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Unconditional convergence of a fast two-level linearized

algorithm for semilinear subdiffusion equations

Hong-lin Liao∗ Yonggui Yan† Jiwei Zhang‡

Abstract

A fast two-level linearized scheme with unequal time-steps is constructed and analyzed
for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level
fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials tech-
nique. The resulting fast algorithm is computationally efficient in long-time simulations
because it significantly reduces the computational cost O(MN2) and storage O(MN)
for the standard L1 formula to O(MN logN) and O(M logN), respectively, for M grid
points in space and N levels in time. The nonuniform time mesh would be graded to han-
dle the typical singularity of the solution near the time t = 0, and Newton linearization
is used to approximate the nonlinearity term. Our analysis relies on three tools: a new
discrete fractional Grönwall inequality, a global consistency analysis and a discrete H2

energy method. A sharp error estimate reflecting the regularity of solution is established
without any restriction on the relative diameters of the temporal and spatial mesh sizes.
Numerical examples are provided to demonstrate the effectiveness of our approach and
the sharpness of error analysis.

Keywords : semilinear subdiffusion equation; two-level L1 formula; discrete fractional
Grönwall inequality; discrete H2 energy method; unconditional convergence

1 Introduction

A two-level linearized method is considered to numerically solve the following semilinear
subdiffusion equation on a bounded domain

Dα
t u = ∆u+ f(u) for x ∈ Ω and 0 < t 6 T , (1.1a)

u = u0(x) for x ∈ Ω and t = 0, (1.1b)

u = 0 for x ∈ ∂Ω and 0 < t 6 T , (1.1c)
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where ∂Ω is the boundary of Ω := (xl, xr)×(yl, yr), and the nonlinear function f(u) is smooth.
In (1.1a) Dα

t = C
0Dα

t denotes the Caputo fractional derivative of order α:

(Dα
t v)(t) :=

∫ t

0
ω1−α(t− s)v′(s) ds, 0 < α < 1, (1.2)

where the weakly singular kernel ω1−α(t − s) is defined by ωµ(t) := tµ−1/Γ(µ). It is easy to

verify ω′
µ(t) = ωµ−1(t) and

∫ t
0 ωµ(s) ds = ωµ+1(t) for t > 0.

In any numerical methods for solving nonlinear fractional diffusion equations (1.1a), a
key consideration is the singularity of the solution near the time t = 0, see [5,10,17,22]. For
example, under the assumption that the nonlinear function f is Lipschitz continuous and
the initial data u0 ∈ H2(Ω) ∩ H1

0 (Ω), Jin et al. [5, Theorem 3.1] prove that problem (1.1)
has a unique solution u for which u ∈ C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
, Dα

t u ∈ C
(
[0, T ];L2(Ω)

)

and ∂tu ∈ L2(Ω) with ‖∂tu(t)‖L2(Ω) ≤ Cut
α−1 for 0 < t 6 T , where Cu > 0 is a constant

independent of t but may depend on T . Their analysis of numerical methods for solving (1.1)
is applicable to both the L1 scheme and backward Euler convolution quadrature on a uniform
time grid of diameter τ ; a lagging linearized technique is used to handle the nonlinearity f(u),
and [5, Theorem 4.5] shows that the discrete solution is O(τα) convergent in L∞(L2(Ω)).

This work may be considered as a continuation of [15], in which a sharp error estimate for
the L1 formula on nonuniform meshes was obtained for linear subdiffusion-reaction equations
based on a discrete fractional Grönwall inequality and a global consistency analysis. In this
paper, we combine the L1 formula and the sum-of-exponentials (SOEs) technique to develop
a one-step fast difference algorithm for the nonlinear subdiffusion problem (1.1) by using the
Newton’s linearization to approximate nonlinear term, and present the corresponding sharp
error estimate of the proposed scheme without any restriction on the relative diameters of
temporal and spatial mesh sizes.

It is known that the Caputo fractional derivative involves a convolution kernel. The
total number of operations required to evaluate the sum of L1 formula is proportional to
O(N2), and the active memory to O(N) with N representing the total time steps, which is
prohibitively expensive for the practically large-scale and long-time simulations. Recently, a
simple fast algorithm based on SOEs approximation is proposed to significantly reduce the
computational complexity to O(N logN) and O(logN) when the final time T ≫ 1, see [4,11].
Another fast algorithm for the evaluation of the fractional derivative has been proposed in [1],
where the compression is carried out in the Laplace domain by solving the equivalent ODE
with some one-step A-stable scheme. In this paper, we develop a fast two-level L1 formula
by combining a nonuniform mesh suited to the initial singularity with a fast time-stepping
algorithm for the historical memory in (1.2). This scheme would be also useful to develop
efficient parallel-in-time algorithms for time-fractional differential equations [20].

On the other hand, the nonlinearity of the problem also results in the difficulty for the
numerical analysis. To establish an error estimate of the two-level linearized scheme at
time tn, it requires to prove the boundedness of the numerical solution at the previous time
levels via ‖un−1‖∞ 6 Cu. Traditionally it is done using mathematical induction and some
inverse estimate, namely,

‖un−1‖∞ 6 ‖Un−1‖∞ + h−1‖Un−1 − un−1‖ 6 ‖Un−1‖∞ + Cuh
−1
(
τβ + h2

)
.
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This leads to that a time-space grid restriction τ = O(h1/β) is required in the theoretical
analysis even though it is nonphysical and may be unnecessary in numerical simulations. In
this paper, we will extend the discrete H2 method developed in [12–14] to prove uncondi-
tional convergence of our fully discrete solution without the restriction conditions of between
mesh sizes τ and h comparing with the traditional method. The main idea of discrete H2

energy method is to separately treat the temporal and spatial truncation errors. This simple
implementation avoids some nonphysical time-space grid restrictions in the error analysis. A
related approach in a finite element setting are discussed in [7–9].

The convergence rate of L1 formula for the Caputo derivative is limited by the smoothness
of the solution. The analysis here is based on the following assumptions on the solution

‖u‖H4(Ω) 6 Cu, ‖∂tu‖H4(Ω) 6 Cu(1 + tσ−1) and ‖∂ttu‖H2(Ω) 6 Cu(1 + tσ−2) (1.3)

for 0 < t ≤ T , where σ ∈ (0, 1) ∪ (1, 2) is a regularity parameter. To resolve the singularity
at t = 0, it is reasonable to use a nonuniform mesh that concentrates grid points near t = 0,
see [2, 3, 15,19]. We make the following assumption on the time mesh:

AssG. Let γ ≥ 1 be a user-chosen parameter. There is a constant Cγ > 0, independent of

k, such that τk ≤ Cγτ min{1, t1−1/γ
k } for 1 ≤ k ≤ N and tk 6 Cγtk−1 for 2 ≤ k ≤ N .

Since τ1 = t1, AssG implies that τ1 = O(τγ), while for those tk bounded away from t = 0 one
has τk = O(τ). The parameter γ controls the extent to which the grid points are concentrated
near t = 0: increasing γ will decrease the time-step sizes near t = 0 and so move mesh points
closer to t = 0. A simple example of a family of meshes satisfying AssG is the graded grid
tk = T (k/N)γ , which is discussed in [2, 15, 19]. Although nonuniform meshes are flexible
and reasonably convenient for practical implementation, they can significantly complicate
the numerical analysis of schemes, both with respect to stability and consistency. In this
paper, our analysis will rely on a generalized fractional Grönwall inequality [16], which would
be applicable for any discrete fractional derivatives having the discrete convolution form.

Throughout the paper, any subscripted C, such as Cu, Cγ , CΩ, Cv, C0 and CF , denotes a
generic positive constant, not necessarily the same at different occurrences, which is always
dependent on the given data and the solution but independent of the time-space grid steps.
The paper is organized as follows. Section 2 presents the two-level fast L1 formula and the
corresponding linearized fast scheme. The global consistency analysis of fast L1 formula
and the Newton’s linearization is presented in Section 3. A sharp error estimate for the
linearized fast scheme is proved in Section 4. Two numerical examples in Section 5 are given
to demonstrate the sharpness of our analysis.

