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Abstract
This article is a brief survey of Saul Abarbanel’s research career. We shall describe the main
contributions and present the results in some of his articles. For each field of his interest a
few introductary remarks are included with the intention of describing the history and the
state of existing numerical methods at the time.
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1 Introduction

This article is a brief survey of Saul Abarbanel’s researh career that stretched over more
than half a century. His productionwas huge and has had great impact in the field of numerical
analysis and its applications. He started out with work that can be characterized as applied
mathematics in the classical sense with focus on aerodynamics. However, he soon switched
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to numerical methods, and his main research area came to be finite difference methods for
the solution of partial differential equations. He worked on several different types of prob-
lems with particular emphasis on high order methods based on compact implicit difference
operators, and on problems requiring artificial boundaries.

The list of publications at the end is far from complete, it includes essentially those articles
mentioned in this presentation. He continued working with his students a long time after their
graduation and many of these are coauthors on his articles. There are certainly many others
who worked with him who should be mentioned in a more complete biography.

The presentation of hiswork ondifferencemethods is divided into four parts corresponding
to Saul’s main areas of interest:

• Lax–Wendroff type difference methods.
• High–order difference methods.
• Navier–Stokes equations.
• Artificial boundaries and PML–methods.

For each field a few introductary notes are included with the intention of describing the
history and the state of existing numerical methods for the particular problems that caught
Saul’s interest at the time.

2 The Early Years

Saul was born inMontclair, NJ, USA in 1931, but in 1933 his family moved back to Tel Aviv,
where Saul finished high scool at the age 16. At this time the Jewish community was under
various threats and Saul joined the underground resistence organization Palmach which later
became part of the Israel defence forces. The war of independence took place 1947–1949;
Saul served initially in the heavy mortar unit and later as a radio operator in the Air Force.
This experience, obtained as a young teenager with high risk of being killed, is quite unusual
among scientists in general.

In 1951 Saul moved to Boston where he started his academic studies at MIT, where he
got his B.Sc. and M.Sc. in Aerodynamics and Astronautics. His Ph.D. thesis presented in
1959 was in theoretical aerodynamis with a study of heat transfer in various types of flow.
Actually, the degree Sc.D. would have been more natural at this department, but the Ph.D.
degree was used because of the theoretical mathematical character of the thesis. The work
can be classified as applied mathematics with derivation of analytic solutions to certain
mathematical models in physics. No numerical methods were used.

After completing the Ph.D. thesis at MIT he moved back to Israel and spent a year as post
doc. at the Weizmann Institute. After that he got a position as Assistant Professor at Tel Aviv
University where he began his academic career, and where he stayed until his death except
for numerous visits as guest professor in United States.

Saul’s first published papers were [1] (1960) and [2] (1961), both of them about heat trans-
fer. These were followed by a number of articles treating various flow problems, in particular
those involving shocks. During the first decade his research was still applied mathematics
with a number of different physical and technical applications. Some of his results were pub-
lished in Israel Journal of Technology, for example the article [3] with the title The deflection
of confining walls by explosive loads. Another one has the title The motion of shock waves
and products of detonation confined between a wall and a rigid piston with an abstract which
contains the sentence “. . . a detailed analytical solution of the piston motion and flow field is
carried out . . .”, see [19]. This is a good illustration of the character of his work at this time;
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a mathematical model for the physical behaviour is found, and then an analytical solution
is derived. The analysis is often very complicated, but Saul had an excellent technical skill
when it came to handling the necessary mathematical tools. One can wonder whether his
choice of topics had something to do with the problems encountered by the Israeli weapon
industry.

