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Abstract

This article is concerned with the mathematical and numerical analysis of a steady phase change
problem for non-isothermal incompressible viscous flow. The system is formulated in terms of
pseudostress, strain rate and velocity for the Navier-Stokes-Brinkman equation, whereas tempera-
ture, normal heat flux on the boundary, and an auxiliary unknown are introduced for the energy
conservation equation. In addition, and as one of the novelties of our approach, the symmetry of
the pseudostress is imposed in an ultra-weak sense, thanks to which the usual introduction of the
vorticity as an additional unknown is no longer needed. Then, for the mathematical analysis two
variational formulations are proposed, namely mixed-primal and fully-mixed approaches, and the
solvability of the resulting coupled formulations is established by combining fixed-point arguments,
Sobolev embedding theorems and certain regularity assumptions. We then construct corresponding
Galerkin discretizations based on adequate finite element spaces, and derive optimal a priori error
estimates. Finally, numerical experiments in 2D and 3D illustrate the interest of this scheme and
validate the theory.
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1 Introduction

We are interested in the mathematical and numerical investigation of phase change models for natural
convection in porous media. Natural convection is a largely studied phenomenon due to its presence
in different applications: melting and solidification processes [18,30,38,39], design of latent heat based
energy storage devices [21], ocean and atmosphere dynamics [20,27], crystalization in magma chambers

∗This work was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Con-
curso Apoyo a Centros Cientificos y Tecnológicos de Excelencia con Financiamiento Basal; by Becas-Chile Programme
for foreign students; by Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción; and by
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[9, 35], etc. Differently from other works where the phase change is incorporated into the Boussinesq
approximation by means of enthalpy-porosity methods [33] or enthalpy-viscosity models [18], in this
article the problem is modeled either as a viscous Newtonian fluid where the change of phase is encoded
in the viscosity itself, or using a Brinkman-Boussinesq approximation where the solidification process
influences the drag directly.

A variety of numerical methods dealing with phase change Boussinesq models have been proposed
in recent years, including bioconvective flows [13, 28], porosity-based models [33, 39], and viscosity
based-models [7, 18,42]. Mathematical analysis of other related models as natural convection [29,41],
and Boussinesq-type, such as time-dependent problems under different contexts [2, 3, 19], primal and
mixed formulations [14,16,22,32], with viscosity of the fluid depending on the temperature [4,5], and
exactly divergence free [32] are available in the literature. However, up to our knowledge, a rigorous
mixed analysis for phase change models for natural convection is something that has not had great
attention until now. Therefore, in the present work, we focus on the mathematical and numerical
analysis of that problem, which has been proposed in [7, Section 4.2], and where the authors studied
a fully-primal formulation for a non-stationary phase-change model. Here, and similarly to [16], we
propose mixed-primal and fully-mixed approaches.

The rest of this work is organized as follows. In the remainder of this section, we recall some
preliminary notations. The nonlinear model of interest, and the definitive unknowns to be considered
in the variational formulation are presented in Section 2. For the Navier-Stokes-Brinkman equations,
the main unknowns are the velocity, a pseudostress tensor relating the strain tensor with the convective
term and the strain rate tensor. The pressure is eliminated using the fluid incompressibility and
can be recovered as a post-process of the pseudostress. Moreover, because of the convective term,
the velocity is sought in H1(Ω), which requires augmentation via Galerkin terms arising from the
constitutive and equilibrium equations, and therefore, imposing in an ultra-weak sense the symmetry of
the pseudostress, we do not need to introduce the vorticity as unknown in our variational formulation.
In turn, for the energy equation, and in addition to the temperature, we introduce the normal heat
flux through the boundary as a Lagrange multiplier for the primal formulation and a further unknown
for the mixed approach. We remark that including these Galerkin terms allows us to circumvent the
necessity of proving inf-sup conditions for both problems, and as a result, to relax the hypotheses
on the corresponding discrete spaces. In this way, the classical Banach fixed-point theorem, the Lax-
Milgram lemma, the Babǔska-Brezzi theory, suitable regularity and smallness-of-data assumptions, can
be applied to prove well-posedness of the continuous problem. In Section 3, we also define the Galerkin
scheme considering arbitrary finite dimensional subspaces and provide its unique solvability (this time,
by means of Brouwer fixed-point theorem), together with the corresponding Céa estimate. Then, we
make precise the definition of the involved discrete spaces. In Section 4 we establish the corresponding
fully-mixed variational formulation and its associated Galerkin scheme, and show that both systems
are well-posed. Then, considering specific finite element spaces for the unknowns together with its
approximation properties, we deduce the corresponding rates of convergence. We close in Section
5 with several numerical examples illustrating the performance of the augmented mixed-primal and
fully-mixed finite element methods, as well as confirming the theoretical rates of convergence.

1.1 Preliminaries

Let us denote by Ω ⊆ Rn, n = 2, 3, a given bounded domain with polyhedral boundary Γ = ∂Ω,
and by ν the outward unit normal vector on Γ. We recall the standard notation for Lebesgue spaces
Lp(Ω) and Sobolev spaces Hs(Ω) endowed with the norm ‖·‖s,Ω and seminorm | · |s,Ω. In particular,

H1/2(Γ) stands for the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. By M
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and M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and ‖ · ‖, with no subscripts, will stand for the natural norm of either an element
or an operator in any product functional space. In turn, for any vector field v = (vi)i=1,n we set the
gradient, divergence and tensor product operators as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

div v :=
n∑
j=1

∂vj
∂xj

and v ⊗w := (viwj)i,j=1,n.

In addition, given any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I ,

where I is the identity matrix of Rn×n. Furthermore, we recall the following Hilbert space equipped
with its usual norm

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
, ‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω .

In addition, by | · | we will denote both the Euclidean norm in Rn and the Frobenius norm in Rn×n.

2 The model problem

Let us consider the following PDE system, describing phase change mechanisms involving viscous fluids
within porous media. The governing equations in this case correspond to the Navier-Stokes-Brinkman
equations coupled with a generalized energy equation (related to the well-known Stefan problem)

(∇u)u− αdiv
[
µ(θ)e(u)

]
+∇p+ η(θ)u = f(θ)k in Ω , (2.1a)

divu = 0 in Ω , (2.1b)

−ρ div(κ∇θ) + u · ∇θ + u · ∇s(θ) = 0 in Ω , (2.1c)

u = uD and θ = θD on Γ , (2.1d)

with α := 1
Re , ρ := 1

CPr , where Re and Pr are the Reynolds and Prandtl numbers, respectively, κ
and C are the non-dimensional heat conductivity tensor (here assumed isotropic) and specific heat,

respectively, k stands for the unit vector pointing oppositely to gravity, e(u) =
1

2
(∇u+∇ut) is the

strain rate tensor, and u : Ω → Rn, p : Ω → R and θ : Ω → R, correspond to the velocity, pressure,
and the temperature of the fluid flow, respectively. Finally, µ, η, s and f are the nonlinear viscosity,
porosity, enthalpy and buoyancy terms, respectively, which depend on the temperature. Notice that
here s(θ) denotes the regularized enthalpy function and it accounts for the latent heat of fusion, i.e.
the energy needed to change the phase of a material [7, 36,37].

For the subsequent analysis we assume that the functions µ, η, s are uniformly bounded and Lips-
chitz continuous: there exist positive constants µ1, µ2, η1, η2, s1, s2, Lµ, Lη, Ls such that

µ1 ≤ µ(ψ) ≤ µ2, |µ(ψ)− µ(φ)| ≤ Lµ|ψ − φ| ∀ψ, φ ∈ R,
η1 ≤ η(ψ) ≤ η2, |η(ψ)− η(φ)| ≤ Lη|ψ − φ| ∀ψ, φ ∈ R,
s1 ≤ s(ψ) ≤ s2, |s(ψ)− s(φ)| ≤ Ls|ψ − φ| ∀ψ, φ ∈ R.

(2.2)
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Similar assumptions are placed on the buoyancy function f : there exist positive constants Cf and Lf
such that

|f(ψ)| ≤ Cf |ψ|, |f(ψ)− f(φ)| ≤ Lf |ψ − φ| ∀ψ, φ ∈ R. (2.3)

On the other hand, we will suppose that for every ψ ∈ H1(Ω), we have s(ψ) ∈ H1(Ω), and that there
exist positive constants s3 and Ls̃ such that

|∇s(ψ)| ≤ s3|∇ψ|, |∇s(ψ)−∇s(φ)| ≤ Ls̃|ψ − φ|, ∀ψ, φ ∈ H1(Ω) . (2.4)

Finally, we suppose that κ and κ−1 are uniform bounded and uniformly positive definite tensors,
meaning that there exist positive constants K0,K1, K̃0 and K̃1 such that

|κ| ≤ K1, κv · v ≥ K0|v|2, |κ−1| ≤ K̃1, κ−1v · v ≥ K̃0|v|2 ∀v ∈ Rn. (2.5)

With respect to the boundary conditions in (2.1d), we assume that uD ∈ H1/2(Γ), θD ∈ H1/2(Γ), and
that uD verifies the compatibility condition∫

Γ
uD · ν = 0. (2.6)

In addition, it is well-known (see, e.g [31]) that uniqueness of pressure is ensured in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

We end this section by remarking that, due to the laminar regime of the fluid in each one of the
numerical tests reported in Section 5, the module of the velocity field is small, and hence it might not
be necessary to compute the Reynolds number, besides the fact that there seems to be no formula
available in the literature for the case (as the present) of a non-constant viscosity. Nevertheless, if
an estimation of this number is in fact needed, we would suggest to take a characteristic viscosity µc

defined as the mean value of it, that is µc :=
1

|Ω|

∫
Ω
µ(θ), which can be controlled by µ1 and µ2 (cf.

(2.2)), and then compute the model parameters (Reynolds and Prandtl numbers) and rewritte the
coupled-system based on this choice.

3 The mixed-primal approach

In this section we proceed similarly as in [4, 11, 14] to propose a mixed-primal approach for (2.1).
Then, we establish the corresponding continuous and discrete formulations, analyze their solvability
by using a fixed-point approach, and derive the corresponding a priori error estimates.

3.1 The continuous formulation

We first proceed as in [4] and set the strain rate tensor as an auxiliary unknown:

t := e(u) = ∇u− γ(u) ∈ L2
tr(Ω),

where, for each v ∈ H1(Ω), γ(v) = 1
2(∇v−(∇v)t) is the skew-symmetric part of the velocity gradient

tensor ∇v, and

L2
tr(Ω) :=

{
s ∈ L2(Ω) : s = st and tr(s) = 0

}
.
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Then, introducing also the pseudostress tensor as a new unknown:

σ := αµ(θ)t− (u⊗ u)− p I, (3.1)

we deduce that (2.1b) together with (3.1) are equivalent to the pair of equations

αµ(θ) t − (u⊗ u)d = σd in Ω,

p = − 1

n
tr(σ + u⊗ u) in Ω.

Consequently, we arrive at the following coupled system without pressure:

t + γ(u) = ∇u in Ω, (3.2a)

αµ(θ) t − (u⊗ u)d = σd in Ω, (3.2b)

η(θ)u − divσ = f(θ)k in Ω, (3.2c)

−ρ div(κ∇θ) + u · ∇θ + u · ∇s(θ) = 0 in Ω, (3.2d)

u = uD on Γ, (3.2e)

θ = θD on Γ, (3.2f)∫
Ω

tr(σ + u⊗ u) = 0. (3.2g)

Note that the incompressibility constraint is implicitly present in (3.2b), relating σ and u. In turn, the
fact that the pressure p must belong to L2

0(Ω) (for uniqueness reasons) is guaranteed by the equivalent
statement given by (3.2g).

Thus, in order to derive a primal formulation for the energy equation, we proceed to multiply
(3.2d) by ψ ∈ H1(Ω), integrate by parts, and introduce, as a new unknown, the normal heat flux on
Γ, λ := −ρ κ∇θ · ν ∈ H−1/2(Γ), so that we arrive at

ρ

∫
κ∇θ · ∇ψ + 〈λ, ψ〉Γ +

∫
Ω
ψu · ∇(θ + s(θ)) = 0 ∀ψ ∈ H1(Ω) , (3.3)

where 〈 ·, · 〉Γ denotes from now on the duality pairing between H−1/2(Γ) and H1/2(Γ). In turn, the
Dirichlet condition θ = θD on Γ is imposed weakly as

〈ξ, θ〉Γ = 〈ξ, θD〉Γ ∀ ξ ∈ H−1/2(Γ).

