ger Branch-and-Bound trees, or even more detailed models

to describe the temperature distribution like an advection-

diffusion-reaction equation or the Boussinesq equation.

Furthermore, we have presented a straightforward esti-

mator indicating the error between the optimal and POD-

suboptimal control. Numerical tests have validated the fact

that this estimator bounds the real error from above, even

though it overshoots it by several orders of magnitude. In

any case, the estimator was used as an indicator for the qual-

ity of the reduced-order model to possibly update the reduced-

order model if it exceeded a certain tolerance. For future

work, it may be beneficial to investigate where this dras-

tic overestimation comes from and how it can be placed in

check. In [3], a heuristic was deployed in which real error

and estimator for some random points were calculated of-

fline before the optimization in order to and gauge the over-

estimation factor.

A similar strategy could be employed here: Since the op-

timal solution ū ∈ Uad is computed in high fidelity anyway,

we could define some sample controls u ∈ Uad and com-

pute the error estimator estimator as well as the true error

for these controls. Looking at the resulting optimizers to the

problem, we have observed in several test runs that a phys-

ically and economically reasonable behavior is reflected in

the solutions. The trade-off between the cost of high insula-

tion and the resulting benefit of low temperature transmis-

sion to the outside can be chosen by varying the parameters

of the model. All in all, it could be observed that the algo-

rithm reliably allowed us to solve the problem and that the

problem qualitatively depicts the physical behavior of the

temperature in the room.

A first step in future work would definitely be to con-

sider an increase in the number of discrete variables to the

system. Right now, the low number of three of these leads to

quite small Branch-and-Bound trees which are solved rather

rapidly. The true time-saving possibilities of this strategy

will only show when considering larger problems with more

state and adjoint equations to be solved. Furthermore, a nat-

ural next step that will also challenge the way POD can per-

form is to consider an advection term in the state equation,

leading to more dynamic solutions and thus requiring more

basis functions in the surrogate model. Lastly, the current

insulation model could be replaced by y(t,s) = ui(ya(t)−
y(t,s)) for (s, t)∈Σ with an outside temperature ya : [0,T ]→
R. This would lead to a model that are no longer linear in the

binary control variable and thus harder to solve. Some work
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has already been done for optimal control of these kinds of

models in [2] and could be readily applied to this setting.
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1. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numer-
ical approximation of a semilinear elliptic control problem. Com-
putational Optimization and Applications 23, 201–229 (2002)

2. Banholzer, S., Beermann, D.: Optimal control and model-order
reduction of an abstract parabolic system containing a controlled
bilinear form. Tech. rep., University of Konstanz (2016)

3. Beermann, D., Dellnitz, M., Peitz, S., Volkwein, S.:
Set-oriented multiobjective optimal control of pdes us-
ing proper orthogonal decomposition. https://kops.uni-
konstanz.de/handle/123456789/38752 (2017). Submitted

4. Benner, P., Sachs, E., Volkwein, S.: Model order reduction for
pde constrained optimization. In: Trends in PDE Constrained
Optimization, International Series of Numerical Mathematics, pp.
303–326. Birkhäuser, Basel (2014)
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