Skip to main content
Log in

A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel second-order numerical approximation for the Riemann–Liouville tempered fractional derivative, called the tempered fractional-compact difference formula is derived by using the tempered Grünwald difference operator and its asymptotic expansion. Using the relationship between Riemann–Liouville and the Caputo tempered fractional derivatives, then the constructed approximation formula is applied to deal with the time-Caputo-tempered partial differential equation in time, while the spatial Riesz derivative are discretized by the fourth-order compact numerical differential formulas. By using the energy method, it is proved that the proposed algorithm to be unconditionally stable and convergent with order \({\mathcal {O}}\left( \tau ^2+h_1^4+h_2^4\right) \), where \(\tau \) is the temporal stepsize and \(h_1,h_2\) are the spatial stepsizes respectively. Finally, some numerical examples are performed to testify the effectiveness of the obtained algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bu, W.P., Tang, Y.F., Wu, Y.C., Yang, J.Y.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1413 (2000)

    Article  Google Scholar 

  5. Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, A., Li, C.P.: A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93, 889–914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl. 75, 2903–2914 (2018)

    Article  MathSciNet  Google Scholar 

  8. Deng, W., Chen, M., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (V). Numer. Methods Partial Differ. Equ. 33, 1754–1794 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, Z., Cao, W., Lin, G.: A second-order difference scheme for the time fractional substantial diffusion equation. J. Comput. Appl. Math. 313, 54–69 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM. J. Numer. Anal. 52, 2272–2294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirchner, J., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  20. Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Laub, A.J.: Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  22. Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, 1048–1099 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, 543–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015)

    Google Scholar 

  27. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  28. Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Yan, Y., Ford, N.J.: Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114, 201–220 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  31. Magin, R.: Fractional Calculus in Bioengneering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  32. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moghaddam, B.P., Machado, J.A.T., Babaei, A.: A computationally efficient method for tempered fractional differential equations with application. Comput. Appl. Math. 37(3), 3657–3671 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Metzler, R., Nonnenmacher, T.F.: Space-and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)

    Article  Google Scholar 

  35. Morgado, M.L., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20, 1239–1262 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mustapha, K., Schötzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 12 pages (2006)

  38. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)

    MATH  Google Scholar 

  40. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  41. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 698–721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sabzikara, F., Meerschaert, M.M., Chen, J.H.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, H., Yang, D.P., Zhu, S.F.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM. J. Numer. Anal. 52, 1292–1310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu, Y.Y., Deng, W.H., Wu, Y.J.: Fourth order quasi-compact difference schemes for (tempered) space fractional diffusion equations. Commun. Math. Sci. 15, 1183–1209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yu, Y.Y., Deng, W.H., Wu, Y.J.: Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112, 126–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM. J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zeng, F.H., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Scient. Comput. 37, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and the editor in charge of handling this manuscript for all their invaluable comments. Their useful suggestions and comments that improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfei Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (Nos. 11561060 and 11671251).

Appendix

Appendix

Below, we consider the Eq. (1) with nonzero initial value condition,

$$\begin{aligned} \displaystyle u(x,y,0)=\psi (x,y),\quad (x,y)\in {\overline{\varOmega }}=[a,b]\times [c,d]. \end{aligned}$$
(35)

Based on Eq. (4), then Eq. (1) can be further transformed into

$$\begin{aligned} \displaystyle \,_{RL}{D}_{0,t}^{\alpha ,\lambda }u(x,y,t)=\kappa _\beta \frac{\partial ^\beta u(x,y,t)}{\partial {|x|^\beta }}+\kappa _\gamma \frac{\partial ^\gamma u(x,y,t)}{\partial {|y|^\gamma }}+\frac{t^{-\alpha }e^{-\lambda t}}{\varGamma (1-\alpha )}\psi (x,y)+f(x,y,t).\nonumber \\ \end{aligned}$$
(36)

Using the previous method, we can obtain the following difference scheme with convergence order \({\mathcal {O}}\left( \tau ^2+h_1^4+h_2^4\right) \) for Eq. (36) with (35) and (3),

$$\begin{aligned} \displaystyle {\mathscr {H}}_x{\mathscr {H}}_y{\mathcal {B}}_{1}^{\alpha ,\lambda }u_{i,j}^k= & {} \kappa _\beta {\mathscr {L}}{\mathscr {H}}_y\delta _x^\beta u_{i,j}^k+\kappa _\gamma {\mathscr {L}} {\mathscr {H}}_x\delta _y^\gamma u_{i,j}^k \nonumber \\&+\,{\mathscr {L}}{\mathscr {H}}_x{\mathscr {H}}_yf_{i,j}^k+{\mathscr {L}}{\mathscr {H}}_x{\mathscr {H}}_yg_{i,j}^k , \nonumber \\&(x_i,y_j)\in \varOmega _h,\quad 1\le k\le N, \end{aligned}$$
(37)
$$\begin{aligned} \displaystyle u_{i,j}^0= & {} \psi (x_i,y_j),\quad (x_i,y_j)\in {\overline{\varOmega }}_h, \end{aligned}$$
(38)
$$\begin{aligned} \displaystyle u_{i,j}^k= & {} \phi (x_i,y_j,t_k),\quad (x_i,y_j)\in \partial \varOmega _h,\quad 1\le k\le N, \end{aligned}$$
(39)