On the other hand, multiplying (3.2b) by a suitable test function, we obtain

α

∫
Ω
µ(θ)t : s −

∫
Ω
σd : s −

∫
Ω

(u⊗ u)d : s = 0 ∀ s ∈ L2
tr(Ω). (3.4)

Here we readily note that in order to bound the third terms on the LHS of (3.3) and (3.4), and thanks
to the continuous injection of H1(Ω) into L4(Ω), we require the unknown u to live in H1(Ω) (see
e.g. [4–6]). Such regularity can be exploited to cast the Navier-Stokes-Brinkman equations uniquely in
terms of the pseudostress and the velocity. Indeed, testing (3.2a) against τ ∈ H(div; Ω) and employing
(3.2e), we readily obtain∫

Ω
t : τ d +

∫
Ω
γ(u) : τ +

∫
Ω
u · div τ = 〈τν,uD〉Γ ∀ τ ∈ H(div; Ω) .
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Afterwards, testing (3.2c) against v ∈ H1(Ω), we deduce that

−
∫

Ω
v · divσ +

∫
Ω
η(θ)u · v =

∫
Ω
f(θ)k · v ∀v ∈ H1(Ω),

and finally, defining A :=
{
γ(v) : v ∈ H1(Ω)

}
, we impose the symmetry of σ in an ultra-weak sense,

as follows: ∫
Ω
σ : γ(v) = 0 ∀v ∈ H1(Ω). (3.5)

We stress here that the usual way of imposing this property of σ is in the form:

∫
Ω
σ : η = 0 ∀η ∈

L2
skew(Ω) :=

{
ω ∈ L2(Ω) : ω + ωt = 0

}
, which is known as the weak sense. However, in the

present approach we propose to take advantage of the further regularity of u and its corresponding
test functions, which are all now in H1(Ω), and simply test σ against tensors in A. In this way, the
fact that A is a proper subspace of L2

skew(Ω) constitutes the reason why this alternative imposition of
the symmetry of the pseudostress is called ultra-weak.

Hence, a preliminary weak formulation for the coupled problem (2.1) reads: Find (t,σ,u, θ, λ) ∈
L2
tr(Ω)×H(div; Ω)×H1(Ω)×H1(Ω)×H−1/2(Γ) such that

α

∫
Ω
µ(θ)t : s −

∫
Ω

(u⊗ u)d : s −
∫

Ω
σd : s = 0 ∀ s ∈ L2

tr(Ω),∫
Ω

t : τ d +

∫
Ω
γ(u) : τ +

∫
Ω
u · div τ = 〈τν,uD〉Γ ∀ τ ∈ H(div; Ω) ,

−
∫

Ω
v · divσ −

∫
Ω
σ : γ(v) +

∫
Ω
η(θ)u · v =

∫
Ω
f(θ)k · v ∀v ∈ H1(Ω),

ρ

∫
κ∇θ · ∇ψ + 〈λ, ψ〉Γ = −

∫
Ω
ψu · ∇(θ + s(θ)) ∀ψ ∈ H1(Ω),

〈ξ, θ〉Γ = 〈ξ, θD〉Γ ∀ ξ ∈ H−1/2(Γ).

(3.6)

On the other hand, by virtue of the orthogonal decomposition H(div; Ω) = H0(div; Ω)⊕ RI, where

H0(div; Ω) :=
{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0
}
,

and (3.2g), we can write σ = σ0 + cI, with σ0 in H0(div; Ω), and c given explicitly in terms of u by

c = − 1

n|Ω|

∫
Ω

tr(u⊗ u).

Then, denoting from now on the unknown σ0 simply by σ, the variational formulation (3.6) can
be reformulated in terms of the H0(div; Ω)-component of the pseudostress (see [5, Lemma 3.1]).
Accordingly, in order to analyze (3.6) we augment using residual Galerkin-type terms arising from
(3.2), but all them tested differently from (3.6), namely:

κ1

∫
Ω

{
σd + (u⊗ u)d − αµ(θ)t

}
: τ d = 0 ∀ τ ∈ H0(div; Ω) ,

κ2

∫
Ω
{divσ − η(θ)u} · divτ = −κ2

∫
Ω
f(θ)k · divτ ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Ω
{e(u) − t} · e(v) = 0 ∀v ∈ H1(Ω),
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where κ1, κ2 and κ3 are positive parameters to be specified later on. In this way, denoting H :=
L2
tr(Ω)×H0(div; Ω)×H1(Ω), ~t := (t,σ,u), and ~s := (s, τ ,v), we arrive at the following augmented

mixed-primal formulation for (2.1): Find (~t, (θ, λ)) ∈ H ×H1(Ω)×H−1/2(Γ) such that

Aθ(~t,~s) + Bu(~t,~s) = Fθ(~s) + FD(~s) ∀ ~s ∈ H, (3.7a)

a(θ, ψ) + b(ψ, λ) = Hu,θ(ψ) ∀ψ ∈ H1(Ω) , (3.7b)

b(θ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ), (3.7c)

where, given an arbitrary (w, φ) ∈ H1(Ω) × H1(Ω), the forms Aφ, Bw, a, b, and the functionals
Fφ, FD, Hw,φ, and G are defined as

Aφ(~t,~s) := α

∫
µ(φ)t :

{
s− κ1τ

d
}

+

∫
Ω

t :
{
τ d − κ3 e(v)

}
−
∫

Ω
σd :

{
s− κ1τ

d
}

+

∫
Ω
u · div τ −

∫
Ω
v · divσ +

∫
Ω
γ(u) : τ −

∫
Ω
σ : γ(v) (3.8a)

+

∫
Ω
η(φ)u ·

{
v − κ2 divτ

}
+ κ2

∫
Ω

divσ · divτ + κ3

∫
Ω

e(u) : e(v),

Bw(~t,~s) :=

∫
Ω

(u⊗w)d :
{
κ1τ

d − s
}
, (3.8b)

for all ~t,~s ∈ H, and

a(θ, ψ) := ρ

∫
Ω
κ∇θ · ∇ψ ∀ θ, ψ ∈ H1(Ω), (3.9a)

b(ψ, ξ) := 〈ξ, ψ〉Γ ∀ (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ), (3.9b)

Fφ(~s) :=

∫
Ω
f(φ)k ·

{
v − κ2 div τ

}
∀~s ∈ H, (3.9c)

FD(~s) := 〈τν,uD〉Γ ∀~s ∈ H, (3.9d)

Hw,φ(ψ) := −
∫

Ω
ψw · ∇(φ+ s(φ)) ∀ψ ∈ H1(Ω), (3.9e)

G(ξ) := 〈ξ, θD〉Γ ∀ ξ ∈ H−1/2(Γ). (3.9f)

We notice in advance that the forms Bw, a and b are exactly defined as in [15, Section 3.1] and
therefore we omit parts of the proofs whenever necessary. Finally, we remark that, in contrast with
other recent strain-based formulations [4, 12, 23, 25], here we do not introduce vorticity as additional
unknown. Also, the presence of the drag term in the momentum equation allows us to complete the
H1(Ω)−norm of the velocity without the need of a fourth residual term in the augmentation procedure.

3.2 Solvability analysis

We proceed similarly as in [4, 25] and utilize a fixed-point scheme to prove the well-posedness of the
continuous formulation (3.7). Let us write H := H1(Ω)×H1(Ω) and define S : H→ H as

S(w, φ) = (S1(w, φ),S2(w, φ),S3(w, φ)) := ~t ∀ (w, φ) ∈ H , (3.10)

where ~t ∈ H is the unique solution of the problem defined by (3.7a) with (w, φ) instead of (u, θ), that
is

Aφ(~t,~s) + Bw(~t,~s) = Fφ(~s) + FD(~s) ∀~s ∈ H. (3.11)
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In turn, let S̃ : H→ H1(Ω) be the operator defined by

S̃(w, φ) := θ ∀ (w, φ) ∈ H , (3.12)

where θ is the first component of the unique solution (θ, λ) ∈ H1(Ω)×H−1/2(Γ) of the problem defined
by (3.7b)-(3.7c) with (w, φ) instead of (u, θ), that is

a(θ, ψ) + b(ψ, λ) = Hw,φ(ψ) ∀ψ ∈ H1(Ω) ,

b(θ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ).
(3.13)

Then, we define the operator T : H→ H by

T(w, φ) =
(
S3(w, φ), S̃(S3(w, φ), φ)

)
∀ (w, φ) ∈ H, (3.14)

and one readily realizes that solving (3.7) is equivalent to seeking a fixed point of T, that is: Find
(u, θ) ∈ H such that

T(u, θ) = (u, θ).

We now provide sufficient conditions under which the uncoupled problems (3.11) and (3.13) are
indeed uniquely solvable. In what follows, for each ~s ∈ H, ‖~s‖ denotes the corresponding product
norm.

Lemma 3.1 Assume that κ1 ∈
(

0, 2µ1δ1
µ2

)
, κ2 ∈

(
0, 2η1δ3

η2

)
and κ3 ∈

(
0, 2αδ2

(
µ1 − κ1µ2

2δ1

))
with

δ1 ∈
(

0, 2
αµ2

)
, δ2 ∈ (0, 2), δ3 ∈

(
0, 2

η2

)
. Then, there exists r0 > 0 such that for each r ∈ (0, r0),

problem (3.11) has a unique solution S(w, φ) := ~t ∈ H, for each (w, φ) ∈ H with ‖w‖1,Ω ≤ r.
Moreover, there exists cS > 0, independent of (w, φ), such that

‖S(w, φ)‖ = ‖~t‖ ≤ cS
{
Cf ‖φ‖0,Ω + ‖uD‖1/2,Γ

}
∀ (w, φ) ∈ H. (3.15)

Proof. Let us start the discussion by deriving the continuity of the forms involved. First, employing
the assumptions (2.2), we deduce that

|Aφ(~t,~s)| ≤ CA‖~t‖‖~s‖ ∀~t,~s ∈ H, (3.16)

where CA is a constant depending on α, κ1, κ2, κ3, µ2, and η2. In turn, by applying the continuous
injection ic : H1(Ω)→ L4(Ω), we obtain that

|Bw(~t,~s)| ≤ ‖ic‖2 (1 + κ2
1)1/2‖u‖‖w‖‖~s‖ ∀~t,~s ∈ H. (3.17)

Hence, from (3.16) and (3.17), there exists a positive constant denoted by ‖Aφ + Bw‖, such that

|(Aφ + Bw)(~t,~s)| ≤ ‖Aφ + Bw‖‖~t‖‖~s‖ ∀~t,~s ∈ H.