2 A two-level fast method

We approximate the Caputo fractional derivative (1.2) on a (possibly nonuniform) time mesh
0 = t0 < · · · < tk−1 < tk < · · · < tN = T , with the time-step sizes τk := tk − tk−1 for
1 ≤ k ≤ N , the maximum time-step τ = max16k6N τk and the step size ratios ρk := τk/τk+1

for 1 ≤ k ≤ N − 1. In space we use a standard finite difference method on a tensor product
grid. Let M1 and M2 be two positive integers. Set h1 = (xr − xl)/M1, h2 = (yr − yl)/M2

3



and the maximum spatial length h = max{h1, h2}. Then the fully discrete spatial grid
Ω̄h := {xh = (xl + ih1, yl + jh2) | 0 6 i 6 M1, 0 6 j 6 M2}. Set Ωh = Ω̄h ∩ Ω and the
boundary ∂Ωh = Ω̄h ∩ ∂Ω. Given a grid function v = {vij}, define

vi− 1

2
,j = (vi,j + vi−1,j) /2, δxvi− 1

2
,j = (vi,j − vi−1,j) /h1, δ

2
xvij =

(
δxvi+ 1

2
,j − δxvi− 1

2
,j

)
/h1.

Difference operators vi,j− 1

2

, δyvi,j− 1

2

, δxδyvi− 1

2
,j− 1

2

and δ2yvij can be defined analogously. The

second-order approximation of ∆v(xh) for xh ∈ Ωh is ∆hvh := (δ2x + δ2y)vh. Let Vh be the
space of grid functions, Vh =

{
v = (vh)xh∈Ω̄h

∣∣ vh = 0 for xh ∈ ∂Ωh

}
. For v,w ∈ Vh, define

the discrete inner product 〈v,w〉 = h1h2
∑

xh∈Ωh
vhwh, the L

2 norm ‖v‖ =
√

〈v, v〉, the H1

seminorm ‖∇hv‖ =
√

‖δxv‖2 + ‖δyv‖2 and the maximum norm ‖v‖∞ = maxxh∈Ωh
|vh|. For

any v ∈ Vh, by [14, Lemmas 2.1, 2.2 and 2.5] there exists a constant CΩ > 0 such that

‖v‖ 6 CΩ‖∇hv‖, ‖∇hv‖ 6 CΩ‖∆hv‖, ‖v‖∞ 6 CΩ‖∆hv‖. (2.1)

2.1 A fast variant of the L1 formula

On our nonuniform mesh, the standard L1 approximation of the Caputo derivative is

(Dα
τ v)

n :=

n∑

k=1

1

τk

∫ tk

tk−1

ω1−α(tn − s)∇τv
k ds =

n∑

k=1

a
(n)
n−k∇τv

k , (2.2)

where ∇τv
k := vk − vk−1 and the convolution kernel a

(n)
n−k is defined by

a
(n)
n−k :=

1

τk

∫ tk

tk−1

ω1−α(tn − s) ds =
1

τk
[ω2−α(tn − tk−1)− ω2−α(tn − tk)] , 1 6 k 6 n. (2.3)

Lemma 2.1 For fixed integer n ≥ 2, the convolution kernel a
(n)
n−k of (2.3) satisfies

(i) a
(n)
n−k−1 > ω1−α(tn − tk) > a

(n)
n−k, 1 6 k 6 n− 1;

(ii) a
(n)
n−k−1 − a

(n)
n−k >

1
2 [ω1−α(tn − tk)− ω1−α(tn − tk−1)] , 1 6 k 6 n− 1.

Proof The integral mean-value theorem yields (i) directly; see [15,22]. For any function

q ∈ C2[tk−1, tk], let Π1,kq be the linear interpolant of q(t) at tk−1 and tk. Let Π̃1,kq := q−Π1,kq
be the error in this interpolant. For q(s) = ω1−α(tn − s) one has q′′(s) = ω−α−1(tn − s) > 0
for 0 < s < tn, so the Peano representation of the interpolation error [15, Lemma 3.1] shows

that
∫ tk
tk−1

(
Π̃1,kq

)
(s) ds < 0. Thus the definition (2.3) of a

(n)
n−k yields

a
(n)
n−k −

1

2
ω1−α(tn − tk)−

1

2
ω1−α(tn − tk−1) =

1

τk

∫ tk

tk−1

(
Π̃1,kq

)
(s) ds < 0, 1 6 k 6 n− 1.

Subtract this inequality from (i) to obtain (ii) immediately.
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As the L1 formula (2.2) involves the solution at all previous time-levels, it is computa-
tionally inefficient to directly evaluate it when solving the fractional diffusion problem (1.1)
using time-stepping. We therefore use the SOEs approach of [4, 11, 21] to develop a fast L1
formula. A basic result of the SOE approximation (see [4, Theorem 2.5] or [21, Lemma 2.2])
is the following:

Lemma 2.2 Given α ∈ (0, 1), an absolute tolerance error ǫ ≪ 1, a cut-off time ∆t > 0 and
a final time T , there exists a positive integer Nq, positive quadrature nodes θℓ and positive
weights ̟ℓ (1 6 ℓ 6 Nq) such that

∣∣∣ω1−α(t)−
Nq∑

ℓ=1

̟ℓe−θℓt
∣∣∣ 6 ǫ ∀ t ∈ [∆t, T ],

where the number Nq of quadrature nodes satisfies

Nq = O

(
log

1

ǫ

(
log log

1

ǫ
+ log

T

∆t

)
+ log

1

∆t

(
log log

1

ǫ
+ log

1

∆t

))
.

After that, we divide the fractional Caputo derivative (Dα
t v)(tn) of (1.2) into a sum of

a local part (an integral over [tn−1, tn]) and a history part (an integral over [0, tn−1]), then
approximate v′ by linear interpolation in the local part (similar to the standard L1 method)
and use the SOE technique of Lemma 2.2 to approximate the kernel ω1−α(t−s) in the history
part. It yields

(
Dα

t u
)
(tn) ≈

∫ tn

tn−1

ω1−α(tn − s)
∇τu

n

τn
ds+

∫ tn−1

0

Nq∑

ℓ=1

̟ℓe−θℓ(tn−s)u′(s) ds

= a
(n)
0 ∇τu

n +

Nq∑

ℓ=1

̟ℓe−θℓτnHℓ(tn−1), n ≥ 1,

where Hℓ(tk) :=
∫ tk
0 e−θℓ(tk−s)u′(s) ds with Hℓ(t0) = 0 for 1 6 ℓ 6 Nq . To compute Hℓ(tk)

efficiently we apply linear interpolation in each cell [tk−1, tk], obtaining

Hℓ(tk) = e−θℓτkHℓ(tk−1) +

∫ tk

tk−1

e−θℓ(tk−s)u′(s) ds ≈ e−θℓτkHℓ(tk−1) + b(k,ℓ)∇τu
k,

where the positive coefficient is given by

b(k,ℓ) :=
1

τk

∫ tk

tk−1

e−θℓ(tk−s) ds, k ≥ 1, 1 6 ℓ 6 Nq . (2.4)

In summary, we now have the two-level fast L1 formula

(Dα
f u)

n := a
(n)
0 ∇τu

n +

Nq∑

ℓ=1

̟ℓe−θℓτnHℓ(tn−1), n ≥ 1, (2.5a)

where Hℓ(tk) satisfies H
ℓ(t0) = 0 and the recurrence relationship

Hℓ(tk) = e−θℓτkHℓ(tk−1) + b(k,ℓ)∇τu
k, k ≥ 1, 1 6 ℓ 6 Nq . (2.5b)

5



2.2 The two-level linearized scheme

Write Un
h = u(xh, tn) for xh ∈ Ω̄h, 0 6 n 6 N . Let unh be the discrete approximation of Un

h .
Using the fast L1 formula (2.5) and Newton linearization, we obtain a linearized scheme for
the problem (1.1): find {uNh } ∈ Vh such that

(Dα
f uh)

n =∆hu
n
h + f(un−1

h ) + f ′(un−1
h )∇τu

n
h , xh ∈ Ωh, 1 6 n 6 N ; (2.6a)

u0h =u0(xh), xh ∈ Ω̄h . (2.6b)

Note that, the Newton linearization of a general nonlinear function f = f(x, t, u) at t = tn
takes the form f(xh, tn, u

n
h) ≈ f(xh, tn, u

n−1
h ) + f ′u(xh, tn, u

n−1
h )∇τu

n
h . The scheme (2.6) is a

two-level procedure for computing {unh}, since (2.6a) can be reformulated as

[
a
(n)
0 −∆h − f ′(un−1

h )
]
∇τu

n
h =∆hu

n−1
h + f(un−1

h )−
Nq∑

ℓ=1

̟ℓe−θℓτnHℓ
h(tn−1), (2.7)

Hℓ
h(tn) = e

−θℓτnHℓ
h(tn−1) + b(n,ℓ)∇τu

n
h , 1 6 ℓ 6 Nq. (2.8)

Thus, once the solution {un−1
h , Hℓ

h(tn−1)} at the previous time-level tn−1 is available, the
current solution {unh} can be found by (2.7) with a fast matrix solver and the historic term
{Hℓ

h(tn)} will be updated explicitly by the recurrence formula (2.8).