and their corresponding matrix form can be constructed as follows,

$$\begin{aligned}&\displaystyle \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathcal {B}}_{1}^{\alpha ,\lambda }\mathbf {{U}}^{k}\right) =\kappa _\beta \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {D}}}_{\beta }\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right) \nonumber \\&\quad +\,\kappa _\gamma \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {D}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right) +\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{F}}^{k}\right) \nonumber \\&\quad +\,\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{G}}^{k}\right) ,\quad 1\le k\le N, \end{aligned}$$
(40)
$$\begin{aligned}&\displaystyle \mathbf {{U}}^0={\varvec{\Psi }},\quad (x_i,y_j)\in {{\overline{\varOmega }}}_{h}, \end{aligned}$$
(41)
$$\begin{aligned}&\displaystyle \mathbf {{U}}^k={\varvec{\Phi }},\quad (x_i,y_j)\in \partial {\varOmega }_{h},\quad 0\le k\le N, \end{aligned}$$
(42)

where

$$\begin{aligned} g_{i,j}^k= & {} \frac{{t_k}^{-\alpha }e^{-\lambda {t_k}}}{\varGamma (1-\alpha )}\psi (x_i,y_j), \\ \mathbf {{G}}= & {} (g_{1,1},g_{2,1},\ldots ,g_{M_1-1,1},\ldots , g_{1,M_2-1},g_{2,M_2-1},\ldots ,g_{M_1-1,M_2-1})^{T}, \\ {\varvec{\Psi }}= & {} (\psi _{1,1},\psi _{2,1},\ldots ,\psi _{M_1-1,1},\ldots , \psi _{1,M_2-1},\psi _{2,M_2-1},\ldots ,\psi _{M_1-1,M_2-1})^{T}, \end{aligned}$$

and

$$\begin{aligned} {\varvec{\Phi }}=(\phi _{1,1},\phi _{2,1},\ldots ,\phi _{M_1-1,1}, \ldots ,\phi _{1,M_2-1},\phi _{2,M_2-1},\ldots ,\phi _{M_1-1,M_2-1})^{T}. \end{aligned}$$

For the difference scheme (40) with (41) and (42), we can get similar stability result, hat is to say, the difference scheme (40)–(42) is unconditionally stable with respect to the initial value and the source term.

Next, we give a simple but tedious proof. Taking the inner product of Eq. (40) with \({\mathscr {L}}\mathbf {{U}}^{k}\) leads to

$$\begin{aligned}&\displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathcal {B}}_{1}^{\alpha ,\lambda }\mathbf {{U}}^{k}\right) \nonumber \\&\quad =\kappa _\beta h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {D}}}_{\beta }\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right) \nonumber \\&\qquad +\,\kappa _\gamma h_1h_2\left( {\mathscr {L}} \mathbf {{U}}^{k}\right) ^T\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {D}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right) \nonumber \\&\qquad +\,h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta } \right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{F}}^{k}\right) \nonumber \\&\qquad +\,h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta } \right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{G}}^{k}\right) ,\quad 1\le k\le N. \end{aligned}$$
(43)

Like inequality (27), we also can get

$$\begin{aligned} \displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta } \right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{G}}^{k}\right) \le \frac{{\widetilde{\varepsilon }}^2}{2}\left\| {\mathscr {L}}\mathbf {{U}}^{k}\right\| ^2+ \frac{1}{2{\widetilde{\varepsilon }}^2}\left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2. \end{aligned}$$
(44)

Noting previous results

$$\begin{aligned} \displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {D}}}_{\beta }\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right)\le & {} \displaystyle \frac{C_\beta (\gamma ^2-\gamma +2)}{6(b-a)^\beta }\left\| {\mathscr {L}}\mathbf {{U}}^{k}\right\| ^2, \\ \displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T\left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {D}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{U}}^{k}\right)\le & {} \displaystyle \frac{C_\gamma (\beta ^2-\beta +2)}{6(d-c)^\gamma }\left\| {\mathscr {L}}\mathbf {{U}}^{k}\right\| ^2, \\ \displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta } \right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathscr {L}}\mathbf {{F}}^{k}\right)\le & {} \frac{{\widetilde{\varepsilon }}^2}{2}\left\| {\mathscr {L}}\mathbf {{U}}^{k}\right\| ^2+ \frac{1}{2{\widetilde{\varepsilon }}^2}\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2, \end{aligned}$$

and

$$\begin{aligned}&\displaystyle h_1h_2\left( {\mathscr {L}}\mathbf {{U}}^{k}\right) ^T \left( {{\mathbf {I}}}_{2}\otimes {{\mathbf {A}}}_{\beta }\right) \left( {{\mathbf {A}}}_{\gamma }\otimes {{\mathbf {I}}}_{1}\right) \left( {\mathcal {B}}_{1}^{\alpha ,\lambda }\mathbf {{U}}^{k}\right) \\&\quad \ge \displaystyle \frac{(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)}{72}{\mathcal {B}}_{1}^{\alpha ,2\lambda } \left\| \mathbf {{U}}^{k}\right\| ^2, \end{aligned}$$