On the other hand, in order to show that (Aφ + Bw) is elliptic, we first prove that Aφ satisfies
this property. In fact, by using Cauchy-Schwarz and Young inequalities, and the results provided
in [10, Prop. 3.1] and [17, Thm. 6.15-1] with constants c3(Ω) and κ0(Ω), respectively, it is possible to
find a constant α̃(Ω) := min{α1, α3κ0(Ω), α4}, independent of (w, φ), such that

Aφ(~s,~s) ≥ α̃(Ω)‖~s‖2 ∀~s ∈ H, (3.18)
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where

α1 := αµ1 −
κ1αµ2

2δ1
− κ3

2δ2
, α2 := min

{
κ1

(
1− αµ2δ1

2

)
,
κ2

2

(
1− η2δ3

2

)}
,

α3 := min

{
κ3

(
1− δ2

2

)
, η1 −

κ2η2

2δ3

}
, α4 := min

{
α2c3(Ω),

κ2

2

(
1− η2δ3

2

)}
,

where κ1, κ2, κ3, δ1, δ2 and δ3 are defined as in the statement of the present lemma. Moreover, by
combining (3.17) and (3.18), we obtain that

(Aφ + Bw)(~t,~s) ≥ α̃(Ω)

2
‖~s‖2 ∀~s ∈ H, (3.19)

provided ‖w‖1,Ω ≤ r0, with

r0 :=
α̃(Ω)

2 ‖ic‖2 (1 + κ2
1)1/2

, (3.20)

which confirms the ellipticity of the nonlinear operator Aφ + Bw. On the other hand, by applying
Cauchy-Schwarz inequality and the trace theorem in H(div; Ω), we deduce that Fφ, FD ∈ H ′ with

‖Fφ‖ ≤ Cf (1 + κ2
2)1/2 ‖φ‖0,Ω and ‖FD‖ ≤ ‖uD‖1/2,Γ. (3.21)

Consequently, a straightforward application of the Lax-Milgram lemma implies that there exists a
unique solution ~t ∈ H of (3.11). Finally, using (3.19) and (3.21), and performing simple algebraic

manipulations, we derive (3.15) with cS :=
2(1+κ2

2)1/2

α̃(Ω) > 0, independent of (w, φ). �

Lemma 3.2 For each (w, φ) ∈ H, problem (3.13) has a unique solution (θ, λ) =
(
S̃(w, φ), λ

)
∈

H1(Ω)×H−1/2(Γ). Moreover, there exists a constant c̃S > 0 independent of (w, φ), such that

‖S̃(w, φ)‖ ≤ ‖(θ, λ)‖ ≤ c̃S
{
‖w‖1,Ω|φ|1,Ω + ‖θD‖1/2,Γ

}
. (3.22)

Proof. From [14, Lemma 3.4] we know that a and b are bounded independently of (w, φ), and that
the bilinear form b satisfies the inf-sup condition. Furthermore, recalling that ϑ (cf. (2.5)) is a
uniformly positive definite tensor, and using the Friedrichs-Poincaré inequality, we also deduce that
a is V -elliptic with constant αa(Ω), where V is the kernel of the operator induced by b. Now, using
(3.9e), (3.9f) and applying the continuous injection ic : H1(Ω)→ L4(Ω), we find that

‖Hw,φ‖ ≤ ‖ic‖2
{

1 + s3

}
‖w‖1,Ω|φ|1,Ω and ‖G‖ ≤ ‖θD‖1/2,Γ ,

which implies that Hw,φ and G are bounded functionals. Thus, a straightforward application of the
Babǔska-Brezzi theory (see, e.g. [24, Thm. 2.3]) proves that for each (w, φ) ∈ H, problem (3.13) has
a unique solution (θ, λ) ∈ H1(Ω)×H−1/2(Γ). Moreover, there exists a positive constant c̃S depending
on ρ, K1, αa(Ω), ‖ic‖, s3 and the inf-sup constant of b, such that the estimate (3.22) holds. �

At this point, we remark that for computational purposes, the constants α1, α2 and α3 defining
α̃(Ω) in Lemma 3.1, can be maximized by choosing the parameters δ1, δ2, δ3, κ1 κ2, and κ3 as the
middle points of their feasible ranges. Adequate choices for these parameters are then

δ1 =
1

αµ2
, κ1 =

µ1

αµ2
2

, δ2 = 1, κ3 =
αµ1

2
, δ3 =

1

η2
, κ2 =

η1

η2
2

. (3.23)
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Continuing with the analysis, we assume further regularity on the problem defining S. More pre-
cisely, we assume that uD ∈ H1/2+ε(Γ) for some ε ∈ (0, 1) (when n = 2) or ε ∈

[
1
2 , 1
)

(when
n = 3), and that for each (w, φ) ∈ H with ‖w‖1,Ω + ‖φ‖1,Ω ≤ r, r > 0 given, there holds

(r, ζ, z) := S(w, φ) ∈ L2
tr(Ω) ∩ Hε(Ω)×H0(div; Ω) ∩ Hε(Ω)×H1+ε(Ω), with

‖r‖ε,Ω + ‖ζ‖ε,Ω + ‖z‖1+ε,Ω ≤ Ĉ(r)
{
Cf ‖φ‖0,Ω + ‖uD‖1/2+ε,Γ

}
, (3.24)

where Cf is given by (2.3) and Ĉ(r) is a positive constant independent of (w, φ) but depending on
the upper bound r of its norm. The reason of the stipulated ranges for ε will be clarified in the
forthcoming analysis (specifically in the proofs of Lemmas 3.4 and 3.6, below). Also, we pay attention
to the fact that while the estimate (3.24) will be employed only to bound ‖r‖ε,Ω, we have stated it
including the terms ‖ζ‖ε,Ω and ‖z‖1+ε,Ω as well, since due to the first and second equations of (3.2),
the regularities of r, ζ and z will most likely be connected.

On the other hand, we emphasize that the well-posedness of the uncoupled problems (3.11) and
(3.13) ensure that the operators S, S̃ and T are well-defined. Hence, the existence of a unique fixed-
point of T follows after verifying the hypotheses of the Banach fixed-point theorem.

Lemma 3.3 Given r ∈ (0, r0), with r0 given by (3.20), we let W :=
{

(w, φ) ∈ H : ‖(w, φ)‖ ≤ r
}

,

and assume that
c(r)

{
Cf + ‖uD‖1/2,Γ

}
+ c̃S ‖θD‖1/2,Γ ≤ r, (3.25)

where c(r) := (1+c̃S) cS max{1, r}, and Cf , cS and c̃S are the constants specified in (2.3), and Lemmas
3.1 and 3.2, respectively. Then T(W ) ⊆W .

Proof. It follows exactly as in [14, Lemma 3.5]. �

Next, the Lipschitz continuity of T will essentially be a direct consequence of the following two
lemmas providing the same property for S and S̃, respectively.

Lemma 3.4 Let r ∈ (0, r0) with r0 given by (3.20). Then, there exists a constant C̃S > 0, independent
of r, such that for all (w1, φ1), (w2, φ2) ∈ H, with ‖w1‖1,Ω, ‖w2‖1,Ω ≤ r, there holds

‖S(w1, φ1)− S(w2, φ2)‖ ≤ C̃S

{
‖S3(w2, φ2)‖1,Ω

(
‖w1 −w2‖1,Ω + ‖φ1 − φ2‖1,Ω

)
+ ‖φ1 − φ2‖Ln/ε(Ω) ‖S1(w2, φ2)‖ε,Ω + Lf ‖φ1 − φ2‖0,Ω

}
.

(3.26)

Proof. Given (w1, φ1), (w2, φ2) as stated, we let ~tj := (tj ,σj ,uj) = S(wj , φj) ∈ H, j ∈ {1, 2},
which, according to (3.11), means that for all ~s ∈ H there hold:

Aφ1(~t1,~s) + Bw1(~t1,~s) = Fφ1(~s) + FD(~s) and Aφ2(~t2,~s) + Bw2(~t2,~s) = Fφ2(~s) + FD(~s).

Now, applying the ellipticity of Aφ1 + Bw1 (cf. (3.19)), and then adding and subtracting the equality
Aφ2(~t2,~s) + Bw2(~t2,~s) = Fφ2(~s) + FD(~s), we find that

α̃(Ω)

2
‖~t1 −~t2‖2 ≤ (Aφ1 + Bw1)(~t1 −~t2,~t1 −~t2)

= (Fφ1 − Fφ2)(~t1 −~t2) + (Aφ2 −Aφ1)(~t2,~t1 −~t2) + (Bw2−w1)(~t2,~t1 −~t2).

(3.27)
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Next, for the first and third terms on the right hand side of (3.27), we exploit the assumption (2.3)
and the estimate given in [14, Lemma 3.6], respectively, to obtain∣∣∣∣∫

Ω

(
f(φ1)− f(φ2)

)
k ·
{

(u1 − u2)− κ2 div (σ1 − σ2)
}∣∣∣∣

≤ Lf (1 + κ2
2)1/2 ‖φ1 − φ2‖0,Ω ‖~t1 −~t2‖,

(3.28)

and ∣∣∣∣∫
Ω

(
u2 ⊗ (w2 −w1)

)d
:
{
κ1(σ1 − σ2)d − (t1 − t2)

}∣∣∣∣
≤ ‖ic‖2 (1 + κ2

1)1/2 ‖u2‖1,Ω ‖w2 −w1‖1,Ω ‖~t1 −~t2‖.
(3.29)

On the other hand, for the second term of (3.27), we apply the assumptions (2.2), and the Cauchy-
Schwarz and Hölder inequalities, to deduce that∣∣∣(Aφ2 −Aφ1)(~t2,~t1 −~t2)

∣∣∣ =

∣∣∣∣α ∫
Ω

(
µ(φ2)− µ(φ1)

)
t2 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}
+

∫
Ω

(
η(φ2)− η(φ1)

)
u2 ·

{
(u1 − u2)− κ2 div (σ1 − σ2)

}∣∣∣∣
≤
(
αLµ(1 + κ2

1)1/2 ‖φ2 − φ1‖L2q(Ω) ‖t2‖L2p(Ω)

+Lη ‖ic‖2 (1 + κ2
2)1/2 ‖φ2 − φ1‖1,Ω ‖u2‖1,Ω

)
‖~t1 −~t2‖ ,

(3.30)

with p, q ∈ (1,+∞) such that 1
p+ 1

q=1. At this point, we proceed as in [6, Lemma 3.9]. In fact, given the
further regularity ε assumed in (3.24), we recall that the Sobolev embedding theorem (see, e.g [1, Thm.
4.12]) establishes the continuous injection iε : Hε(Ω)→ L2p(Ω) with boundedness constant Cε, where

2p =


2

1− ε
if n = 2,

6

3− 2ε
if n = 3,

and 2q = n
ε , and therefore, there holds

‖t2‖L2p(Ω) ≤ Cε ‖t2‖ε,Ω ∀ t2 ∈ Hε(Ω). (3.31)

Then, (3.31) could be bounded by (3.24), yielding for each (w2, φ2) ∈ H with ‖w2‖1,Ω + ‖φ2‖1,Ω ≤ r,
the estimate

‖t2‖L2p(Ω) ≤ CεĈ(r)
{
Cf ‖φ2‖0,Ω + ‖uD‖1/2+ε,Γ

}
.

Finally, denoting

C̃S :=
2

α̃(Ω)
max

{
(1 + κ2

2)1/2, ‖ic‖2 (1 + κ2
1)1/2, αCεLµ(1 + κ2

1)1/2, Lη ‖ic‖2 (1 + κ2
2)1/2

}
,

inequalities (3.27), (3.28), (3.29), (3.30) and (3.31), imply (3.26) and complete the proof. �

Lemma 3.5 There exists C̃
S̃
> 0, such that for all (w1, φ1), (w2, φ2) ∈ H there holds

‖S̃(w1, φ1)− S̃(w2, φ2)‖

≤ C̃
S̃

{
‖w1 −w2‖1,Ω |φ1|1,Ω + ‖w2‖1,Ω |φ1 − φ2|1,Ω + ‖w2‖1,Ω ‖φ1 − φ2‖0,Ω

}
.

(3.32)
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Proof. Given (w1, φ1), (w2, φ2) ∈ H, we let (θ1, λ1), (θ2, λ2) ∈ H1(Ω) × H−1/2(Γ) be solutions to
(3.13) corresponding to (w1, φ1) and (w2, φ2), respectively, that is θj = S̃(wj , φj), j ∈ {1, 2}. Then
invoking the linearity of the forms a and b, and performing algebraic manipulations, we deduce (using
both formulations arising from (3.13)) that

a(θ1 − θ2, ψ) + b(ψ, λ1 − λ2) = Hw1−w2,φ1(ψ) +Hw2,φ1(ψ)−Hw2,φ2(ψ) ∀ψ ∈ H1(Ω),

b(θ1 − θ2, ξ) = 0 ∀ ξ ∈ H−1/2(Γ).
(3.33)

Next, noting from the second equation of (3.33) that θ1 − θ2 belongs to the kernel V of b, taking
ψ = θ1 − θ2 and ξ = λ1 − λ2 in (3.33), applying the ellipticity of a in V , and using the assumption
(2.4), we readily deduce from the first equation of (3.33) that

αa(Ω) ‖θ1 − θ2‖21,Ω ≤ a(θ1 − θ2, θ1 − θ2)

= Hw1−w2,φ1(θ1 − θ2) +Hw2,φ1(θ1 − θ2)−Hw2,φ2(θ1 − θ2)

≤ ‖ic‖2
{

(1 + s3) ‖w1 −w2‖1,Ω |φ1|1,Ω + ‖w2‖1,Ω |φ1 − φ2|1,Ω

+Ls̃ ‖w2‖1,Ω ‖φ1 − φ2‖0,Ω
}
‖θ1 − θ2‖1,Ω ,

which gives (3.32) with C̃
S̃

:= ‖ic‖2
αa

max{1 + s3, Ls̃}. �

The announced property of T is proved now.