Remark 2.3 At each time level the scheme (2.6) requires O(MNq) storage and O(MNq)
operations, where M = M1M2 is the total number of spatial grid points. Given a tolerance
error ǫ = ǫ0, by virtue of Lemma 2.2, the number of quadrature nodes Nq = O(logN) if the
final time T ≫ 1. Hence our new method is computationally efficient since it computes the
final solution using in total O(M logN) storage and O(MN logN) operations.

2.3 Discrete fractional Grönwall inequality

Our analysis relies on a generalized discrete fractional Grönwall inequality [16], which is
applicable for any discrete fractional derivative having the discrete convolution form

(Dα
t v)

n ≈
n∑

k=1

A
(n)
n−k(v

k − vk−1), 1 6 n 6 N, (2.9)

provided that A
(n)
n−k and the time-steps τn satisfy the following three assumptions:

Ass1. The discrete kernel is monotone, that is, A
(n)
k−2 ≥ A

(n)
k−1 > 0 for 2 6 k 6 n 6 N .

Ass2. There is a constant πA > 0 such that A
(n)
n−k ≥ 1

πA

∫ tk
tk−1

ω1−α(tn−s)
τk

ds for 1 ≤ k ≤ n 6 N .

Ass3. There is a constant ρ > 0 such that the time-step ratios ρk ≤ ρ for 1 ≤ k ≤ N − 1.

6



The complementary discrete kernel P
(n)
n−k was introduced by Liao et al. [15,16]; it satisfies

the following identity
n∑

j=k

P
(n)
n−jA

(j)
j−k ≡ 1 for 1 ≤ k ≤ n ≤ N . (2.10)

Rearranging this identity yields a recursive formula that defines P
(n)
n−k :

P
(n)
0 := 1/A

(n)
0 , P

(n)
n−j := 1/A

(j)
0

n∑

k=j+1

(
A

(k)
k−j−1 −A

(k)
k−j

)
P

(n)
n−k , 1 6 j 6 n− 1. (2.11)

From [16, Lemma 2.2] we see that P
(n)
n−k is well-defined and non-negative if the assumption

Ass1 holds true. Furthermore, if Ass2 holds true, then

n∑

j=1

P
(n)
n−j 6 πA ω1+α(tn) for 1 ≤ n ≤ N . (2.12)

Recall that the Mittag–Leffler function Eα(z) =
∑∞

k=0
zk

Γ(1+kα) . We state the following

(slightly simplified) version of [16, Theorem 3.2]. This result differs substantially from the
fractional Grönwall inequality of Jin et al. [5, Theorem 4] since it is valid on very general
nonuniform time meshes.

Theorem 2.4 Let Ass1–Ass3 hold true. Suppose that the sequences (ξn1 )
N
n=1, (ξ

n
2 )

N
n=1 are

nonnegative. Assume that λ0 and λ1 are non-negative constants and the maximum step size
τ 6 1/ α

√
2max{1, ρ}πAΓ(2− α)(λ0 + λ1). If the nonnegative sequence (vk)Nk=0 satisfies

n∑

k=1

A
(n)
n−k∇τv

k ≤ λ0v
n + λ1v

n−1 + ξn1 + ξn2 for 1 ≤ n ≤ N , (2.13)

then it holds that for 1 ≤ n ≤ N ,

vn ≤ 2Eα

(
2max{1, ρ}πA(λ0+λ1)tαn

)(
v0+ max

1≤k≤n

k∑

j=1

P
(k)
k−jξ

j
1+πAω1+α(tn) max

1≤j≤n
ξj2

)
. (2.14)

To facilitate our analysis, we now eliminate the historic term Hℓ(tn) from the fast L1
formula (2.5a) for (Dα

f u)
n. From the recurrence relationship (2.5b), it is easy to see that

Hℓ(tk) =

k∑

j=1

e−θℓ(tk−tj)b(j,ℓ)∇τu
j , k ≥ 1, 1 6 ℓ 6 Nq.

Inserting this in (2.5a) and using the definition (2.4), one obtains the alternative formula

(Dα
f u)

n = a
(n)
0 ∇τu

n +

n−1∑

k=1

∇τu
k

τk

∫ tk

tk−1

Nq∑

ℓ=1

̟ℓe−θℓ(tn−s) ds =

n∑

k=1

A
(n)
n−k∇τu

k, n ≥ 1, (2.15)

7



where the discrete convolution kernel A
(n)
n−k is henceforth defined by

A
(n)
0 := a

(n)
0 , A

(n)
n−k :=

1

τk

∫ tk

tk−1

Nq∑

ℓ=1

̟ℓe−θℓ(tn−s) ds, 1 6 k 6 n− 1, n ≥ 1. (2.16)

The formula (2.15) takes the form of (2.9), and we now verify that our A
(n)
n−k defined by

(2.16) satisfy Ass1 andAss2, allowing us to apply Theorem 2.4 and establish the convergence
of our computed solution. Part (I) of the next lemma ensures that Ass1 is valid, while part
(II) implies that Ass2 holds true with πA = 3

2 .

Lemma 2.5 If the tolerance error ǫ of SOE satisfies ǫ 6 min
{
1
3ω1−α(T ), α ω2−α(1)

}
, then

the discrete convolutional kernel A
(n)
n−k of (2.16) satisfies

(I) A
(n)
k−1 > A

(n)
k > 0, 1 6 k 6 n−1; (II) A

(n)
0 = a

(n)
0 and A

(n)
n−k ≥ 2

3a
(n)
n−k, 1 6 k 6 n−1.

Proof The definition (2.3) and Lemma 2.1 (i) yield

a
(n)
0 − a

(n)
1 > a

(n)
0 − ω1−α(τn) =

α
τn
ω2−α(τn) ≥ αω2−α(1) ≥ ǫ ,

where the step size τn 6 1 and our hypothesis on ǫ are used. The definition (2.16) and Lemma

2.2 imply that A
(n)
0 = a

(n)
0 > a

(n)
1 + ǫ > A

(n)
1 . Lemma 2.2 also shows that θℓ,̟ℓ > 0 for

ℓ = 1, . . . , Nq; the mean-value theorem now yields property (I). By Lemma 2.1 (i) and our

hypothesis on ǫ we have ǫ 6 1
3ω1−α(tn − tk−1) <

1
3a

(n)
n−k for 1 6 k 6 n− 1. Hence Lemma 2.2

gives A
(n)
n−k ≥ a

(n)
n−k − ǫ ≥ 2

3a
(n)
n−k for 1 6 k 6 n− 1. The proof is complete.

3 Global consistency error analysis

We now proceed with the consistency error analysis of our fast linearized method, and begin
with the consistency error of the standard L1 formula (Dα

τ u)
n of (2.2).

Lemma 3.1 For v ∈ C2(0, T ] with
∫ T
0 t |v′′(t)|ds <∞, one has

∣∣(Dα
t v)(tn)− (Dα

τ v)
n
∣∣ 6 a

(n)
0 Gn +

n−1∑

k=1

(
a
(n)
n−k−1 − a

(n)
n−k

)
Gk, n ≥ 1,

where the L1 kernel a
(n)
n−k is defined by (2.3) and Gk := 2

∫ tk
tk−1

(t− tk−1) |v′′(t)| dt.

Proof From Taylor’s formula with integral remainder, the truncation error of the stan-
dard L1 formula at time t = tn is (see [15, Lemma 3.3])

(Dα
t v)(tn)− (Dα

τ v)
n =

n∑

k=1

∫ tk

tk−1

ω1−α(tn − s)
(
v′(s)−∇τv

k/τk

)
ds

8



=

n∑

k=1

∫ tk

tk−1

v′′(t)
(
Π̃1,kQ

)
(t) dt , n ≥ 1, (3.1)

where Q(t) = ω2−α(tn − t) and we use the notation of the proof of Lemma 2.1. By the error
formula for linear interpolation [15, Lemma 3.1], we have

(
Π̃1,kQ

)
(t) =

∫ tk

tk−1

χk(t, y)Q
′′(y) dy, tk−1 < t < tk, 1 6 k 6 n,

where the Peano kernel χk(t, y) = max{t− y, 0} − t−tk−1

τk
(tk − y) satisfies

− t−tk−1

τk
(tk − t) 6 χk(t, y) < 0 for any t, y ∈ (tk−1, tk).