and once again using (43) and (44), one can get the following result

$$\begin{aligned} \displaystyle {\mathcal {B}}_{1}^{\alpha ,2\lambda } \left\| \mathbf {{U}}^{k}\right\| ^2 \le \frac{36}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)}\left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) , \end{aligned}$$
(45)

where

$$\begin{aligned} \displaystyle {\widetilde{\varepsilon }}^2=\frac{1}{2}\varepsilon ^2= -\frac{1}{6}\left[ \frac{\kappa _\beta C_\beta (\gamma ^2-\gamma +2)}{(b-a)^\beta } +\frac{\kappa _\gamma C_\gamma (\beta ^2-\beta +2)}{(d-c)^\gamma }\right] >0. \end{aligned}$$

Denote \({\mathbf {U}}^k_\lambda =e^{\lambda k\tau }{\mathbf {U}}^k\), then from (45), it leads to that

$$\begin{aligned} \displaystyle q_{0}^{(\alpha )}\left\| \mathbf {{U}}^{k}_\lambda \right\| ^2\le & {} \displaystyle \sum _{\ell =1}^{k-1}\left( q_{k-\ell -1}^{(\alpha )}- q_{k-\ell }^{(\alpha )}\right) \left\| \mathbf {{U}}^{\ell }_\lambda \right\| ^2+q_{k-1}^{(\alpha )}\left[ \left\| \mathbf {{U}}^{0}_\lambda \right\| ^2\right. \nonumber \\&\left. \displaystyle +\, \frac{36T^\alpha e^{2\lambda T}\varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)} \left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) \right] . \end{aligned}$$
(46)

Let

$$\begin{aligned} \displaystyle \mathcal {\widetilde{E}}^N=\left\| \mathbf {{U}}^{0}_\lambda \right\| ^2+\frac{36T^\alpha e^{2\lambda T}\varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)} \max _{1\le k\le N}\left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) , \end{aligned}$$
(47)

then (46) can be further written as

$$\begin{aligned} \displaystyle q_{0}^{(\alpha )}\left\| \mathbf {{U}}^{k}_\lambda \right\| ^2\le \sum _{\ell =1}^{k-1} \left( q_{k-\ell -1}^{(\alpha )}- q_{k-\ell }^{(\alpha )}\right) \left\| \mathbf {{U}}^{\ell }_\lambda \right\| ^2+ q_{k-1}^{(\alpha )}\mathcal {\widetilde{E}}^N,\quad 1\le k\le N. \end{aligned}$$
(48)

Same as the previous proof process, we can easily get the following result based on (48) and the mathematical induction,

$$\begin{aligned} \displaystyle \left\| \mathbf {{U}}^{k}_\lambda \right\| ^2\le \mathcal {\widetilde{E}}^N,\quad 1\le k\le N. \end{aligned}$$
(49)

Note that \(\left\| \mathbf {{U}}^{k}_\lambda \right\| ^2 =\left\| e^{\lambda k\tau }\mathbf {{U}}^{k}\right\| ^2 =e^{2\lambda k\tau }\left\| \mathbf {{U}}^{k}\right\| ^2\), and combined with (47), (48) and (49), resulting in the following desired result

$$\begin{aligned}&\displaystyle \left\| \mathbf {{U}}^{k}\right\| ^2 \\&\quad \le \displaystyle e^{-2\lambda k\tau }\mathcal {\widetilde{E}}^N \\&\quad \le \displaystyle e^{-2\lambda k\tau }\left[ \left\| \mathbf {{U}}^{0}_\lambda \right\| ^2+\frac{36T^\alpha e^{2\lambda T}\varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)} \max _{1\le k\le N}\left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) \right] \\&\quad \le \displaystyle \left\| \mathbf {{U}}^{0}_\lambda \right\| ^2+\frac{36T^\alpha e^{2\lambda T}\varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)}\max _{1\le k\le N}\left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) \\&\quad \le \displaystyle e^{2\lambda T}\left[ \left\| \mathbf {{U}}^{0}\right\| ^2+\frac{36T^\alpha \varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)}\max _{1\le k\le N} \left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) \right] \\&\quad =\displaystyle e^{2\lambda T}\left[ \left\| {\varvec{\Psi }}\right\| ^2+\frac{36T^\alpha \varGamma (1-\alpha )}{{\widetilde{\varepsilon }}^2(\beta ^2-\beta +2)(\gamma ^2-\gamma +2)}\max _{1\le k\le N} \left( \left\| {\mathscr {L}}\mathbf {{G}}^{k}\right\| ^2+\left\| {\mathscr {L}}\mathbf {{F}}^{k}\right\| ^2\right) \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, C. A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions. J Sci Comput 80, 81–109 (2019). https://doi.org/10.1007/s10915-019-00930-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00930-5

Keywords

Navigation