Lemma 3.6 Let r and W as in Lemma 3.3. Then, there exists a positive constant CT such that for
all (w1, φ1), (w2, φ2) ∈W there holds

‖T(w1, φ1)−T(w2, φ2)‖ ≤ CT

{
Cf + ‖uD‖1/2,Γ + ‖uD‖1/2+ε,Γ + Lf

}
‖(w1, φ1)− (w2, φ2)‖ .

Proof. It follows directly from the definition of T (cf. (3.14)) and the estimates (3.26) and (3.32). We
remit to [14, Lemma 3.8] for similar further details. �

Finally, the main result of this section is given as follows.

Theorem 3.7 Suppose that the parameters κ1, κ2 and κ3 satisfy the conditions required by Lemma
3.1. Let r and W as in Lemma 3.3, and assume that the data satisfy (3.25) and

CT

{
Cf + ‖uD‖1/2,Γ + ‖uD‖1/2+ε,Γ + Lf

}
< 1. (3.34)

Then, problem (3.7) has a unique solution (~t, (θ, λ)) ∈ H × H1(Ω) × H−1/2(Γ), with (u, θ) ∈ W , and
there holds

‖~t‖ ≤ cS
{
Cf r + ‖uD‖1/2,Γ

}
,

and
‖(θ, λ)‖ ≤ c̃S{r‖u‖1,Ω + ‖θD‖1/2,Γ}.

Proof. It follows as a combination of Lemmas 3.3 and 3.6, the assumption (3.34), the Banach fixed-
point theorem, and the a priori estimates (3.15) and (3.22). We omit further details. �
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3.3 The Galerkin scheme

In this section we analyze a Galerkin scheme associated with (3.7). We remark in advance that most
of the details are omitted since they follow straightforwardly by adapting the fixed-point strategy from
Section 3.2. We start by considering generic finite dimensional subspaces

Ht
h ⊆ L2

tr(Ω), Hσh ⊆ H0(div; Ω), Hu
h ⊆ H1(Ω), Hθ

h ⊆ H1(Ω), and Hλ
h ⊆ H−1/2(Γ),

which will be specified later on. Hereafter, h denotes the size of a regular triangulation Th of Ω made
up of triangles K (in R2) or tetrahedra K (in R3) of diameter hK , i.e. h := max {hK : K ∈ Th} .
Defining Hh := Ht

h × Hσh ×Hu
h , and denoting ~th := (th,σh,uh) and ~sh := (sh, τ h,vh), the Galerkin

scheme for (3.7) reads: Find (~th, (θh, λh)) ∈ Hh ×Hθ
h ×Hλ

h such that

Aθh(~th,~sh) + Buh(~th,~sh) = Fθh(~sh) + FD(~sh) ∀ ~sh ∈ Hh,

a(θh, ψh) + b(ψh, λh) = Huh,θh(ψh) ∀ψh ∈ Hθ
h ,

b(θh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h .

(3.35)

Next, we set Hh := Hu
h ×Hθ

h and let Sh : Hh → Hh be the operator defined as

Sh(wh, φh) = (S1,h(wh, φh),S2,h(wh, φh),S3,h(wh, φh)) := ~th ∀ (wh, φh) ∈ Hh , (3.36)

where ~th ∈ Hh is the unique solution of the problem given by the first equation of (3.35) with (wh, φh)
instead of (uh, θh), that is

Aφh(~th,~sh) + Bwh(~th,~sh) = Fφh(~sh) + FD(~sh) ∀ ~sh ∈ Hh. (3.37)

Just for sake of completeness, we recall here that the functional FD is defined in (3.9d). In turn, for a
given pair (wh, φh), the bilinear forms Aφh and Bwh , and the functional Fφh are those corresponding
to (3.8a), (3.8b) and (3.9c), respectively, with w = wh and φ = φh.

Furthermore, we define S̃h : Hh → Hθ
h as

S̃h(wh, φh) := θh ∀ (wh, φh) ∈ Hh , (3.38)

where θh is the first component of the unique solution (θh, λh) ∈ Hθ
h×Hλ

h of the problem given by the
second and third equations of (3.35) with (wh, φh) instead of (uh, θh), that is

a(θh, ψh) + b(ψh, λh) = Hwh,φh(ψh) ∀ψh ∈ Hθ
h(Ω) ,

b(θh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h.

(3.39)

The forms a and b and the functional G are defined in (3.9a), (3.9b) and (3.9f), respectively, whereas
Hwh,φh is defined as in (3.9e) with w = wh and φ = φh.

Finally, by introducing the operator Th : Hh → Hh as

Th(wh, φh) =
(
S3,h(wh, φh), S̃h(S3,h(wh, φh), φh)

)
∀ (wh, φh) ∈ Hh,

we see that solving (3.35) is equivalent to seeking (uh, θh) ∈ Hh such that

Th(uh, θh) = (uh, θh). (3.40)

Certainly, all the above makes sense if we guarantee that the uncoupled discrete problems (3.37) and
(3.39) are well-posed, which is addressed in what follows. We begin with the corresponding result for
Sh, which actually follows almost verbatim to that of its continuous counterpart S, and proof can be
omitted.
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Lemma 3.8 Assume that κ1 ∈
(

0, 2µ1δ1
µ2

)
, κ2 ∈

(
0, 2η1δ3

η2

)
and κ3 ∈

(
0, 2αδ2

(
µ1 − κ1µ2

2δ1

))
, with

δ1 ∈
(

0, 2
αµ2

)
, δ2 ∈ (0, 2) and δ3 ∈

(
0, 2

η2

)
. Then, there exists r0 > 0 such that for each r ∈ (0, r0),

problem (3.37) has a unique solution Sh(wh, φh) := ~th ∈ Hh for each (wh, φh) ∈ Hh with ‖wh‖1,Ω ≤ r.
Moreover, there exists cS > 0, independent of (wh, φh), such that

‖Sh(wh, φh)‖ = ‖~th‖ ≤ cS
{
Cf ‖φh‖0,Ω + ‖uD‖1/2,Γ

}
∀ (wh, φh) ∈ Hh. (3.41)

In turn, in order to analyze the problem (3.39), we need to incorporate further hypotheses on the
discrete spaces Hθ

h and Hλ
h. For this purpose, we now let

Vh :=
{
ψh ∈ Hθ

h : b(ψh, ξh) = 0 ∀ ξh ∈ Hλ
h

}
,

be the discrete kernel of b. Then, assuming the following discrete inf-sup conditions (which do hold
for some finite element spaces, as those listed at the end of this section):

(H.0) There exists a constant α1 > 0, independent of h, such that

sup
ψh∈Vh
ψh 6=0

a(ψh, ϕh)

‖ψh‖1,Ω
≥ α1 ‖ϕh‖1,Ω ∀ϕh ∈ Vh. (3.42)

(H.1) There exists a constant α2 > 0, independent of h, such that

sup
ψh∈Hθ

h
ψh 6=0

b(ψh, ξh)

‖ψh‖1,Ω
≥ α2 ‖ξh‖−1/2,Γ ∀ ξh ∈ Hλ

h,

we can prove that the operator S̃h is well-posed, which is abridged in the following lemma. We refer
to [14, Lemma 4.2] for further details.

Lemma 3.9 For each (wh, φh) ∈ Hh, problem (3.39) has a unique solution (θh, λh) = (S̃h(wh, φh), λh)
∈ Hθ

h ×Hλ
h. Moreover, there exists a constant C̃ > 0 independent of (wh, φh), such that

‖S̃h(wh, φh)‖ ≤ ‖(θh, λh)‖ ≤ C̃
{
‖wh‖1,Ω|φh|1,Ω + ‖θD‖1/2,Γ

}
.

The solvability of the fixed-point problem (3.40) is now proved by means of the Brouwer fixed-point
theorem (see, e.g. [17, Thm. 9.9-2]). We begin with the discrete version of Lemma 3.3.

Lemma 3.10 Given r ∈ (0, r0), with r0 as in (3.20), we let Wh :=
{

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}

,

and assume that
c̃(r)

{
Cf + ‖uD‖1/2,Γ

}
+ C̃ ‖θD‖1/2,Γ ≤ r, (3.43)

where c̃(r) := (1 + C̃) cS max{1, r}, and cS and C̃ are the constants specified in Lemmas 3.1 and 3.9,
respectively. Then Th(Wh) ⊆Wh.

The discrete analogue of Lemma 3.4 is provided next. We notice in advance that, instead of the
regularity assumptions employed in the continuous case (not applicable in the present discrete case),
we simply utilize an L4 − L4 − L2 argument.
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Lemma 3.11 Let r ∈ (0, r0) with r0 given by (3.20). Then, there exists a constant C̃S > 0, indepen-
dent of r, such that for all (wh, φh), (w̃h, φ̃h) ∈ Hh, with ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r, there holds

‖Sh(wh, φh)− Sh(w̃h, φ̃h)‖ ≤ C̃S

{
‖S3,h(w̃h, φ̃h)‖1,Ω

(
‖wh − w̃h‖1,Ω + ‖φh − φ̃h‖1,Ω

)
+ ‖φh − φ̃h‖4,Ω ‖S1,h(w̃h, φ̃h)‖4,Ω + Lf‖φh − φ̃h‖0,Ω

}
.

Proof. It proceeds exactly as in the proof of Lemma 3.4, except for the derivation of the discrete
analogue of (3.30), where, instead of choosing the values of p, q determined by the regularity parameter
ε, it suffices to take p = q = 2, thus obtaining

|(A
φ̃h
−Aφh)(~rh,~th − ~rh)| ≤

(
αLµ(1 + κ2

1)1/2‖φ̃h − φh‖4,Ω ‖rh‖4,Ω

+ Lηc4(Ω)(1 + κ2
2)1/2‖φ̃h − φh‖1,Ω ‖zh‖1,Ω

)
‖~th − ~rh‖ ,

for all (wh, φh), (w̃h, φ̃h), with ~th = (th,σh,uh) := Sh(wh, φh) ∈ Hh and ~rh := (rh, ζh, zh) =
Sh(w̃h, φ̃h) ∈ Hh. Thus, since the elements of Ht

h are piecewise polynomials, we know that ‖rh‖4,Ω <
+∞ for each rh ∈ Ht

h. �

The discrete version of Lemma 3.5 is given as follows.

Lemma 3.12 There exists a constant Ĉ
S̃
> 0, such that for all (wh, φh), (w̃h, φ̃h) ∈ Hh, there holds

‖S̃h(wh, φh)− S̃h(w̃h, φ̃h)‖

≤ Ĉ
S̃

{
‖wh − w̃h‖1,Ω ‖φh‖1,Ω + ‖w̃h‖1,Ω|φh − φ̃h|1,Ω + ‖w̃h ‖1,Ω‖φh − φ̃h‖0,Ω

}
.

Proof. It follows the same arguments from Lemma 3.5, but now using the inf-sup condition (3.42)
rather than the V -ellipticity of a. �

Next, utilizing Lemmas 3.11 and 3.12, we can prove the discrete version of Lemma 3.6.

Lemma 3.13 Let r and Wh as in Lemma 3.10. Then, there exists a constant C̃T > 0, such that for
all (wh, φh), (w̃h, φ̃h) ∈ Hh, there holds

‖Th(wh, φh)−Th(w̃h, φ̃h)‖

≤ C̃T

{
‖S3,h(w̃h, φ̃h)‖1,Ω + ‖S1,h(w̃h, φ̃h)‖4,Ω + Lf

}
‖(wh, φh)− (w̃h, φ̃h)‖ .

Notice that the previous lemma provides the continuity required by the Brouwer fixed-point theorem,
in the convex and compact set Wh ⊆ Hh. Therefore, we have the following result.