Observing that for each fixed n ≥ 1 the function Q is decreasing and Q′′(t) = ω−α(tn−t) < 0,

we arrive at the interpolation error
(
Π̃1,kQ

)
(t) ≥ 0 for 1 6 k 6 n, with

(
Π̃1,nQ

)
(t) 6 Q(tn−1)−

(
Π1,nQ

)
(t) = (t− tn−1)a

(n)
0 ,

(
Π̃1,kQ

)
(t) 6 (tk−1 − t)

∫ tk

tk−1

Q′′(t) dt 6 (t− tk−1)
[
ω1−α(tn − tk)− ω1−α(tn − tk−1)

]

6 2(t− tk−1)
(
a
(n)
n−k−1 − a

(n)
n−k

)
, t ∈ (tk−1, tk), 1 6 k 6 n− 1,

where Lemma 2.1 (ii) is used in the last inequality. Thus, (3.1) yields

∣∣(Dα
t v)(tn)− (Dα

τ v)
n
∣∣ 6

∫ tn

tn−1

∣∣v′′(t)
∣∣ (Π̃1,nQ

)
(t) dt+

n−1∑

k=1

∫ tk

tk−1

∣∣v′′(t)
∣∣ (Π̃1,kQ

)
(t) dt

6 a
(n)
0

∫ tn

tn−1

(t− tn−1)
∣∣v′′(t)

∣∣ dt+ 2

n−1∑

k=1

(
a
(n)
n−k−1 − a

(n)
n−k

) ∫ tk

tk−1

(t− tk−1)
∣∣v′′(t)

∣∣ dt,

and the desired result follows from the definition of Gk.

Remark 3.2 Compared with the previous estimate in [15, Lemma 3.3], Lemma 3.1 removes
the time-step ratios restriction ρk 6 1, which is an undesirable limitation on the mesh for the
problems that allow the rapid growth of the solution at the time far away from t = 0.

We now focus on the fast L1 method by taking the initial singularity into account. Here
and hereafter, we denote T̂ = max{1, T} and t̂n = max{1, tn} for 1 6 n 6 N .

Lemma 3.3 Assume that v ∈ C2((0, T ]) and that there exists a constant Cv > 0 such that
∣∣v′(t)

∣∣ 6 Cv(1 + tσ−1),
∣∣v′′(t)

∣∣ 6 Cv(1 + tσ−2), 0 < t 6 T, (3.2)

where σ ∈ (0, 1) ∪ (1, 2) is a parameter. Let Υj := (Dα
t v)(tj) − (Dα

f v)
j denote the local

consistency error of the fast L1 formula (2.15). Assume that the SOE tolerance error ǫ
satisfies ǫ 6 1

3 min{ω1−α(T ), 3αω2−α(1)}. Then the global consistency error

n∑

j=1

P
(n)
n−j

∣∣Υj
∣∣ 6Cv

(τσ1
σ

+
1

1− α
max
26k6n

(tk − t1)
αtσ−2

k−1τ
2−α
k +

ǫ

σ
tαn t̂

2
n−1

)
(3.3)

9



for 1 6 n 6 N . Moreover, if the mesh satisfies AssG, then

n∑

j=1

P
(n)
n−j

∣∣Υj
∣∣ 6 Cv

σ(1 − α)
τmin{2−α,γσ} +

ǫ

σ
Cvt

α
n t̂

2
n−1, 1 6 n 6 N.

Proof The main difference between the fast L1 formula (2.15) and the standard L1
formula (2.2) is that the convolution kernel is approximated by SOEs with an absolute tol-
erance error ǫ. Thus, comparing the standard L1 formula (2.2) with the corresponding fast
L1 formula (2.15), by Lemma 2.2 and the regularity assumption (3.2) one has

∣∣(Dα
f v)

j − (Dα
τ v)

j
∣∣ 6

j−1∑

k=1

∣∣∇τv
k
∣∣

τk

∫ tk

tk−1

∣∣∣
Nq∑

ℓ=1

̟ℓe−θℓ(tj−s) − ω1−α(tj − s)
∣∣∣ ds,

6 ǫ

j−1∑

k=1

∫ tk

tk−1

∣∣v′(s)
∣∣ ds 6 Cv

(
tj−1 + tσj−1/σ

)
ǫ 6

Cv

σ
t̂ 2j−1ǫ, j ≥ 1.

Lemma 2.2 implies that
∣∣A(n)

n−k − a
(n)
n−k

∣∣ 6 ǫ for 1 6 k 6 n − 1. Recalling that A
(n)
0 = a

(n)
0 ,

one has a
(j)
j−k−1 − a

(j)
j−k 6 A

(j)
j−k−1 − A

(j)
j−k + 2ǫ for 1 6 k 6 j − 1. Then Lemma 3.1 and the

regularity assumption (3.2) lead to

∣∣(Dα
t v)(tj)− (Dα

τ v)
j
∣∣ 6A

(j)
0 Gj +

j−1∑

k=1

(
A

(j)
j−k−1 −A

(j)
j−k

)
Gk + 2ǫ

j−1∑

k=1

Gk

6A
(j)
0 Gj +

j−1∑

k=1

(
A

(j)
j−k−1 −A

(j)
j−k

)
Gk + 4ǫ

j−1∑

k=1

∫ tk

tk−1

t
∣∣v′′(t)

∣∣ dt

6A
(j)
0 Gj +

j−1∑

k=1

(
A

(j)
j−k−1 −A

(j)
j−k

)
Gk +

Cv

σ
t̂ 2j−1ǫ, j ≥ 1.

Now a triangle inequality gives

∣∣Υj
∣∣ 6A

(j)
0 Gj +

j−1∑

k=1

(
A

(j)
j−k−1 −A

(j)
j−k

)
Gk +

Cv

σ
t̂ 2j−1ǫ, j ≥ 1. (3.4)

Multiplying the above inequality (3.4) by P
(n)
n−j and summing the index j from 1 to n, one

can exchange the order of summation and apply the definition (2.11) of P
(n)
n−j to obtain

n∑

j=1

P
(n)
n−j

∣∣Υj
∣∣ 6

n∑

j=1

P
(n)
n−jA

(j)
0 Gj +

n∑

j=2

P
(n)
n−j

j−1∑

k=1

(
A

(j)
j−k−1 −A

(j)
j−k

)
Gk + Cv

ǫ

σ

n∑

j=2

P
(n)
n−j t̂

2
j−1

=

n∑

j=1

GjP
(n)
n−jA

(j)
0 +

n−1∑

k=1

Gk
n∑

j=k+1

P
(n)
n−j

(
A

(j)
j−k−1 −A

(j)
j−k

)
+ Cv t̂

2
n−1

ǫ

σ

n∑

j=2

P
(n)
n−j

10



6

n∑

k=1

P
(n)
n−kA

(k)
0 Gk +

n−1∑

k=1

P
(n)
n−kA

(k)
0 Gk +

Cv

σ
tαn t̂

2
n−1ǫ, (3.5)

where the property (2.12) with πA = 3/2 is used in the last inequality. If the SOE approxi-
mation error ǫ 6 1

3 min{ω1−α(T ), 3αω2−α(1)} , Lemma 2.5 (II) and Lemma 2.1 (i) imply that

A
(k)
0 = a

(k)
0 = ω2−α(τk)/τk, A

(k)
k−2 ≥ 2

3a
(k)
k−2 ≥ 2

3ω1−α(tk − t1), and then

A
(k)
0 /A

(k)
k−2 6

3
2(1−α)(tk − t1)

ατ−α
k , 2 6 k 6 n ≤ N.

Furthermore, the identical property (2.10) for the complementary kernel P
(n)
n−j gives

P
(n)
n−1A

(1)
0 6 1 and

n−1∑

k=2

P
(n)
n−kA

(k)
k−2 6

n∑

k=2

P
(n)
n−kA

(k)
k−2 = 1.

The regularity assumption (3.2) gives G1 6 Cvτ
σ
1 /σ and Gk 6 Cvt

σ−2
k−1τ

2
k (2 6 k 6 n). Thus

it follows from (3.5) that

n∑

j=1

P
(n)
n−j

∣∣Υj
∣∣ 6 2G1 + 2

n∑

k=2

P
(n)
n−kA

(k)
0 Gk +

Cv

σ
tαn t̂

2
n−1ǫ

6Cv
τσ1
σ

+
Cv

1− α

n∑

k=2

P
(n)
n−kA

(k)
k−2(tk − t1)

αtσ−2
k−1τ

2−α
k +

Cv

σ
tαn t̂

2
n−1ǫ

6Cv

(τσ1
σ

+
1

1− α
max
26k6n

(tk − t1)
αtσ−2

k−1τ
2−α
k +

1

σ
tαn t̂

2
n−1ǫ

)
, 1 6 n 6 N.