3 Lax–Wendroff Type DifferenceMethods

Late in the 1960s Saul’s work shifted towards numerical methods, mainly differencemethods
for partial differential equations. At this time the approximation of nonlinear PDE was a big
issue, the main problem being hyperbolic equations containing discontinuities in the form of
contact discontinuities and shocks. The definition of unique solutions is not a trivial matter,
but it was resolved in the seminal article [28] by Peter Lax in 1954. There the definition of
shocks for the equation

∂u

∂t
= ∂ f (u)

∂x
(1)

was given as the limit of the perturbed equation

∂u

∂t
= ∂ f (u)

∂x
+ ε

∂2u

∂x2

as ε → 0. For any fixed ε this equation is parabolic and has smooth solutions. The idea was
introduced by von Neumann and Richtmyer already in 1950 as a method for solving (1), see
[34]. Many versions based on this idea were developed, they were later called Lax-Wendroff
type methods after the basic method given in the article [29]. It became the standard type for
solution of more general shock problems even if Godunov methods, upwind methods and
shock fitting began emerging. However, there is a problem with the Lax–Wendroff method
since oscillations occur near the shock no matter how fine the grid is chosen. In the paper
[18] this problem is resolved by modifying the scheme to an iterative version

W n+1,s+1 = W n + Q · [θW n+1,s + (1 − θ)W n], s = 0, 1, . . . , k − 1,

where Q represents the Law–Wendroff operator. The intention is to use a low number of
iterations, and it turns out that k = 1 and k = 2 eliminates the oscillations completely, giving
a monotone profile. The method is used for various applications, see for example [10].

This work is typical for much of Saul’s work throughout the years. He picks up some
method that has the potential of being effective but has certain flaws. Then he analyzes it
to find the reason for the problem, and when understanding it he comes up with a cure that
improves the performance considerably.

Another example of this is the article [9] published in 1986. For steady state problems
several methods existed at this time, some of them being based on the time-dependent PDE
that after integration in time leads to a steady state. Implicitmethods allow for large time-steps
without sacrificing stability, and ADI-methods simplify the solution of the large algebraic
systems that occur at each time-step. One suchmethodwas introduced byBeam andWarming
in 1976; for the simple heat equation

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂ y2
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it is

(1 − λδ2x )(1 − λδ2y)(v
n+1 − vn) = αλ(δ2x + δ2y)v

n, λ = �t/h2

for equal step-size h in both space directions. Here δ2x and δ2y are the standard second order
difference operators, λ = �t/h2 and α are constants that may be chosen in different ways
for different versions. Saul and his coworkers investigate the rate of convergence to steady
state as n → ∞ and develop a general type of convergence analysis based on the size of the
residual at each iteration. In this way the convergence rate is derived and shown to depend
on λ. To improve the method, an extra term

γ

4
λ2δ2xδ

2
y(δ

2
x + δ2y)v

n

is added to the right hand side. In this way the convergence rate is significantly improved,
furthermore it is independet of λ over a large range of values. Not only that, it largely removes
the effect of grid stretching and seems to be very robust in general.

Finally it should be mentioned that higher order accurate versions of the Lax-Wendroff
scheme was constructed in an early work with Zwas, see [36].

Typically for Saul, the results are based on a thorough analysis, partly containing a new
type of approach. When the mechanism is understood, modifications are made resulting in a
significant improvement of the algorithm.

4 High-Order DifferenceMethods

Beginning in 1971 pseudospectral methods were emerging, see [32] and [26]. These methods
have optimal accuracy, i.e., the order isO(N ), where N is the number of grid-ponts in space.
However, with trigonometric basis functions allowing for the use of FFT, the application of
the method is limited to problems with periodic solutions. Even if other basis functions like
Chebyshev polynomials are used, the presence of boundaries causes trouble.

Traditionally, the order of accuracy for any method had been defined by truncated Taylor
expansions and the form of the remainder. However, in [26] another andmore precise study of
the accuracy is introduced. A Fourier transformation is made, and the number of grid-points
per wave-length to achieve a certain prescribed error is determined. The results show that high
order methods are more effective even if more grid-points are included for approximation of
derivatives at each grid-point. This created a new interest in high order difference methods.
These have wide stencils and also here there are difficulties near the boundaries.

The method of lines is often used for PDE, i.e., the discretization is first done in space
and then an ODE-solver is applied to the resulting system of ordinary differential equations.
A Runge–Kutta method is often used for the time discretization, but the problem with wide
computational stencils is then even more severe than for other direct PDE-methods, in partic-
ular for 3D-problems. The reason is that each step requires a number of intermediate stages
and this creates difficulties when constructing numerical boundary conditions.