Theorem 3.14 Suppose that the parameters κ1, κ2 and κ3 satisfy the conditions required by Lemma
3.8. Let r and Wh as in Lemma 3.10, and assume that the data satisfy (3.43). Then, the problem
(3.35) has at least one solution (~th, (θh, λh)) ∈ Hh ×Hθ

h ×Hλ
h, with (uh, θh) ∈Wh, and there holds

‖~th‖ ≤ cS
{
Cf r + ‖uD‖1/2,Γ

}
,

and
‖(θh, λh)‖ ≤ C̃

{
r‖uh‖1,Ω + ‖θD‖1/2,Γ

}
.
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3.4 A priori error analysis

Our next goal is to derive an a priori error estimate for our Galerkin scheme (3.35). More precisely,
given (t,σ,u, (θ, λ)) := (~t, (θ, λ)) ∈ H ×H1(Ω)×H−1/2(Γ), with (u, θ) ∈W , and (th,σh,uh, (θh, λh))
:= (~th, (θh, λh)) ∈ Hh × Hθ

h × Hλ
h, with (uh, θh) ∈ Wh, solutions of the problems (3.7) and (3.35),

respectively, we are interested in obtaining an upper bound for

‖(~t, (θ, λ))− (~th, (θh, λh))‖.

To this end, we apply two instrumental results from [34, Thm. 11.1 and 11.2] concerning Strang-
type estimates for elliptic and saddle point problems, respectively, where continuous and discrete
formulations differ only in the functionals involved. We begin with the following preliminary estimate.

Lemma 3.15 There exists a constant CST > 0, independent of h, such that

‖~t−~th‖ ≤ CST

{
dist(~t, Hh) + Lf ‖θ − θh‖1,Ω + ‖θ − θh‖ ‖t‖ε,Ω

+ ‖u‖1,Ω ‖θ − θh‖1,Ω + ‖u‖1,Ω ‖u− uh‖1,Ω
}
.

(3.44)

Proof. From Lemma (3.1) we observe that Aθ + Bu and Aθh + Buh are bounded and uniformly

elliptic bilinear forms with ellipticity constant α̃(Ω)
2 . Also, Fθ + FD and Fθh + FD are linear bounded

functionals in H and Hh, respectively. Thus, a straightforward application of [34, Thm. 11.1] to the
context given by the first equations of (3.7) and (3.35), yields

‖~t−~th‖ ≤ C1

 sup
~sh∈Hh
~sh 6=0

|Fθ(~sh)− Fθh(~sh)|
‖~sh‖

+ inf
~qh∈Hh
~qh 6=0

‖~t− ~qh‖ + sup
~sh∈Hh
~sh 6=0

|(Aθ + Bu)(~qh,~sh)− (Aθh + Buh)(~qh,~sh)|
‖~sh‖


 ,

(3.45)

where C1 := 2
α̃(Ω) max{1, ‖Aθ + Bu‖}. Hence, in order to estimate the last supremum in (3.45), we

add and subtract suitable terms to obtain

(Aθ + Bu)(~qh,~sh)− (Aθh + Buh)(~qh,~sh) = (Aθ −Aθh)(~t,~sh) + (Bu −Buh)(~t,~sh)

+ (Aθh + Buh)(~qh −~t,~sh) + (Aθ + Bu)(~qh −~t,~sh),

and then, using the boundedness of the bilinear forms Aθ + Bu and Aθh + Buh , the estimate (3.31),

and the continuous embedding H1(Ω)→ Ln/ε(Ω) with constant C̃ε, we obtain

|(Aθ + Bu)(~qh,~sh)− (Aθh + Buh)(~qh,~sh)|

≤
{
αLµCεC̃ε(1 + κ2

1)1/2 ‖t‖ε,Ω ‖θ − θh‖1,Ω + Lη(1 + κ2
2)1/2 ‖θ − θh‖1,Ω ‖u‖1,Ω

+ ‖ic‖2 (1 + κ2
1)1/2 ‖u‖1,Ω ‖u− uh‖1,Ω + 2‖Aθ + Bu‖‖~qh −~t‖

}
‖~sh‖.

(3.46)
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In turn, similarly as in (3.28), we note that

|(Fθh − Fθ)(~sh)| ≤ Lf (1 + κ2
2)1/2 ‖θ − θh‖0,Ω ‖~sh‖. (3.47)

Finally, by replacing (3.46) and (3.47) back into (3.45), one obtains (3.44) with constant CST depending
on α̃(Ω), Lµ, Cε, C̃ε, Lη, ‖ic‖ and ‖Aθ + Bu‖. �

Next, we have the following complementary result.

Lemma 3.16 There exists a constant C̃ST > 0 independent of h, such that

‖(θ, λ)− (θh, λh)‖ ≤ C̃ST

{
dist

(
(θ, λ),Hθ

h ×Hλ
h

)
+ ‖u− uh‖1,Ω |θ|1,Ω

+ ‖uh‖1,Ω |θ − θh|1,Ω + ‖uh‖1,Ω ‖θ − θh‖0,Ω
}
.

(3.48)

Proof. We first observe that (H.0) and (H.1) guarantee the main hypothesis in [34, Thm. 11.2].
Hence, by applying this lemma to the context given by the second and third equations of (3.7) and
(3.35), we arrive at

‖(θ, λ)− (θh, λh)‖ ≤ C2

{
‖(Hu,θ −Huh,θh)|Hθh‖+ dist

(
(θ, λ),Hθ

h ×Hλ
h

)}
, (3.49)

where C2 is a constant depending on α1, α2, ‖a‖ , ‖b‖. Next, analogously to the proof of Lemma 3.5,
we can assert that

‖(Hu,θ −Huh,θh)|Hθh‖ = ‖(Hu−uh,θ +Huh,θ −Huh,θh)|Hθh‖

≤ ‖ic‖2
{

(1 + s3) ‖u− uh‖1,Ω |θ|1,Ω + ‖uh‖1,Ω |θ − θh|1,Ω + Ls̃ ‖uh‖1,Ω ‖θ − θh‖0,Ω
}
.

(3.50)

Finally, the required estimate (3.48) follows by replacing (3.50) back into (3.49), with constant C̃ST

depending on α1, α2, ‖a‖ , ‖b‖ , ‖ic‖ , s3 and Ls̃. �

We remark that an alternative way to prove the previous results follows similarly as in [25, Lemma
3.11] and [24, Thm. 2.6], respectively.

Having established bounds for ‖~t −~th‖ and ‖(θ, λ)− (θh, λh)‖, we are now able to derive the Céa
estimate for the global error. In fact, by adding the estimates (3.44) and (3.48), and applying the
continuous injection H1(Ω)→ L2(Ω), we obtain

‖~t−~th‖+ ‖(θ, λ)− (θh, λh)‖ ≤ CST dist(~t, Hh) + C̃ST dist
(

(θ, λ),Hθ
h ×Hλ

h

)
+
{
CST

(
Lf + ‖t‖ε,Ω + ‖u‖1,Ω

)
+ 2C̃ST ‖uh‖1,Ω

}
‖θ − θh‖1,Ω

+
{
CST ‖u‖1,Ω + C̃ST|θ|1,Ω

}
‖u− uh‖1,Ω .

Now, we note that the terms ‖u‖1,Ω , |θ|1,Ω, ‖uh‖1,Ω and ‖t‖ε,Ω can be bounded by data using the
estimates (3.15), (3.22), (3.41) and (3.24), respectively. Therefore, performing some algebraic manip-
ulations, and introducing the constants:

C5 := CSTCεĈ(r), C6 := 2CSTcS + C̃STc̃ScSr + 2C̃STcS, (3.51)

C7 := max{CST, C5, (C5 + C6)r, C6, C̃STc̃S},
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it can be show that

‖~t−~th‖+ ‖(θ, λ)− (θh, λh)‖ ≤ CST dist(~t, Hh) + C̃ST dist
(

(θ, λ),Hθ
h ×Hλ

h

)
+ C7

(
Lf + ‖uD‖1/2+ε,Ω + Cf + ‖uD‖1/2,Ω + ‖θD‖1/2,Γ

){
‖~t−~th‖+ ‖(θ, λ)− (θh, λh)‖

}
.

(3.52)

Consequently, we can establish the following main result.

Theorem 3.17 Assume that the data satisfy

C7

{
Lf + ‖uD‖1/2+ε,Ω + Cf + ‖uD‖1/2,Ω + ‖θD‖1/2,Γ

}
<

1

2
. (3.53)

Then, there exists a positive constant C8 independent of h, such that

‖~t−~th‖+ ‖(θ, λ)− (θh, λh)‖ ≤ C8

{
dist(~t, Hh) + dist

(
(θ, λ),Hθ

h ×Hλ
h

)}
. (3.54)

Proof. It follows directly from (3.52) and (3.53). �

As a first remark of the previous theorem, we stress that the ultra-weak sense in which the symmetry
of σ was imposed (cf. (3.5)) does not affect the expected asymptotic symmetry of the discrete tensor
σh. In fact, adding and subtracting the symmetric unknown σ in the below estimate, we obtain

‖σh − σt
h‖ = ‖σh − σ + σt − σt

h‖ ≤ C8

{
dist(~t, Hh) + dist

(
(θ, λ),Hθ

h ×Hλ
h

)}
, (3.55)

which yields lim
h→0
‖σh − σt

h‖ = 0, and then, we have actually proved that σh tends to a symmetric

tensor. In second place, exactly as in [12, Section 4] we obtain the error for the postprocessed pressure:
there exists a positive constant Ĉ, independent of h, such that

‖p− ph‖0,Ω ≤ Ĉ
{
‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

}
.

3.5 Specific finite element subspaces

In this section we specify concrete discrete subspaces and make precise the convergence rate for (3.35).
Given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial functions on K of
degree ≤ k and define the local Raviart-Thomas space of order k as

RTk(K) := Pk(K)⊕ Pk(K)x,

where Pk(K) = [Pk(K)]n, and x is the generic vector in Rn. Then, we consider piecewise polynomials
of degree ≤ k for approximating entries of the strain rate t, the global Raviart-Thomas space of order k
to approximate rows of the pseudostress σ, and the Lagrange space given by the continuous piecewise
polynomial vectors of degree ≤ k + 1 for the velocity u, respectively, that is

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div; Ω) : ctτ h|K ∈ RTk(K), ∀ c ∈ Rn ∀K ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th

}
.

(3.56)

The approximating space for temperature will consist of continuous piecewise polynomials of degree
≤ k + 1

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
. (3.57)
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For the normal heat flux, we let {Γ̃1, Γ̃2, ..., Γ̃m} be an independent triangulation of Γ (made of straight
segments in R2, or triangles in R3), and define h̃ := maxj∈{1,...,m} |Γ̃j |. Then, with the same integer
k ≥ 0 used in definitions (3.56) and (3.57), we approximate λ by piecewise polynomials of degree ≤ k
over this new mesh, that is

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃
|
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ {1, ...,m}

}
. (3.58)

We remark that the spaces Hθ
h and Hλ

h̃
satisfy the inf-sup conditions H.0 and H.1. We remit to

(cf. [14, Lemma 4.10], [24, Lemma 4.7]) for further details.

Finally, approximation properties of the spaces in (3.56), (3.57) and (3.58) can be found in e.g
[4, 10, 24], which combined with the Céa estimate (3.54) produce the theoretical rate of convergence
of (3.35), summarized in what follows.

Theorem 3.18 In addition to the hypotheses of Theorems 3.7, 3.14 and 3.17, assume that there
exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ H1+s(Ω) , θ ∈ H1+s(Ω) and
λ ∈ H−1/2+s(Γ). Then, there exist positive constants C0, C > 0, independent of h and h̃, such that
for all h ≤ C0h̃, with the finite element subspaces defined by (3.56), (3.57) and (3.58), there holds

‖~t−~th‖+
∥∥(θ, λ)− (θh, λh̃)

∥∥ ≤ Ch̃min{s,k+1} ‖λ‖−1/2+s,Γ

+ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖θ‖1+s,Ω

}
.

Finally, we point out that (3.55) and the previous theorem imply that, under the same foregoing
regularity assumptions, the approximating unknown σh converges to a symmetric tensor with the
same rate of convergence of all the unknowns involved.