The claimed estimate (3.3) is verified. In particular, if AssG holds, one has

tαk t
σ−2
k−1τ

2−α
k 6Cγt

σ−2+α
k τ2−α−β

k τβ min{1, tβ−β/γ
k }

6Cγt
σ−β/γ
k

(
τk/tk

)2−α−β
τβ 6 Cγt

max{0,σ−(2−α)γ}
k τβ, 2 6 k 6 N,

where β = min{2− α, γσ}. The final estimate follows since τσ1 6 Cγτ
γσ 6 Cγτ

β.
Next lemma describes the global consistency error of Newton’s linearized approach, which

is smaller than that generated by the above L1 approximation. In addition, there is no error
in the linearized approximation if f = f(u) is a linear function.

Lemma 3.4 Assume that v ∈ C([0, T ]) ∩ C2((0, T ]) satisfies the regularity condition (3.2),
and the nonlinear function f = f(u) ∈ C2(R). Denote vn = v(tn) and the local truncation
error Rn

f = f(vn)− f(vn−1)− f ′(vn−1)∇τv
n such that the global consistency error

n∑

j=1

P
(n)
n−j

∣∣Rj
f

∣∣ 6 Cvτ
α
1

(
τ21 + τ2σ1 /σ2

)
+ Cvt

α
n max
26j6n

(
τ2j + t2σ−2

j−1 τ2j
)
, 1 6 n 6 N.

Moreover, if the assumption AssG holds, one has

n∑

j=1

P
(n)
n−j

∣∣Rj
f

∣∣ 6Cvτ
min{2,2γσ} max{1, τγα/σ2}, 1 6 n 6 N.
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Proof Applying the formula of Taylor expansion with integral remainder, one has

Rj
f = (∇τv

j)2
∫ 1

0
f ′′
(
vj−1 + s∇τv

j
)
(1− s) ds, j ≥ 1.

Under the regularity conditions, one has
∣∣R1

f

∣∣ 6 Cv

( ∫ t1
t0

|v′(t)| dt
)2

6 Cv

(
τ21 + τ2σ1 /σ2

)
,

∣∣Rj
f

∣∣ 6 Cv

( ∫ tj

tj−1

∣∣v′(t)
∣∣ dt
)2

6 Cv

(
τ2j + t2σ−2

j−1 τ2j
)
, 2 6 j 6 N.

Note that, Lemma 2.5 (II) and the definition (2.3) give A
(k)
0 = a

(k)
0 = ω2−α(τk)/τk, so the

identical property (2.10) shows P
(n)
n−1 6 1/A

(1)
0 6 Γ(2−α)τα1 . Moreover, the bounded estimate

(2.12) with πA = 3
2 gives

∑n
j=2 P

(n)
n−j 6

3
2ω1+α(tn). Thus, it follows that

n∑

j=1

P
(n)
n−j

∣∣Rj
f

∣∣ 6P
(n)
n−1

∣∣R1
f

∣∣+
n∑

j=2

P
(n)
n−j

∣∣Rj
f

∣∣ 6 Cvτ
α
1

∣∣R1
f

∣∣+ Cvt
α
n max
26j6n

∣∣Rj
f

∣∣

6Cvτ
α
1

(
τ21 + τ2σ1 /σ2

)
+ Cvt

α
n max
26j6n

(
τ2j + t2σ−2

j−1 τ2j
)
, 1 6 n 6 N.

If AssG holds, one has τ2j 6 Cγτ
2 min{1, t2−2/γ

j } 6 Cγτ
β min{1, t2−2/γ

j }, and

t2σ−2
j−1 τ2j 6Cγt

2σ−2
j τ2−β

j τβ min{1, tβ−β/γ
j }

6Cγt
2σ−min{2,2γσ}/γ
j

(
τk/tk

)2−β
τβ 6 Cγt

max{0,2σ−2/γ}
k τβ, 2 6 j 6 N,

where β = min{2, 2γσ}. The second estimate follows since τ2σ1 6 Cγτ
2γσ 6 Cγτ

β.

4 Unconditional convergence

Assume that the time mesh fulfills Ass3 and AssG in the error analysis. We improve the
discrete H2 energy method in [12–14] to prove the unconditional convergence of discrete
solution to the two-level linearized scheme (2.6). In this section, K0, τ0, τ1, τ

∗
0 , h0, ǫ0 and

any numeric subscripted c, such as c0, c1, c2 and so on, are fixed values, which are always
dependent on the given data and the solution, but independent of the time-space grid steps
and the inductive index k in the mathematical induction as well. To make our ideas more
clearly, four steps to obtain unconditional error estimate are listed in four subsections.

4.1 STEP 1: construction of coupled discrete system

We introduce a function w := Dα
t u−f(u) with the initial-boundary values w(x, 0) := ∆u0(x)

for x ∈ Ω and w(x, t) := −f(0) for x ∈ ∂Ω. The problem (1.1a) can be formulated into

w =Dα
t u− f(u), x ∈ Ω̄, 0 < t 6 T ;

w =∆u, x ∈ Ω, 0 6 t 6 T.

12



Let wn
h be the numerical approximation of function W n

h = w(xh, tn) for xh ∈ Ω̄h. As done in
subsection 2.2, one has an auxiliary discrete system: to seek {unh, wn

h} such that

wn
h =(Dα

f uh)
n − f(un−1

h )− f ′(un−1
h )∇τu

n
h , xh ∈ Ω̄h, 1 6 n 6 N ; (4.1)

wn
h =∆hu

n
h , xh ∈ Ωh, 0 6 n 6 N ; (4.2)

u0h =u0(xh), xh ∈ Ω̄h ; unh = 0, xh ∈ ∂Ωh , 1 6 n 6 N. (4.3)

Obviously, by eliminating the auxiliary function wn
h in above discrete system, one directly

arrives at the computational scheme (2.6). Alternately, the solution properties of two-level
linearized method (2.6) can be studied via the auxiliary discrete system (4.1)-(4.3).

4.2 STEP 2: reduction of coupled error system

Let ũnh = Un
h − unh, w̃

n
h =W n

h −wn
h be the solution errors for xh ∈ Ω̄h. We now have an error

system with respect to the error function {w̃n
h} as

w̃n
h =(Dα

f ũh)
n −N n

h + ξnh , xh ∈ Ω̄h, 1 6 n 6 N ; (4.4)

w̃n
h =∆hũ

n
h + ηnh , xh ∈ Ωh, 0 6 n 6 N ; (4.5)

ũ0h =0, xh ∈ Ω̄h ; ũnh = 0, xh ∈ ∂Ωh , 1 6 n 6 N, (4.6)

where ξnh and ηnh denote temporal and spatial truncation errors, respectively, and

N n
h := f ′(un−1

h )∇τ ũ
n
h + f(Un−1

h )− f(un−1
h ) +

(
f ′(Un−1

h )− f ′(un−1
h )

)
∇τU

n
h

= f ′(un−1
h )∇τ ũ

n
h + ũn−1

h

∫ 1

0
f ′
(
sUn−1

h + (1− s)un−1
h

)
ds

+ ũn−1
h ∇τU

n
h

∫ 1

0
f ′′
(
sUn−1

h + (1− s)un−1
h

)
ds . (4.7)

Acting the difference operators ∆h and Dα
f on the equations (4.4)-(4.5), respectively, gives

∆hw̃
n
h =(Dα

f∆hũh)
n −∆hN n

h +∆hξ
n
h , xh ∈ Ωh, 1 6 n 6 N ;

(Dα
f w̃h)

n =(Dα
f∆hũh)

n + (Dα
f ηh)

n , xh ∈ Ωh, 1 6 n 6 N.

By eliminating the term (Dα
f∆hũh)

n in the above two equations, one gets

(Dα
f w̃h)

n =∆hw̃
n
h +∆hN n

h + (Dα
f ηh)

n −∆hξ
n
h xh ∈ Ωh, 1 6 n 6 N ; (4.8)

w̃0
h = η0h, xh ∈ Ω̄h ; w̃n

h = 0, xh ∈ ∂Ωh , 1 6 n 6 N ; (4.9)

where the initial and boundary conditions are derived from the error system (4.4)-(4.6).