In [33] amodified version of the 4th order Runge–Kutta method is constructed and applied
to the 2D conservation law

∂u
∂t

= ∂f(u)

∂x
+ ∂g(u)

∂ y
,

where u , f and g are vectors. The standard formulas for each stage is substituted by an
advanced form of the Lax–Wendroff principle. In this way the computational domain is
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Fig. 1 Computational domain
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reduced, see Fig. 1, and already in two space dimensions the size reduces from 269 to 16
points, in 3D the reduction is enormous.

Actually Saul and his coworkers also worked out new boundary conditions for the original
Runge–Kutta method, which eliminates problems with accuracy and stability for various
conditions that are often used, see [24]. They find that by using extrapolation from inner
points at the intermediate stages and imposing the exact condition u(0, t) = g(t) at the end
of each complete step, the size of the time-step is reduced significantly. On the other hand,
if the exact boundary values are prescribed at each stage, the step-size is not affected, but
the accuracy is reduced to second order independently of the order of the basic Runge–Kutta
scheme. Several other conditions are suggested for the intermediate stages and a detailed
analysis shows that the drawbacks sometimes are eliminatad, sometimes they are not. For
example, if the exact values at each stage is substituted by a Taylor expansion such that the
boundary value at the first stage is given as

v
(1)
0 = g(t) + α�tg′(t)

and similarly for the remaining stages, then full accuracy is retained for the linear case, while
the accuracy in the nonlinear case is reduced to third order. This deficiency is removed by
using the SAT tecnique where a penalty term is added to the approximation, see [14].

One way to overcome the difficulties with numerical boundary conditions is to construct
high order methods by using a narrower computational stencil. The question then is if it is
possible to retain the high order accuracy including the boundaries. Saul and his coworkers
showed that it is.

As the basic method they used implicit compact difference methods, and the results were
presented in a series of articles, see [4,5,21–23]. The principle for implicit compact difference
operators goes back to approximations of functions by rational funcions introduced by Henri
Padé already 1890. This idea was used by Collatz and later by Lele [30] as a basis for a new
type of difference operators, where the difference approximation v of ∂u/∂x has the form

Prv = Qr u,

where Pr and Qr are difference operators such that the approximation is of order r .
Lele’s stability analysis is limited to a numerical computation of the eigenvalues of the

matrix corresponding to the difference operator, and this does not guarantee stability in the
true sense. Saul and some of his colleagues decided to do something about it. They considered
the scalar hyperbolic equation

∂u

∂t
= ∂u

∂x
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with the semidiscrete approximation

∂u

∂t
= P−1

r Qr u.

The method of analysis is based on normal mode analysis leading to so called GKS stability.
The definition of stability allows for a bounded growth in time which is a disadvantage in
many cases. If this growth is eliminated the result is a strictly stable scheme, also called time-
stable or asymptotically stable. This property requires that the eigenvalues of the difference
operator in space are located in the left halfplane, or in the fully discrete case that they are
inside the unit circle.

Boundary conditions with various order of accuracy are constructed and analyzed with
respect to stability. There are three main parts in the article: investigation of GKS stability,
investigation of strict stability by using eigenvalue computation and finally numerical exper-
iments for verification of the theoretical results. The GKS analysis requires the solution of
polynomial equations. Increasing the order of accuracy increases the degree of the polynomi-
als, and as a consequence it becomes more difficult to find the zeros. In these cases numerical
methods are used for finding the roots to machine accuracy.

The results of this thorough and extensive analysis is the construction of GKS stable and
strictly stable schemes with boundary conditions of up to sixth order of accuracy.

The boundary conditions are based on SBP operators, i.e., a scalar product is constructed
such that by using summation by parts it can be shown that the corresponding norm || · ||
satifies

d||u||2
dt

≤ 0

for all t . Clearly stability in the usual sense as well as strict stability holds in this case. These
operators were invented by Heinz Kreiss and his student Godela Scherer in 1974, see [27],
and many generalizations were made after that. However, for compact difference schemes
not much had been done. Saul and his colleuges closed this gap by constructing new SBP
operators which satisfies the proper conditions for the scalar case. However, for systems of
PDE they also found a counter example which is not strictly stable. As an alternative they
considered a SAT implementation mentioned above, and in this way stable and strictly stable
methods were obtained.