4 The fully-mixed approach

In this section we proceed similarly as in [15] to put forward a fully-mixed approach for (2.1). Then,
we establish the corresponding continuous and discrete formulations, analyze their solvability by using
fixed-point strategies, and derive the corresponding a priori error estimates.

4.1 The continuous formulation

Having established in Section 3 the mixed formulation for the Navier-Stokes-Brinkman problem, it
only remains to define a mixed formulation for the energy equation. Let us introduce the unknown

Θ := ρκ∇θ − θu− s(θ)u in Ω,

and then, denoting from now on the tensor ρ−1κ−1 simply as κ−1, applying (2.1b) and performing
some algebraic computations, we obtain

κ−1Θ + κ−1θu+ κ−1s(θ)u = ∇θ in Ω, div Θ = 0 in Ω, θ = θD on Γ. (4.1)

In this way, testing the first equation in (4.1) against functions Φ ∈ H(div; Ω), integrating by parts,
and using the Dirichlet boundary condition for θ, we obtain∫

Ω
κ−1Θ · Φ +

∫
Ω
θ div Φ +

∫
Ω
κ−1θu ·Φ = −

∫
Ω
κ−1s(θ)u ·Φ + 〈Φ · ν, θD〉Γ . (4.2)
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In turn, testing the equilibrium equation in (4.1) against a suitable function ψ, we get

−
∫

Ω
ψ div Θ = 0.

Similarly as in Section 3, we note from the last term on the left-hand side of (4.2), that we require
to seek the temperature θ in H1(Ω). Thus we are left with the preliminary weak formulation: Find
(Θ, θ) ∈ H(div; Ω)×H1(Ω), such that∫

Ω
κ−1Θ · Φ +

∫
Ω
θ div Φ +

∫
Ω
κ−1θu ·Φ = −

∫
Ω
κ−1s(θ)u ·Φ + 〈Φ · ν, θD〉Γ ,

−
∫

Ω
ψ div Θ = 0 ,

(4.3)

for all (Φ, ψ) ∈ H(div; Ω) × H1(Ω). Again, the analysis will require to incorporate the following
redundant terms:

κ4

∫
Ω

(
∇θ − κ−1θu− κ−1s(θ)u− κ−1Θ

)
· ∇ψ = 0 ∀ψ ∈ H1(Ω),

κ5

∫
Ω

div Θ div Φ = 0 ∀Φ ∈ H(div; Ω),

κ6

∫
Γ
θ ψ = κ6

∫
Γ
θD ψ ∀ψ ∈ H1(Ω),

where κ4, κ5 and κ6 are positive parameters to be specified later on. Then, now we may consider the
following mixed formulation for the energy equation: Find (Θ, θ) ∈ H(div; Ω)×H1(Ω), such that

ã((Θ, θ), (Φ, ψ)) + b̃u((Θ, θ), (Φ, ψ)) = F̃u,θ(Φ, ψ) + F̃D(Φ, ψ), (4.4)

for all (Φ, ψ) ∈ H(div; Ω) × H1(Ω), where, given an arbitrary (w, φ) ∈ H, the forms ã, b̃w and the
functionals F̃w,φ and F̃D are defined, respectively, as

ã((Θ, θ), (Φ, ψ)) :=

∫
Ω
κ−1Θ · (Φ− κ4∇ψ) +

∫
Ω
θ div Φ−

∫
Ω
ψ div Θ

+ κ4

∫
Ω
∇θ · ∇ψ + κ5

∫
Ω

div Θ div Φ + κ6

∫
Γ
θ ψ , (4.5a)

b̃w((Θ, θ), (Φ, ψ)) :=

∫
Ω
κ−1θw · (Φ− κ4∇ψ) , (4.5b)

for all (Θ, θ), (Φ, ψ) ∈ H(div; Ω)×H1(Ω), and

F̃w,φ(Φ, ψ) :=

∫
Ω
κ−1s(φ)w · (κ4∇ψ −Φ), (4.6a)

F̃D(Φ, ψ) := 〈Φ · ν, θD〉Γ + κ6

∫
Γ
θD ψ, (4.6b)

for all (Φ, ψ) ∈ H(div; Ω)×H1(Ω). The fully-mixed variational formulation for (2.1) reduces therefore
to the first equation of (3.7) and (4.4), i.e.: Find (~t, (Θ, θ)) ∈ H ×H(div; Ω)×H1(Ω) such that

Aθ(~t,~s) + Bu(~t,~s) = Fθ(~s) + FD(~s),

ã((Θ, θ), (Φ, ψ)) + b̃u((Θ, θ), (Φ, ψ)) = F̃u,θ(Φ, ψ) + F̃D(Φ, ψ),
(4.7)

for all (~s, (Φ, ψ)) ∈ H ×H(div; Ω)×H1(Ω).

We end this section by noticing that the present use of a mixed approach for the heat equation
avoids the introduction of the unknown given by the normal boundary heat flux λ, as it was required
in the primal formulation from Section 3.

20



4.2 Solvability analysis

The forms ã and b̃u are defined exactly as in [15, Section 3.1] and therefore we omit parts of the
proofs whenever necessary. On the other hand, for the solvability of (4.7), we propose a fixed-point
approach as in Section 3.2. More precisely, in addition to using the operator S (cf. (3.10) - (3.11)), and
instead of (3.12) and (3.14), we define the operators Ŝ : H→ H1(Ω) and T̂ := H→ H as Ŝ(w, φ) := θ
∀ (w, φ) ∈ H, where θ is the second component of the unique solution (Θ, θ) ∈ H(div; Ω)× H1(Ω) of
the problem given by the second equation of (4.7) with (w, φ) instead of (u, θ), that is

ã((Θ, θ), (Φ, ψ)) + b̃w((Θ, θ), (Φ, ψ)) = F̃w,φ(Φ, ψ) + F̃D(Φ, ψ), (4.8)

for all (Φ, ψ) ∈ H(div; Ω)×H1(Ω), and

T̂(w, φ) =
(
S3(w, φ), Ŝ(S3(w, φ), φ)

)
∀ (w, φ) ∈ H,

respectively. A first result concerning the solvability of the mixed formulation (4.8) is provided next.

Lemma 4.1 Assume that κ4 ∈
(

0, 2K̃0δ4
K̃1

)
, with δ4 ∈

(
0, 2

K̃1

)
, and κ5, κ6 > 0. Then, there exists

r̃0 > 0 such that for each r̃ ∈ (0, r̃0), problem (4.8) has a unique solution (Θ, Ŝ(w, φ)) := (Θ, θ) ∈
H(div; Ω)× H1(Ω) for each (w, φ) ∈ H with ‖w‖1,Ω ≤ r̃. Moreover, there exists kS > 0, independent
of (w, φ), such that

‖Ŝ(w, φ)‖ = ‖θ‖1,Ω ≤ ‖(Θ, θ)‖ ≤ kS

{
‖w‖0,Ω + ‖θD‖0,Γ + ‖θD‖1/2,Γ

}
∀ (w, φ) ∈ H. (4.9)

Proof. From [15, Lemma 3.3] we recall that the bilinear form ã + b̃w (cf. (4.5a), (4.5b)) is elliptic

with constant α̃1(Ω)
2 , provided ‖w‖1,Ω ≤ r̃0, with

r̃0 :=
α̃1(Ω)

2 ‖ic‖2 (Ω)(1 + κ2
4)1/2K̃1

. (4.10)

Now, from (4.6a) and (4.6b) we note that the functionals F̃w,φ and F̃D are bounded with

‖F̃w,φ‖ ≤ K̃1s2(1 + κ2
4)1/2 ‖w‖0,Ω and ‖F̃D‖ ≤ κ6c0(Ω) ‖θD‖0,Γ + ‖θD‖1/2,Γ ,

where c0(Ω) is the norm of the trace operator in H1(Ω). Finally, a direct application of the Lax-Milgram
lemma proves that for each (w, φ) ∈ H, problem (4.8) has a unique solution (Θ, θ) ∈ H(div; Ω)×H1(Ω).
Moreover, the continuous dependence result establishes that

‖Ŝ(w, φ)‖ ≤ ‖(Θ, θ)‖ ≤ 2

α̃1
‖F̃w,φ + F̃D‖ ≤ kS

{
‖w‖0,Ω + ‖θD‖0,Γ + ‖θD‖1/2,Γ

}
,

where kS := 2
α̃1

max{K̃1s2(1 + κ2
4)1/2, κ6c0(Ω), 1}, which ends the proof. �

The analogue of Lemma 3.3 is stated next.

Lemma 4.2 Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (3.20) and (4.10), respectively, we let

Ŵ := {(w, φ) ∈ H : ‖(w, φ)‖ ≤ r}, and assume that

c(r)
{
Cf + ‖uD‖1/2,Γ

}
+ kS

{
‖θD‖0,Γ + ‖θD‖1/2,Γ

}
≤ r, (4.11)

where c(r) := (1 + kS) cS max{1, r}, and cS and kS are the constants specified in Lemmas 3.1 and 4.1,

respectively. Then T̂(Ŵ ) ⊆ Ŵ .
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Proof. It follows exactly as in [15, Lemma 3.5]. �

Next, we aim to prove the continuity of T̂, which basically will be direct consequence of Lemma 3.4
and the following result providing the continuity of S and Ŝ, respectively.

Lemma 4.3 There exists K̃
S̃
> 0, such that for all (w1, φ1), (w2, φ2) ∈ H, there holds

‖Ŝ(w1, φ1)− Ŝ(w2, φ2)‖

≤ K̃
S̃

{
‖Ŝ(w2, φ2)‖1,Ω ‖w1 −w2‖1,Ω + ‖w2‖1,Ω ‖φ1 − φ2‖0,Ω + ‖w1 −w2‖1,Ω

}
.

(4.12)

Proof. Given r ∈ (0, r̃0), and (w1, φ1), (w2, φ2) ∈ H with ‖w1‖1,Ω , ‖w2‖1,Ω ≤ r, we let (Θ1, θ1),

(Θ2, θ2) ∈ H(div; Ω)×H1(Ω) be solutions to (4.8) corresponding to (w1, φ1) and (w2, φ2), respectively,
that is

ã((Θ1, θ1), (Φ, ψ)) + b̃w1((Θ1, θ1), (Φ, ψ)) = F̃w1,φ1(Φ, ψ) + F̃D(Φ, ψ),

and
ã((Θ2, θ2), (Φ, ψ)) + b̃w2((Θ2, θ2), (Φ, ψ)) = F̃w2,φ2(Φ, ψ) + F̃D(Φ, ψ),

for all (Φ, ψ) ∈ H(div; Ω)×H1(Ω). Then, similarly to Lemma 3.4, we add and subtract suitable terms
to get

(ã+ b̃w2)((Θ1, θ1)− (Θ2, θ2), (Θ1, θ1)− (Θ2, θ2))

= −b̃w1−w2((Θ1, θ1), (Θ1, θ1)− (Θ2, θ2)) + (F̃w1,φ1 − F̃w2,φ2)((Θ1, θ1)− (Θ2, θ2)) ,

from which, applying the ellipticity of ã+ b̃w2 , we deduce that

α̃1

2
‖(Θ1, θ1)− (Θ2, θ2)‖2

≤ − b̃w1−w2((Θ1, θ1), (Θ1, θ1)− (Θ2, θ2)) + (F̃w1,φ1 − F̃w2,φ2)((Θ1, θ1)− (Θ2, θ2))

≤ K̃1

{
(1 + κ2

4)1/2 ‖ic‖2 ‖θ1‖1,Ω ‖w1 −w2‖+ Ls(1 + κ2
4)1/2 ‖w2‖1,Ω ‖φ1 − φ2‖1,Ω

+ s2 ‖w1 −w2‖0,Ω
}
‖(Θ1, θ1)− (Θ2, θ2)‖ .

The foregoing inequality yields (4.12) with K̃
S̃

:= 2K̃1
α̃1

max{(1 +κ2
4)1/2 ‖ic‖2 , Ls(1 +κ2

4)1/2, s2}, which
finishes the proof. �

We are now in a position to establish the announced property of the operator T̂. We omit the
corresponding proof and refer to [15, Lemma 3.8] for details.