4.3 STEP 3: continuous analysis of truncation error

According to the first regularity condition in (1.3), one has

∥∥ηn
∥∥ 6 c1h

2, 0 6 n 6 N. (4.10)
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Since the spatial error ηnh is defined uniformly at the time t = tn (there is no temporal error
in the equation (4.2)), we can define a continuous function ηh(t) for xh = (xi, yj) ∈ Ωh,

ηh(t) =
h21
6

∫ 1

0

[
∂(4)x u(xi − sh1, yj , t) + ∂(4)x u(xi + sh1, yj, t)

]
(1− s)3 ds

+
h22
6

∫ 1

0

[
∂(4)y u(xi, yj − sh2, t) + ∂(4)y u(xi, yj + sh2, t)

]
(1− s)3 ds ,

such that ηnh = ηh(tn). The second condition in (1.3) implies ‖η′(t)‖ 6 Cuh
2(1+tσ−1). Hence,

applying the fast L1 formula (2.15) and the equality (2.10), one has

n∑

j=1

P
(n)
n−j

∥∥(Dα
f η)

j
∥∥ 6

n∑

j=1

P
(n)
n−j

j∑

k=1

A
(j)
j−k

∥∥∇τη
k
∥∥ =

n∑

k=1

∥∥∇τη
k
∥∥ 6

c2
σ
t̂ 2nh

2. (4.11)

Since the time truncation error ξnh in (4.4) is defined uniformly with respect to grid point
xh ∈ Ω̄h, we can define a continuous function ξn(x) = ξn1 (x) + ξn2 (x), where ξ

n
1 , ξ

n
2 denotes

the truncation errors of fast L1 formula and Newton’s linearized approach respectively,

ξn1 = (Dα
t u)(tn)− (Dα

f u)
n, ξn2 =

(
∇τu(tn)

)2
∫ 1

0
f ′′
(
u(tn−1) + s∇τu(tn)

)
(1− s) ds,

such that ξnh = ξn(xi, yj) for xh ∈ Ω̄h. By the Taylor expansion formula, one has

∆h

(
ξn1
)
ij
=

∫ 1

0

[
∂xxξ

n
1 (xi − sh1, yj) + ∂xxξ

n
1 (xi + sh1, yj)

]
(1− s) ds

+

∫ 1

0

[
∂yyξ

n
1 (xi, yj − sh2) + ∂yyξ

n
1 (xi, yj + sh2)

]
(1− s) ds , 1 6 n 6 N.

Applying Lemma 3.3 with the second and third regularity conditions in (1.3), we have

n∑

j=1

P
(n)
n−j

∥∥∆hξ
j
1

∥∥ 6
Cu

σ(1− α)
τmin{2−α,γσ} +

Cu

σ
tαn t̂

2
n−1ǫ, 1 6 n 6 N.

Similarly, one can write out an integral expression of ∆h

(
ξn2
)
ij
by using the Taylor expansion.

Assuming f ∈ C4(R) and taking τ 6 τ1 = γα
√
σ such that τγα 6 τγα1 = σ, we apply Lemma

3.4 with the second regularity condition in (1.3) to find,

n∑

j=1

P
(n)
n−j

∥∥∆hξ
j
2

∥∥ 6 Cuτ
min{2,2γσ} max{1, τγα/σ2} 6

Cu

σ
τmin{2,2γσ}, 1 6 n 6 N.

Thus, the triangle inequality leads to

n∑

j=1

P
(n)
n−j

∥∥∆hξ
j
∥∥ 6

c3
σ(1− α)

τmin{2−α,γσ} +
c4
σ
tαn t̂

2
n−1ǫ , 1 6 n 6 N. (4.12)
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4.4 STEP 4: error estimate by mathematical induction

For a positive constant C0, let B(0, C0) be a ball in the space of grid functions on Ω̄h such
that max

{
‖ψ‖∞, ‖∇hψ‖, ‖∆hψ‖

}
6 C0 for any grid function {ψh} ∈ B(0, C0). Always, we

need the following result to treat the nonlinear terms but leave the proof to Appendix A.

Lemma 4.1 Let F ∈ C2(R) and a grid function {ψh} ∈ B(0, C0). Thus there is a constant
CF > 0 dependent on C0 and CΩ such that, ‖∆h [F (ψ)v]‖ 6 CF ‖∆hv‖ for any {vh} ∈ Vh.

Under the regularity assumption (1.3) with Uk
h = u(xh, tk), we define a constant

K0 =
1

3
max

06k6N

{∥∥Uk
∥∥
∞
,
∥∥∇hU

k
∥∥,
∥∥∆hU

k
∥∥}.

For a smooth function F ∈ C2(R) and any grid function {vh} ∈ Vh, we denote the maximum
value of CF in Lemma 4.1 as c0 such that

‖∆h [F (w)v]‖ 6 c0 ‖∆hv‖ for any grid function {wh} ∈ B(0,K0 + 1). (4.13)

Let c5 be the maximum value of CΩ to verify the embedding inequalities in (2.1), and

c6 = max{1, c5}Eα

(
3max{1, ρ}(2K0 + 3)c0T

α
)
, c7 = 3c1 +

2c2
σ
T̂ 2 + 3(2K0 + 3)c0c1T

α.

Also let τ∗0 = 1/ α
√

3max{1, ρ}Γ(2 − α)(2K0 + 3)c0 , and

τ0 =
γα

√
σ(1 − α)

6c3c6
, h0 =

1√
3c6c7

, ǫ0 = min
{ σ

6c4c6T̂ 2Tα
,
1

3
ω1−α(T ), α ω2−α(1)

}
.

For the simplicity of presentation, denote

Ek := Eα

(
3max{1, ρ}(2K0 + 3)c0t

α
k

)
,

T k :=
2c3

σ(1− α)
τmin{2−α,γσ} +

(
2c1 +

2c2
σ
t̂ 2k + 3(2K0 + 3)c0c1t

α
k

)
h2 +

2c4
σ
tαk t̂

2
k−1ǫ ,

where 1 6 k 6 N . We now apply the mathematical induction to prove that

∥∥∆hũ
k
∥∥ 6 EkT k + c1h

2 for 1 6 k 6 N, (4.14)

if the time-space grids and the SOE approximation satisfies

τ 6 min{τ0, τ1, τ∗0 }, h 6 h0, ǫ 6 ǫ0. (4.15)

Note that, the restrictions in (4.15) ensures the error function {ũkh} ∈ B(0, 1) for 1 6 k 6 N .
Consider k = 1 firstly. Since ũ0h = 0, {u0h} ∈ B(0,K0) ⊂ B(0,K0 + 1) and the nonlinear

term (4.7) gives N 1
h = f ′(u0h)ũ

1
h. For the function f ∈ C3(R), the inequality (4.13) implies

∥∥∆hN 1
∥∥ = ‖∆h

(
f ′(u0)ũ1

)
‖ 6 c0

∥∥∆hũ
1
∥∥ 6 c0

∥∥w̃1
∥∥+ c0c1h

2 , (4.16)
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where the equation (4.5) and the estimate (4.10) are used. Taking the inner product of the
equation (4.8) (for n = 1) by w̃1

h, one gets

A
(1)
0

〈
∇τ w̃

1, w̃1
〉
6
〈
∆hN 1, w̃1

〉
+
〈
(Dα

f η)
1 −∆hξ

1, w̃1
〉
,

because the zero-valued boundary condition in (4.9) leads to
〈
∆hw̃

1, w̃1
〉
6 0. With the view

of Cauchy-Schwarz inequality and (4.16), one has
〈
∇τ w̃

1, w̃1
〉
≥
∥∥w̃1

∥∥∇τ

(∥∥w̃1
∥∥) and then

A
(1)
0 ∇τ

(∥∥w̃1
∥∥) 6

∥∥∆hN 1
∥∥+

∥∥(Dα
f η)

1 −∆hξ
1
∥∥ 6 c0

∥∥w̃1
∥∥+

∥∥(Dα
f η)

1 −∆hξ
1
∥∥+ c0c1h

2 .

Setting τ1 6 τ∗0 6 1/ α
√

3max{1, ρ}Γ(2 − α)c0, we apply Theorem 2.4 (discrete fractional
Grönwall inequality) with ξ11 =

∥∥(Dα
f η)

1 −∆hξ
1
∥∥ and ξ12 = c0c1h

2 to get

∥∥w̃1
∥∥ 6Eα

(
3max{1, ρ}c0tα1

)(
2
∥∥η0
∥∥+ 2P

(1)
0

∥∥(Dα
f η)

1 −∆hξ
1
∥∥+ 3c0c1ω1+α(t1)h

2
)

6E1

( 2c3
σ(1 − α)

τmin{2−α,γσ} + 2c1h
2 +

2c2
σ
t̂ 21 h

2 + 3c0c1ω1+α(t1)h
2
)
6 E1T 1,

where the initial condition (4.9) and the error estimates (4.10)-(4.12) are used. Thus, the
equation (4.5) and the inequality (4.10) yield the estimate (4.14) for k = 1,

∥∥∆hũ
1
∥∥ 6

∥∥w̃1
∥∥+

∥∥η1
∥∥ 6 E1T 1 + c1h

2 .