The work on boundary conditions for implicit compact difference schemes is an extensive
and important part of Saul’swork.The results havehad a significant impactwhich is confirmed
by the large numbers of citations.

Finally we would like to mention the article [6] where a multidimensional problem on an
irregular domain is considered, see Fig. 2. The construction of stable boundary conditions is
complicated when it comes to finite difference methods, but here the nonsymmetric operators
near the boundary are constructed for a 4th order method, and shown to be stable using an
energy estimate.

5 Navier–Stokes Equations

Solving the Navier–Stokes equations for viscous flow is a challenge since the equations are
nonlinear and require a fine mesh for realistic applications. During the 1970s certain progress
had been made, and the MacCormack–Baldwin scheme, see [31], quickly became popular. It
has a split character allowing for convenient implementation, but a precise stability condition
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governing the choice of the time-step was missing. Furthermore, the estimated time-step
depends on the step-size in all space directions (2 or 3).

Saul together with David Gottlieb proposed a new method of splitting which allows for
maximal time-step in all directions, see [11]. The equations are written in the form

Ut + (FH + FP + FM )x + (GH + GP + GM )y + (HH + HP + HM )z = 0,

where FH contains zero order terms, FP contains first order x-derivatives, while FM contains
first order derivatives with respect to x, y, z. The vectors G and H are defined in analogy
with F. The approximation is

U n+2

= [Lx (�tx )L y(�ty)Lz(�tz)Lxyz(�txyz)Lxx (�txx )L yy(�tyy)Lzz(�tzz)]
· [Lzz(�tzz)L yy(�tyy)Lxx (�txx )Lxyz(�txyz)Lz(�tz)L y(�ty)Lx (�tx )]U n,

where the L-operators denote the solvers corresponding to the one-dimensional terms in the
differential equation while Lxyz solves the 3D-equation

Ut + (FM )x + (GM )y + (HM )z = 0.

The corresponding constant coefficient linear scalar model equation is shown to be stable
under the one-dimensional conditions on the time-step corresponding to the one-dimensional
operators. For the mixed operator the condition is�txyz ≤ �tx , which does not add any extra
restriction.

The challenge is now to generalize this result to the linearized system with matrix coef-
ficients. The central problem is to construct a similarity transformation that symmetrizes all
the matrices, because then stability follows with the coefficients of the scalar equation sub-
stituted by the eigenvalues of the matrices. The authors manage to find this transformation,
which is a great achievement. It leads to the first complete stability analysis of any difference
approximation for the Navier–Stokes equations. Actually, in an interview by Philip Davis
in 2003, Saul thought that this paper, written together with David Gottlieb, was his most
important one.
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Fig. 3 Computational domain for the PML-method

Low Mach number flow is characterized by low fluid velocity compared to the speed of
sound leading to a stiff system, and this creates difficulties when constructing numerical
methods. Various splitting methods have been proposed, but they have not performed well in
certain situations. This problem is considered in [8], and the first part of the paper contains an
explanation of this behaviour. The basic source of the ill-posedness is that the underlying form
of the differential equation hasmatrix coefficients that cannot be simultainously symmetrized,
and in this case it was very natural for the authors to use the technique that was developed
in [11]. The stiffness can of course not be removed without a fundamental change of the
differential equations. However, Saul and his coworkers constructed a new splitting that
allows for symmetrization, and as a consequence a well posed systemwith a stable difference
method. Furthermore, the stiffness is isolated to a linear part of the approximationwhich “may
be solved implicitly with ease” as expressed by the authors.