Lemma 4.4 Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (3.20) and (4.10), respectively, we let

Ŵ as in Lemma 4.2. Then, there exists a constant KT > 0 such that for all (w1, φ1), (w2, φ2) ∈ Ŵ ,
there holds

‖T̂(w1, φ1)− T̂(w2, φ2)‖

≤ KT

{
Cf + ‖uD‖1/2,Γ + ‖uD‖1/2+ε,Γ + Lf

}
‖(w1, φ1)− (w2, φ2)‖ .

(4.13)

The existence and uniqueness of a fixed point of T̂ (and therefore well-posedness of (4.7)), is stated
as follows.
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Theorem 4.5 Suppose that the parameters κ4, κ5 and κ6 satisfy the conditions required by Lemma
(4.1). In addition, let r and Ŵ as in Lemma 4.2, and assume that the data verify (4.11) and

KT

{
Cf + ‖uD‖1/2,Γ + ‖uD‖1/2+ε,Γ + Lf

}
< 1. (4.14)

Then (4.7) has a unique solution (~t, (Θ, θ)) ∈ H ×H(div; Ω)×H1(Ω) with (u, θ) ∈ Ŵ . Moreover

‖~t‖ ≤ cS
{
Cf r + ‖uD‖1/2,Γ

}
,

and
‖(Θ, θ)‖ ≤ kS{‖u‖1,Ω + ‖θD‖0,Γ + ‖θD‖1/2,Γ}.

Proof. It suffices to apply the Banach fixed-point Theorem (bearing in mind (4.13) - (4.14)), and then
employ the a priori estimates (3.15) and (4.9). We omit further details. �

4.3 The Galerkin scheme

Similarly to Section 3.3, we begin by considering the arbitrary finite dimensional subspaces

Ht
h ⊆ L2

tr(Ω), Hσh ⊆ H0(div; Ω), Hu
h ⊆ H1(Ω), HΘ

h ⊆ H(div; Ω), and Hθ
h ⊆ H1(Ω). (4.15)

A Galerkin scheme for (4.7) then reads: Find (~th, (Θh, θh)) ∈ Hh ×HΘ
h ×Hθ

h such that

Aθh(~th,~sh) + Buh(~th,~sh) = Fθh(~sh) + FD(~sh),

ã((Θh, θh), (Φh, ψh)) + b̃uh((Θh, θh), (Φh, ψh)) = F̃uh,θh(Φh, ψh) + F̃D(Φh, ψh),
(4.16)

for all (~sh, (Φh, ψh)) ∈ Hh ×HΘ
h × Hθ

h. We emphasize that the analysis of (4.16) uses the discrete
version of the fixed-point strategy from Section 4.2. Results and the used arguments are almost
verbatim to those in that section, and we omit them here simply stating the main result.

Theorem 4.6 Suppose that the parameters κ4, κ5 and κ6 satisfy the conditions required by Lemma
4.1. In addition, let Ŵh :=

{
(wh, φh) ∈ Hu

h ×Hθ
h : ‖(wh, φh)‖ ≤ r

}
, with r defined as in Lemma

4.2, and assume that the data satisfy (4.11). Then, the problem (4.16) has at least one solution

(~th, (Θh, θh)) ∈ Hh ×HΘ
h ×Hθ

h, with (uh, θh) ∈ Ŵh, and there holds

‖~th‖ ≤ cS
{
Cf r + ‖uD‖1/2,Γ

}
,

and
‖(Θh, θh)‖ ≤ kS{‖uh‖1,Ω + ‖θD‖0,Γ + ‖θD‖1/2,Γ}.

4.4 A priori error analysis

Let (Θ, θ) and (Θh, θh) be solutions to the problems

ã((Θ, θ), (Φ, ψ)) + b̃u((Θ, θ), (Φ, ψ)) = F̃u,θ(Φ, ψ) + F̃D(Φ, ψ) and

ã((Θh, θh), (Φh, ψh)) + b̃uh((Θh, θh), (Φh, ψh)) = F̃uh,θh(Φh, ψh) + F̃D(Φh, ψh) ,
(4.17)

for all (Φ, ψ) ∈ H(div; Ω)×H1(Ω), and for all (Φh, ψh) ∈ HΘ
h ×Hθ

h, respectively. A preliminary error
estimate is provided by the following lemma.
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Lemma 4.7 There exists a positive constant KST, independent of h, such that

‖(Θ, θ)− (Θh, θh)‖ ≤ KST

{(
1 + ‖u− uh‖1,Ω

)
dist

(
(Θ, θ),HΘ

h ×Hθ
h

)
+ ‖u− uh‖1,Ω ‖θ‖1,Ω + ‖uh‖1,Ω ‖θ − θh‖1,Ω + s2 ‖u− uh‖0,Ω

}
.

(4.18)

Proof. Proceeding as in the proof of Lemma 3.15, a straightforward application of the Strang lemma
provided in [34, Thm. 11.1] to the context (4.17), yields

‖(Θ, θ)− (Θh, θh)h‖ ≤ K1

 sup
(Φh,ψh)∈HΘ

h
×Hθ

h
(Φh,ψh)6=0

|F̃u,θ(Φh, ψh)− F̃uh,θh(Φh, ψh)|
‖(Φh, ψh)‖

+ inf
(Ψh,φh)∈HΘ

h
×Hθ

h
(Ψh,φh)6=0

‖(Θ, θ)− (Ψh, φh)‖+ sup
(Φh,ψh)∈HΘ

h
×Hθ

h
(Φh,ψh)6=0

|b̃u−uh((Ψh, φh), (Φh, ψh))|
‖(Φh, ψh)‖


 ,

(4.19)

where K1 := 2
α̃1(Ω) max{1, ‖ã+ b̃u‖}. Thus, employing [15, Lemma 5.3], we have

sup
(Φh,ψh)∈HΘ

h
×Hθ

h
(Φh,ψh)6=0

|b̃u−uh((Ψh, φh), (Φh, ψh))|
‖(Φh, ψh)‖

≤ ‖ic‖2 (1 + κ2
4)1/2K̃1 ‖u− uh‖1,Ω ‖θ‖1,Ω

+ ‖ic‖2 (1 + κ2
4)1/2K̃1 ‖u− uh‖1,Ω ‖(Θ, θ)− (Ψh, φh)‖ ,

(4.20)

and similarly as in Lemma 4.3 we get

sup
(Φh,ψh)∈HΘ

h
×Hθ

h
(Φh,ψh)6=0

|F̃u,θ(Φh, ψh)− F̃uh,θh(Φh, ψh)|
‖(Φh, ψh)‖

≤ K̃1(1 + κ2
4)1/2Ls ‖uh‖1,Ω ‖θh − θ‖1,Ω + K̃1s2 ‖uh − u‖0,Ω .

(4.21)

Therefore, (4.18) follows by replacing (4.20) and (4.21) back into (4.19), with a constant KST depend-
ing on α̃1, ‖ã+ b̃u‖, K̃1, ‖ic‖ , κ4, and Ls. �

In much the same way as in Section 3.3, denoting

C9 = KSTkScS, C10 := CSTcS +KSTcS + CSTcS,

C11 := max{CST, C5, (C5 + C10 + C9r)r, C9 + C10,KSTkS,KST},
where C5 is the constant defined in (3.51), and applying the estimates given in Lemmas 3.15 and 4.7,
we can prove that

‖~t−~th‖+ ‖(Θ, θ)− (Θh, θh)‖ ≤ CST dist(~t, Hh) +KST

(
1 + ‖u− uh‖1,Ω

)
dist

(
(Θ, θ),HΘ

h ×Hθ
h

)
+ C11

(
Lf + ‖uD‖1/2+ε,Ω + Cf + ‖uD‖1/2,Ω + ‖θD‖1/2,Γ + ‖θD‖0,Γ + s2

)
×
{
‖~t−~th‖+ ‖(Θ, θ)− (Θh, θh)‖

}
.

We stress here that the constants multiplying dist(~t, Hh) and dist
(
(Θ, θ),HΘ

h ×Hθ
h

)
are both con-

trolled by constants, parameters, and data only since ‖u− uh‖1,Ω can be controlled by (3.15) and
(3.41). Consequently, we can establish the following main result.
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Theorem 4.8 Assume that the data satisfy

C7

{
Lf + ‖uD‖1/2+ε,Ω + Cf + ‖uD‖1/2,Ω + ‖θD‖1/2,Γ + ‖θD‖0,Γ + s2

}
<

1

2
.

Then, there exists a positive constant C12, independent of h, such that

‖~t−~th‖+ ‖(Θ, θ)− (Θh, θh)‖ ≤ C12

{
dist(~t, Hh) + dist

(
(Θ, θ),HΘ

h ×Hθ
h

)}
. (4.22)

4.5 Specific finite element subspaces

Here we consider the global Raviart-Thomas space of order k to approximate Θ, and the Lagrange
space of degree ≤ k + 1 for the temperature θ, that is

HΘ
h :=

{
Φh ∈ H(div; Ω) : ctΦh|K ∈ RTk(K), ∀ c ∈ Rn ∀K ∈ Th

}
,

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
.

(4.23)

The approximation properties of the spaces in (3.56) and (4.23) (that can be found in e.g [4,10,24]) are
then combined with the Céa estimate (4.22) to produce the theoretical rate of convergence of (4.16),
summarized as follows.

Theorem 4.9 Appart from the hypotheses of Theorems 4.5, 4.6 and 4.8, assume that there exists
s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ H1+s(Ω) , Θ ∈ Hs(Ω), div Θ ∈ Hs(Ω),
and θ ∈ H1+s(Ω). Then there exists C > 0 independent of h, such that with (3.56) and (4.23), one has

‖~t−~th‖+ ‖(Θ, θ)− (Θh, θh)‖ ≤ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

+ ‖u‖1+s,Ω + ‖Θ‖s,Ω + ‖div Θ‖s,Ω + ‖θ‖1+s,Ω

}
.

(4.24)

5 Numerical tests

We now present a set of computational tests. For the mixed-primal scheme (3.35) we consider an ex-
ample that shows the convergence rates anticipated by Theorem 3.18, and a second test that addresses
the application of our method to the three-dimensional modeling of gallium melting in a cuboid cavity.
We will also present two examples that illustrate the performance of the fully-mixed scheme (4.16),
and that will serve as conformation for the rates of convergence provided by Theorem 4.9.

5.1 Preliminary notations

A Picard algorithm with tolerance of 1E− 6 on the `2-norm of the residual has been employed for our
fixed-point problems. The convergence of the approximate solutions is assessed by computing errors
in the respective norms and experimental rates, that we define as usual

e(t) = ‖t− th‖0,Ω , e(u) = ‖u− uh‖1,Ω , e(p) = ‖p− ph‖0,Ω , e(θ) = ‖θ − θh‖1,Ω ,
e(λ) =

∥∥λ− λ
h̃

∥∥
0,Γ
, e(σ) = ‖σ − σh‖div;Ω , e(Θ) = ‖Θ−Θh‖div;Ω ê(σ) =

∥∥σh − σt
h

∥∥
0,Ω

,

r(λ) =
log(e(λ)/e′(λ))

log(h̃/h̃′)
, r(%) =

log(e(%)/e′(%))

log(h/h′)
,
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with % ∈ {t,σ,u, p,Θ, θ}, and where e, e′ denote errors computed on two consecutive meshes of
sizes h, h′ (h̃ and h̃′ for λ), respectively. The trace condition on the stress is enforced through a
penalization strategy. Furthermore, for the Examples 5.2.1, 5.3.1 and 5.3.2 described below, we
remark that the Navier-Stokes-Brinkman and heat equations are considered non-homogeneous and
the extra source terms are chosen according to the given exact solutions. This treatment does not
compromise the continuous and discrete analysis, as the regularity of the exact solution provides
sufficiently smooth right-hand sides, thus only requiring a slight modification of the functionals in the
variational formulation.

5.2 Tests for the mixed-primal scheme

Example 5.2.1. In our first numerical test, we consider problem (2.1) defined in the unit square Ω =
(0, 1)2 and choose the following manufactured exact solutions, viscosity, porosity, enthalpy, buoyancy
and thermal conductivity:

u =

(
sin(πx) cos(πy)
− sin(πy) cos(πx)

)
, θ = 1 + sin(πx) cos(πy), p = x2 − y2, t = e(u),

σ = αµ(θ)t− (u⊗ u)− p I, λ = −ρκ∇θ · ν, µ(θ) = exp(−0.25 θ),

η(θ) = 2− tanh(0.5− θ), s(θ) = 1 + tanh(1− θ), f(θ) = 0.01
Ra

PrRe2 θ, κ = I.