Assume that the error estimate (4.14) holds for 1 6 k 6 n − 1 (n ≥ 2). Thus we apply
the embedding inequalities in (2.1) to get

max
{∥∥ũk

∥∥
∞
,
∥∥∇hũ

k
∥∥,
∥∥∆hũ

k
∥∥} 6 max{1, c5}

(
EkT k + c1h

2
)
, 1 6 k 6 n− 1.

Under the priori settings in (4.15), we have the error function {ũkh} ∈ B(0, 1), the discrete
solution {ukh} ∈ B(0,K0+1) for 1 6 k 6 n−1, and the continuous solution {Uk

h} ∈ B(0,K0) ⊂
B(0,K0+1). Then, for the function f ∈ C4(R), one applies the inequality (4.13) to find that

∥∥∆h

[
f ′(un−1)∇τ ũ

n
] ∥∥ 6 c0

∥∥∆h∇τ ũ
n
∥∥ 6 c0

∥∥∆hũ
n
∥∥+ c0

∥∥∆hũ
n−1
∥∥ ,

∥∥∆h

[
ũn−1f ′

(
sUn−1 + (1− s)un−1

)] ∥∥ 6 c0
∥∥∆hũ

n−1
∥∥ ,

∥∥∆h

[
ũn−1∇τU

nf ′′
(
sUn−1 + (1− s)un−1

)] ∥∥ 6 c0
∥∥∆h(ũ

n−1∇τU
n)
∥∥ 6 2c0K0

∥∥∆hũ
n−1
∥∥,

where 0 6 s 6 1. From the expression (4.7) of N n and the triangle inequality, one has

∥∥∆hN n
∥∥ 6 c0

∥∥∆hũ
n
∥∥+ 2(K0 + 1)c0

∥∥∆hũ
n−1
∥∥

6 c0
∥∥w̃n

∥∥+ 2(K0 + 1)c0
∥∥w̃n−1

∥∥+ (2K0 + 3)c0c1h
2 , (4.17)

where the equation (4.5) and the estimate (4.10) are used.
Now, taking the inner product of (4.8) by w̃n

h , one gets

〈
(Dα

f w̃)
n, w̃n

〉
6
〈
∆hN n, w̃n

〉
+
〈
(Dα

f η)
n −∆hξ

n, w̃n
〉
, (4.18)
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because the zero-valued boundary condition in (4.9) leads to
〈
∆hw̃

n, w̃n
〉
6 0. Lemma 2.5

(I) says that the kernels A
(n)
n−k are decreasing, so the Cauchy-Schwarz inequality gives

〈
(Dα

f w̃)
n, w̃n

〉
≥A

(n)
0 ‖w̃n‖2 −

n−1∑

k=1

(
A

(n)
n−k−1 −A

(n)
n−k

)
‖w̃k‖‖w̃n‖ −A

(n)
n−1‖w̃0‖‖w̃n‖

= ‖w̃n‖
[
A

(n)
0 ‖w̃n‖ −

n−1∑

k=1

(
A

(n)
n−k−1 −A

(n)
n−k

)
‖w̃k‖ −A

(n)
n−1‖w̃0‖

]

= ‖w̃n‖
n∑

k=1

A
(n)
n−k∇τ

(
‖w̃k‖

)
.

Thus with the help of Cauchy-Schwarz inequality and (4.17), it follows from (4.18) that

n∑

k=1

A
(n)
n−k ∇τ

(
‖w̃k‖

)
6
∥∥∆hN n

∥∥+
∥∥(Dα

f η)
n −∆hξ

n
∥∥

6 c0
∥∥w̃n

∥∥+ 2(K0 + 1)c0
∥∥w̃n−1

∥∥+
∥∥(Dα

f η)
n −∆hξ

n
∥∥+ (2K0 + 3)c0c1h

2 .

Setting the maximum time-step τ 6 τ∗0 = 1/ α
√

3max{1, ρ}Γ(2 − α)(2K0 + 3)c0, we apply
Theorem 2.4 with ξn1 =

∥∥(Dα
f η)

n −∆hξ
n
∥∥ and ξn2 = (2K0 + 3)c0c1h

2 to get

∥∥w̃n
∥∥ 6En

(
2
∥∥η0
∥∥+ 2 max

16j6n

j∑

k=1

P
(j)
j−k

∥∥(Dα
f η)

k −∆hξ
k
∥∥+ 3(2K0 + 3)c0c1ω1+α(tn)h

2

)

6En

( 2c3
σ(1− α)

τmin{2−α,γσ} +
2c4
σ
tαn t̂

2
n−1ǫ

)

+En

(
2c1 +

2c2
σ
t̂ 2n + 3(2K0 + 3)c0c1ω1+α(tn)

)
h2 6 EnT n,

where the initial data (4.9) and the three estimates (4.10)-(4.12) are used. Then the error
equation (4.5) with (4.10) imply that the claimed error estimate (4.14) holds for k = n,

‖∆hũ
n‖ 6 EnT n + c1h

2 .

The principle of induction and the third inequality in (2.1) give the following result.

Theorem 4.2 Assume that the solution of nonlinear subdiffusion problem (1.1) with the
nonlinear function f ∈ C4(R) fulfills the regularity assumption (1.3) with σ ∈ (0, 1) ∪ (1, 2).
If the SOE approximation error ǫ 6 ǫ0 and the maximum step size τ 6 min{τ0, τ1, τ∗0 },
the discrete solution of two-level linearized fast scheme (2.6), on the nonuniform time mesh
satisfying Ass3 and AssG, is unconditionally convergent,

∥∥Uk − uk
∥∥
∞

6
Cu

σ(1 − α)
max{1, ρ}

(
τmin{2−α,γσ} + h2 + ǫ

)
, 1 6 k 6 N.

It achieves an optimal time accuracy of order O(τ2−α) if γ ≥ max{1, (2 − α)/σ}.
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5 Numerical experiments

Two numerical examples are reported here to support our theoretical analysis. The two-level
linearized scheme (2.6) runs for solving the fractional Fisher equation

Dα
t u = ∆u+ u(1− u) + g(x, t), (x, t) ∈ (0, π)2 × (0, T ],

subject to zero-valued boundary data, with two different initial data and exterior forces:

• (Example 1) u0(x) = sinx sin y and g(x, t) = 0 such that no exact solution is available;

• (Example 2) g(x, t) is specified such that u(x, t) = ωσ(t) sinx sin y, 0 < σ < 2.

Note that, Example 2 with the regularity parameter σ is set to examine the sharpness of
predicted time accuracy on nonuniform meshes. Actually, our present theory also fits for the
semilinear problem with nonzero force g(x, t) ∈ C(Ω̄× [0, T ]).
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Figure 1: The log-log plot of difference quotient ∇τu
n
h/τn versus the time for Example 1

(α = 0.4) with two grading parameters γ = 1 (left) and γ = 3 (right).
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Figure 2: The log-log plot of difference quotient ∇τu
n
h/τn versus the time for Example 1

(α = 0.8) with two grading parameters γ = 1 (left) and γ = 2 (right).

In our simulations, the spatial domain Ω is divided uniformly into M parts in each di-
rection (M1 = M2 = M) and the time interval [0, T ] is divided into two parts [0, T0] and
[T0, T ] with total NT subintervals. According to the suggestion in [15], the graded mesh
tk = T0 (k/N)γ is applied in the cell [0, T0] and the uniform mesh with time step size τ ≥ τN is
used over the remainder interval. Given certain final time T and a proper numberNT , here we
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would take T0 = min{1/γ, T}, N =
⌈

NT

T+1−γ−1

⌉
such that τ = T−T0

NT−N ≥ T+1−γ−1

NT
≥ N−1 ≥ τN .

Always, the absolute tolerance error of SOE approximation is set to ǫ = 10−12 such that the
two-level L1 formula (2.5a) is comparable with the L1 formula (2.2) in time accuracy.