6 Artificial Boundaries and PML–Methods

For PDE problems defined on infinite domains, numerical methods based on a computational
grid require a finite domain with an artificial boundary. The boundary conditions should be
such that they affect the true solution as little as possible. The first attempt to handle this
problem was done in 1977 by Björn Enquist and Andy Majda, who considered the wave
equation and the problem of letting the waves through the artificial boundary without any
reflections, see [25]. They Fourier transformed the wave equation, made an approximation
annilihating the ingoing wave and then transformed back to physical space. This procedure
results in high order derivatives as boundary conditions. Other types of conditions were
constructed during the following years, but the real breakthrough came 1994 when Jean–
Pierre Berenger presented the Perfectly Matched Layers technique (PML) for the Maxwell
equations, see [20]. The idea is to add a layer around the computational domain, where the
PDE is changed such that the solution is damped out before reaching the outer boundary, see
Fig. 3. This technique has later been generalized and is now the most common method for
problems of this type.
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It turns out that the method works fine for many problems, but not for others. Saul and
David Gottlieb decided to find out why this happens, see [12], and they did this by analyzing
the PDE itself without any discretization. The Maxwell equations in 2D are

∂W
∂t

= A
∂W
∂x

+ B
∂W
∂ y

+ CW,

where the vectorW = [Ex , Ey, Hz]T represents the electric and magnetic field. In the extra
layer the magnetic field is split such that the vector

Wb = [Ex , Ey, Hzx , Hzy]T

satisfies

∂Wb

∂t
= Ab

∂Wb

∂x
+ Bb

∂Wb

∂ y
+ CbWb.

The authors note that the coefficient matrices in the original form can be symmetrized, while
in the second version they cannot. The pure initial value problem for the second version is
analyzed by Fourier transforming the equations. It is shown that the problem is not well posed
and as a consequence certain perturbations may result in an unbounded exponential growth.
This means of course that no consistent approximation can be stable.

The question is now how to modify the equations such that they become well posed.
The answer is presented in the follow up article [13], where a modified set of equations is
proposed. It has the form

∂ Ex

∂t
= ∂ H

∂ y
+ σ Ex − P,

∂ Ey

∂t
= −∂ H

∂x
− σ Ey,

∂ H

∂t
= ∂ Ex

∂ y
− ∂ Ey

∂x
− σ H ,

∂ P

∂t
= −σ P + σ 2Ex .

(2)

Here P = J +σ Ex , where J is a polarization current introduced byZiolkowski, see [35]. One
finesse with these equations is that no analysis is required to prove wellposedness since the
principle part, where the lower order terms are disregarded, is the original Maxwell equations
known to be well posed. Furthermore, the extra equation is an ODE which doesn’t add much
to the computational work. A careful analysis shows that all the necessary properties hold,
including continuity across the internal boundary separating the extra layer from the original
domain.

Still another modification of the equations to be applied in the extra layer is proposed. It is
constructed from a pure mathematical derivation, and is shown to have essentially the same
properties as the previous model.

PML methods is a major part of Saul’s scientific production, the articles [15,16] and
[17] are further examples of this. The results are certainly very important, they contributed
a lot to the understanding of this class of methods, and led to extensions with significant
improvements.
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7 Conclusions

Saul Abarbanel’s research career is remarkable. His first publication occurred in 1960 and
his last one in 2015 when he was 84 years old, see [7]. All of the articles were published in
well known journals and most of them are frequently cited. He advanced the development
of new numerical methods for partial differential equations significantly, all being based on
strict analysis securing stability and high order of accuracy. In typical cases he picks up some
recent method that has been shown to fail for many applications. He analyzes it, often using
som new approach, and finds the cure for it resulting in a well performing method. He had an
extraordinary skill in using advancedmathematics leading to new insight in difficult problems.
His development of new high order difference methods based on compact implicit methods
has had a strong impact in the computational community, in particular the construction of
stable and high order boundary conditions. Another important and difficult problem is the
handling of artificial boundaries, and in this case he came up with newwell working methods
for general problems based on the PML-technique.

Much of Saul’s work was carried out jointly with others. It goes without saying that he
attracted the very best PhD students, and he continued working with many of them until the
end.

He had many commissions of trust. Already in 1964 he became head of the Applied
Mathematics department at Tel Aviv University, later Dean of Science and finally Rector.
After that he was appointed as Chairman of the National Research Council, and finally as
Director of the Sackler Institute of Advanced Studies. Not surprisingly he handled these
commissions successfully, and he did it in the typical informal way that characterized his
personality. It is highly remarkable that he was able to do this while at the same time carrying
out all the high level research described above.

Saulwas an extremely nice and happy person, always available for discussionswith others,
not only about scientific matters but also about every day matters. He was one of the few that
seems to have been liked by everybody.
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