(5.1)

These closed-form solutions feature a divergence-free velocity that satisfies the compatibility condition
(2.6) and it is used as a non-homogeneous Dirichlet datum on Γ. In turn, the exact temperature is
uniformly bounded and it is also exploited as Dirichlet datum. Moreover, the nonlinear functions
satisfy (2.2)-(2.4). We consider k = (0, 1)t and the parameters given by: Re = 1,Pr = 0.71, C = 1 and
Ra = 100, where Ra is the Rayleigh number. The stabilization parameters κ1, κ2 and κ3 are taken
as in (3.23), where the viscosity and porosity bounds are estimated as µ1 = 0.6, µ2 = 1 and η1 = 1,
η2 = 3, respectively, thus resulting in κ1 = 0.6, κ2 = 0.33 and κ3 = 0.3. An average of six Picard
steps were required to reach the desired tolerance. Errors and corresponding rates associated with first
and second order approximations are summarized in Table 1. The results show optimal asymptotic
convergence rates for all fields, which are the expected ones according to Theorem 3.18. Also, Figure
2 shows that the rates of convergence for ê(σ) are the expected ones. Finally, samples of augmented
mixed-primal approximations obtained with 1M DoFs are depicted in Figure 1.

Example 5.2.2. We continue with a simulation involving phase change in a cuboid cavity. The prob-
lem corresponds to the steady thermal convective flow occurring in the melting of gallium. Numerical
results for the transient version of this problem, as well as detailed experimental considerations, can
be found in e.g. [8,40,42]. We have adapted the model to comply with (2.1), using a porosity-enthalpy
framework (i.e., setting a constant viscosity), but employing mixed boundary conditions as prescribed
below. The physical properties of the problem are defined by the model constants Ra = 2E5, Re = 10,
Pr = 0.71, µ = 1, η1 = 1E − 3, η2 = 1E5, θr = 0.01, r = 0.05, g = (0, 0, 1)t. The temperature-
dependent enthalpy and porosity functions adopt the forms

s(θ) =
1

2

{
1 + tanh(

θr − θ
r

)
}
, η(θ) = η1 + η2

{
1 + tanh(

θr − θ
r

)
}
.

The computational domain is the box Ω = (0, 2) × (0, 2) × (0, 1) and we generate a structured mesh
composed by 255K tetrahedral elements and about 46K vertices. Considering the lowest-order mixed-
primal finite element method (3.35), the assembled linear systems appearing at each Picard iteration
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Mixed-primal P0 −RT0 −P1 − P1 − P0 scheme

DoFs h e(t) e(σ) e(u) e(p) e(θ) e(λ)
1114 0.1900 0.27795 0.81133 0.46689 0.08997 0.32250 1.04403
4138 0.0950 0.14164 0.39563 0.23877 0.04233 0.16783 0.50832
16088 0.0490 0.07030 0.19703 0.11721 0.02047 0.08227 0.25242
63531 0.0244 0.03513 0.09902 0.05920 0.01045 0.04157 0.12559
255319 0.0139 0.01751 0.04928 0.02931 0.00514 0.02057 0.06272
1010150 0.0077 0.00878 0.02435 0.01450 0.00249 0.01020 0.03135

ê(σ) h̃ r(t) r(σ) r(u) r(p) r(θ) r(λ)
0.28394 0.5000 - - - - - -
0.14441 0.2500 0.97260 1.03613 0.96744 1.08761 0.94224 1.03826
0.07225 0.1250 1.05788 1.05290 1.07467 1.09690 1.07679 1.00987
0.03542 0.0625 0.99623 0.98802 0.98078 0.96534 0.98014 1.00705
0.01767 0.0312 1.24455 1.24779 1.25722 1.26803 1.25808 1.00167
0.00901 0.0156 1.17723 1.20254 1.19973 1.23193 1.19550 1.00041

Mixed-primal P1 −RT1 −P2 − P2 − P1 scheme

DoFs h e(t) e(σ) e(u) e(p) e(θ) e(λ)
3610 0.1900 0.02055 0.06020 0.03517 0.01120 0.02617 0.08327
13690 0.1025 0.00494 0.01494 0.00824 0.00324 0.00607 0.01984
53826 0.0492 0.00120 0.00365 0.00200 0.00078 0.00145 0.00476
213782 0.0256 0.00030 0.00092 0.00051 0.00020 0.00036 0.00116
861670 0.0139 0.00008 0.00023 0.00013 0.00006 0.00008 0.00028

ê(σ) h̃ r(t) r(σ) r(u) r(p) r(θ) r(λ)
0.01935 0.5000 - - - - - -
0.00427 0.0250 2.30696 2.25787 2.35075 2.01078 2.36693 2.06950
0.00108 0.1250 1.91309 1.90661 1.91476 1.91739 1.93990 2.05693
0.00027 0.0625 2.10199 2.12297 2.10057 2.09550 2.14255 2.03644
0.00006 0.0312 2.15117 2.26398 2.23191 1.95851 2.29949 2.01195

Table 1: Example 5.2.1. Convergence history for k = 0, 1.

consist of about 3M DoFs for the Navier-Stokes-Brinkman block and near 46K DoFs for the energy
conservation equation. No-slip conditions were imposed for the velocity on the whole boundary.
Moreover, the walls defined by x = 0 and x = 2 are maintained at fixed temperatures of θ = 1 and
θ = −0.01, respectively; whereas on the remaining walls we impose zero-flux boundary conditions for
the temperature. Such a setting implies in particular, that the Lagrange multiplier λ is not required in
the formulation. Primary features of the flow can be observed in Figure 3. We do not expect to produce
the flow separation vortices as those seen in [40] because our test focuses on the steady regime and
we employ a enthalpy-porosity model. Nevertheless, we do see streamlines avoiding the solid region
(on the right hand side of the gray wall), as well as a qualitative match with the temperature profiles
observed in [8, 40], where thermal convection occurs mainly on the xy plane. Under the considered
flow regime, 15 fixed-point iterations were needed to reach the desired residual tolerance of 1E-6.

5.3 Tests for the fully-mixed scheme

Example 5.3.1. In this example we consider the domain, exact solution, nonlinear functions, pa-
rameters and stabilization parameters for the Navier-Stokes-Brinkman equation exactly as in Example
5.2.1 of Section 5.2 (cf. (5.1)). We recall that Θ := ρκ∇θ−θu−s(θ) and for the values κ4, κ5 and κ6,
we follow [15, Section 6] to obtain κ4 = 0.99, κ5 = 0.5 and κ6=0.49. Values and plots of errors and
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Figure 1: Example 5.2.1. Lowest-order approximate solutions: (a)-(c) pseudostress entries, (d) dis-
placement magnitude, (e) strain rate, (f) postprocessed pressure, (g) temperature, (h) effective vis-
cosity, and (i) effective porosity fields.

corresponding rates associated with first and second order approximations are summarized in Table
2 and Fig. 4. The results show optimal asymptotic convergence rates for all fields, which are the ex-
pected ones according to Theorem 4.9. We remark here that the errors reported in Tables 1 and 2 for
the unknowns t, σ, and u, are basically the same for the two methods considered in the paper, which
is due to the fact that both formulations consider a mixed approach for the Navier-Stokes-Brinkman
equation. However, since for the heat equation primal and mixed approaches are employed, which
yields the two different coupled schemes that are proposed and analyzed in the paper, some very
slight changes (even only after two or three decimals) can be observed in those tables for the rates of
convergences of t, σ, u, and p.
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Figure 2: Example 5.2.1. Errors associated with the mixed-primal approximation versus DoFs for
P0 −RT0 −P1 −P1 −P0 and P1 −RT1 −P2 −P2 −P1 finite elements (left and right, respectively).

771 1333208.58 1895.89

.

5.4 110.00 16.28
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0.34 0.67-0.01 1.00

phi

Figure 3: Example 5.2.2. Computed solutions with the lowest-order mixed-primal scheme. (a) pseudo-
stress magnitude, (b) velocity magnitude, (c) temperature.

Example 5.3.2 In our second example, we produce the error and rate history associated with the
finite element approximation for the three-dimensional case. Let us consider the following closed-form
solutions to the model problem, defined on the unit cube domain Ω = (0, 1)3:

u =

 cos(x) sin(y) sin(z)
sin(x) cos(y) sin(z)
−2 sin(x) sin(y) cos(z)

 , θ = 1 + sin(πx) cos(πy) sin(πz), p = x2 − 2y2 − z2.

These functions are smooth and they are used to generate non-homogeneous forcing and source terms.
Also, the manufactured velocity and temperature are used as Dirichlet datum on Γ. The porosity, en-
thalpy and thermal conductivity are taken as in Example 5.2.1, and the remaining nonlinear functions
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Fully-mixed P0 −RT0 −P1 −RT0 − P1 scheme

DoFs h e(t) e(σ) e(u) e(p) e(Θ) e(θ)
1332 0.1900 0.27796 0.81134 0.46690 0.08977 1.75126 0.32186
5012 0.0950 0.14164 0.39564 0.23877 0.04228 0.86291 0.16783
19636 0.0490 0.07030 0.19703 0.11721 0.02047 0.43528 0.08226
77860 0.0244 0.03513 0.09902 0.05920 0.01045 0.21694 0.04158
313572 0.0139 0.01751 0.04928 0.02931 0.0051 0.10825 0.02057
1241924 0.0077 0.00878 0.02435 0.01450 0.00249 0.05320 0.01020

iter r(t) r(σ) r(u) r(p) r(Θ) r(θ)
6 - - - - - -
6 0.97261 1.03610 0.96744 1.08623 1.02110 0.93942
6 1.05793 1.05293 1.07468 1.09557 1.03359 1.07691
6 0.99624 0.98803 0.98078 0.96496 1.00003 0.97988
6 1.24456 1.24779 1.25722 1.26790 1.24230 1.25816
6 1.17723 1.20254 1.19973 1.23190 1.21162 1.19554

Fully-mixed P1 −RT1 −P2 −RT1 − P2 scheme

DoFs h e(t) e(σ) e(u) e(p) e(Θ) e(θ)
4354 0.1900 0.02055 0.06020 0.03517 0.01120 0.10995 0.02402
16642 0.1025 0.00494 0.01494 0.00824 0.00324 0.02824 0.00571
65734 0.0492 0.00120 0.00365 0.00200 0.00078 0.00694 0.00139
261712 0.0256 0.00030 0.00092 0.00051 0.00020 0.00174 0.00035
1056184 0.0139 0.00008 0.00023 0.00013 0.00006 0.00042 0.00008

iter r(t) r(σ) r(u) r(p) r(Θ) r(θ)
6 - - - - - -
6 2.30685 2.25790 2.35075 2.01040 2.20238 2.32777
6 1.91308 1.90661 1.91475 1.91735 1.90140 1.90685
6 2.10194 2.12295 2.10055 2.09544 2.12817 2.11582
6 2.15690 2.26665 2.23441 1.97252 2.31585 2.28408

Table 2: Example 5.3.1. Convergence history and Picard iteration count for k = 0, 1.

are defined as: µ(θ) = exp(−θ), f(θ) = θ. All model constants assume the adimensional value 1. The
stabilization parameters are taken again as in Example 5.3.1. Part of the solution is shown in Figure
5, and a convergence history for a set of quasi-uniform refinements is shown in Table 3, confirming
that this fully-mixed finite element method converges optimally with order O(hk+1).
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[12] J. Camaño, G.N. Gatica, R. Oyarzúa and R. Ruiz-Baier, An augmented stress-based mixed fi-
nite element method for the Navier-Stokes equations with nonlinear viscosity. Numer. Methods Partial
Differential Equations. 33 (2017), no. 5, 1692–1725.

[13] Y. Cao and S. Chen, Analysis and finite element approximation of bioconvection flows with concentration
dependent viscosity. Int. J. Numer. Anal. Mod. 11 (2013), no. 1, 86–101.
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