In Example 1, we investigate the asymptotic behavior of solution near t = 0 and the
computational efficiency of the linearized method (2.6). Setting M = 100, T = 1/γ and
NT = 100, Figures 1-2 depict, in log-log plot, the numerical behaviors of first-order difference
quotient ∇τu

n
h/τn at three spatial points near the initial time for different fractional orders

and grading parameters. Observations suggest that log |ut(x, t)| ≈ Cu(x) + (α − 1) log t as
t→ 0, and the solution is weakly singular near the initial time. Compared with the uniform
grid, the graded mesh always concentrates much more points in the initial time layer and
provides better resolution for the initial singularity.
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Figure 3: The log-log plot of CPU time versus the total number NT of time levels for the
linearized method in solving Example 1 with two different formulas of Caputo derivative.

To see the effectiveness of our linearized method (2.6), we also consider another linearized
method by replacing the two-level fast L1 formula (Dα

f uh)
n with the nonuniform L1 formula

(Dα
τ uh)

n defined in (2.2). Setting α = 0.5, γ = 2, and M = 50, the two schemes are run for
Example 1 to the final time T = 50 with different total numbers NT . Figure 3 shows the CPU
time in seconds for both linearized procedures versus the total number NT of subintervals.
We observe that the proposed method has almost linear complexity in NT and is much faster
than the direct scheme using traditional L1 formula.

Since the spatial error O(h2) is standard, the time accuracy due to the numerical approx-
imations of Caputo derivative and nonlinear reaction is examined in Example 2 with T = 1.
The maximum norm error e(N,M) = max16l6N

∥∥U(tl)− ul
∥∥
∞
. To test the sharpness of our

error estimate, we consider three different scenarios, respectively, in Tables 5.1-5.3:

Table 5.1 : σ = 2− α and γ = 1 with fractional orders α = 0.4, 0.6 and 0.8.

Table 5.2 : α = 0.4 and σ = 0.4 with grid parameters γ = 1, 3
4γopt, γopt and 5

4γopt.

Table 5.3 : α = 0.4 and σ = 0.8 with grid parameters γ = 1, 3
4γopt, γopt and 5

4γopt.

Tables 5.1 lists the solution errors, for σ = 2− α, on the gradually refined grids with the
coarsest grid of N = 50. Numerical data indicates that the optimal time order is of about
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Table 5.1 Numerical temporal accuracy for σ = 2− α and γ = 1

N α = 0.4,σ = 1.6 α = 0.6,σ = 1.4 α = 0.8,σ = 1.2
e(N) Order e(N) Order e(N) Order

50 5.69e-04 – 1.14e-03 – 2.57e-03 –
100 1.57e-04 1.86 4.65e-04 1.30 1.23e-03 1.07
200 4.40e-05 1.84 1.88e-04 1.31 5.80e-04 1.08
400 1.45e-05 1.60 7.51e-05 1.32 2.71e-04 1.10
800 5.02e-06 1.53 2.98e-05 1.34 1.25e-04 1.12

min{γσ, 2− α} 1.60 1.40 1.20

O(τ2−α), which dominates the spatial error O(h2). Always, we take M = N in Tables 5.1-5.3
such that e(N,M) ≈ e(N). The experimental rate (listed as Order in tables) of convergence
is estimated by observing that e(N) ≈ Cuτ

β and then β ≈ log2 [e(N)/e(2N)] .

Table 5.2 Numerical temporal accuracy for α = 0.4, σ = 0.4 and γopt = 4

N γ = 1 γ = 3 γ = 4 γ = 5
e(N) Order e(N) Order e(N) Order e(N) Order

50 5.47e-02 – 3.82e-03 – 1.65e-03 – 1.32e-03 –
100 4.64e-02 0.24 1.68e-03 1.18 5.78e-04 1.52 4.60e-04 1.52
200 3.78e-02 0.30 7.36e-04 1.19 1.99e-04 1.54 1.58e-04 1.54
400 3.00e-02 0.33 3.21e-04 1.20 6.78e-05 1.55 5.37e-05 1.56
800 2.34e-02 0.36 1.40e-04 1.20 2.30e-05 1.56 1.81e-05 1.57

min{γσ, 2− α} 0.40 1.20 1.60 1.60

Table 5.3 Numerical temporal accuracy for α = 0.4, σ = 0.8 and γopt = 2

N γ = 1 γ = 3/2 γ = 2 γ = 5/2
e(N) Order e(N) Order e(N) Order e(N) Order

50 3.46e-03 – 8.72e-04 – 5.80e-04 – 7.52e-04 –
100 2.20e-03 0.65 3.93e-04 1.15 1.39e-04 2.08 1.77e-04 2.08
200 1.34e-03 0.72 1.75e-04 1.17 3.80e-05 1.87 4.06e-05 2.13
400 7.95e-04 0.75 7.70e-05 1.18 1.32e-05 1.53 8.88e-06 2.19
600 5.83e-04 0.77 4.76e-05 1.19 7.06e-06 1.54 4.22e-06 1.55
800 4.67e-04 0.77 3.38e-05 1.19 4.52e-06 1.55 2.70e-06 1.55

min{γσ, 2− α} 0.80 1.20 1.60 1.60

Numerical results in Tables 5.2-5.3 (with α = 0.4 and σ < 2 − α) support the predicted
time accuracy in Theorem 4.2 on the smoothly graded mesh tk = T (k/N)γ . In the case of a
uniform mesh (γ = 1), the solution is accurate of order O(τσ), and the nonuniform meshes
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improve the numerical precision and convergence rate of solution evidently. The optimal time
accuracy O(τ2−α) is observed when the grid parameter γ ≥ (2− α)/σ.
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A Proof of Lemma 4.1

Proof Consider F (ψ) = ψ firstly. It is easy to check that, at point xh = (xi, yj) ∈ Ωh,

δ2x(ψijvij) = ψij

(
δ2xvij

)
+ δxψi− 1

2
,j

(
δxvi− 1

2
,j

)
+ δxψi+ 1

2
,j

(
δxvi+ 1

2
,j

)
+ vij

(
δ2xψij

)
,

so that ‖δ2x(ψv)‖ 6 C0

(
‖v‖+ ‖δxv‖+ ‖δ2xv‖

)
. Similarly, ‖δ2y(ψv)‖ 6 C0

(
‖v‖ + ‖δyv‖+ ‖δ2yv‖

)
.

Moreover, one has ‖δyδx(ψv)‖ 6 C0 (‖v‖ + ‖δxv‖+ ‖δyv‖+ ‖δyδxv‖), due to the fact

δyδx(ψi− 1

2
,j− 1

2

vi− 1

2
,j− 1

2

) =ψi− 1

2
,j− 1

2

(
δyδxvi− 1

2
,j− 1

2

)
+ δyψi− 1

2
,j− 1

2

(
δxvi− 1

2
,j− 1

2

)

+ δxψi− 1

2
,j− 1

2

(
δyvi− 1

2
,j− 1

2

)
+
(
δyδxψi− 1

2
,j− 1

2

)
vi− 1

2
,j− 1

2

.

Noticing that ‖∆hv‖2 = ‖δ2xv‖2 + 2‖δxδyv‖2 + ‖δ2yv‖2, we apply the embedding inequalities
in (2.1) to obtain, also see [12, Lemma 2.2],

‖∆h(ψv)‖ 6 Cu (‖v‖+ ‖∆hv‖) 6 CF ‖∆hv‖ ,

where the constant CF is dependent on C0 and CΩ. For the general case F ∈ C2(R), one has

δ2x
[
F (ψij)vij

]
=F (ψij)

(
δ2xvij

)
+ δxF (ψi− 1

2
,j)
(
δxvi− 1

2
,j

)

+ δxF (ψi+ 1

2
,j)
(
δxvi+ 1

2
,j

)
+ vij

[
δ2xF (ψij)

]
.

The formula of Taylor expansion with integral remainder gives

δxF (ψi− 1

2
,j) =

(
F (ψij)− F (ψi−1,j)

)
/h1 = δxψi− 1

2
,j

∫ 1

0
F ′
(
sψij + (1− s)ψi−1,j

)
ds ,

δ2xF (ψij) =
(
δ2xψij

)
F ′(ψij) +

(
δxψi− 1

2
,j

)2
∫ 1

0
F ′′
(
sψij + (1− s)ψi−1,j

)
(1− s) ds

+
(
δxψi+ 1

2
,j

)2
∫ 1

0
F ′′
(
sψij + (1− s)ψi+1,j

)
(1− s) ds ,

such that ‖δxF (ψ)‖ 6 CF and ‖δ2xF (ψ)‖ 6 CF . Therefore, simple calculations arrive at

‖δ2x [F (ψ)v)] ‖ 6 CF

(
‖v‖+ ‖δxv‖+ ‖δ2xv‖

)
.

By presenting similar arguments as those in the above simple case, it is straightforward to
get claimed estimate and complete the proof.
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