Skip to main content
Log in

A Pressure-Correction Ensemble Scheme for Computing Evolutionary Boussinesq Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a pressure-correction ensemble scheme for fast calculation of thermal flow ensembles. The proposed scheme (1) decouples the Boussinesq system into two smaller subphysics problems; (2) decouples the nonlinearity from the incompressibility condition in the Navier–Stokes equations and linearizes the momentum equation so that it reduces to a system of scalar equations; (3) results in linear systems with the same coefficient matrix for all realizations. This reduces the size of linear systems to be solved at each time step and allows efficient direct/iterative linear solvers for fast computation. We prove the scheme is long time stable and first order in time convergent under a time step condition. Numerical tests are provided to confirm the theoretical results and demonstrate the efficiency of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babus̆ka, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, A., Lang, A.: Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int. J. Comput. Math. 89, 2479–2498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benosman, M., Borggaard, J., San, O., Kramer, B.: Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations. Appl. Math. Model. 49, 162–181 (2017)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  5. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Connors, J.: An ensemble-based conventional turbulence model for fluid–fluid interaction. Int. J. Numer. Anal. Model. 15, 492–519 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Deane, A.E., Sirovich, L.: A computational study of Rayleigh–Benard convection. Part 1. Rayleigh-number scaling. J. Fluid Mech. 222, 231–250 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deane, A.E., Sirovich, L.: A computational study of Rayleigh–Benard convection. Part 2. Rayleigh-number scaling. J. Fluid Mech. 222, 231–250 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, Y.T., Owen, D.R.J., Peric, D.: A block conjugate gradient method applied to linear systems with multiple right hand sides. Comput. Methods Appl. Mech. 127, 1–4 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fiordilino, J.: A second order ensemble timestepping algorithm for natural convection. SIAM J. Numer. Anal. 56, 816–837 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiordilino, J., Khankan, S.: Ensemble timestepping algorithms for natural convection. Int. J. Numer. Anal. Model. 15, 524–551 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)

    Article  MATH  Google Scholar 

  14. Guermond, J.-L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80, 207–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41, 112–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallopulos, E., Simoncini, V.: Convergence of BLOCK GMRES and matrix polynomials. Linear Algebra Appl. 247, 97–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows—A Guide to Theory, Practices, and Algorithms. Academic Press, New York (1989)

    Google Scholar 

  19. Gunzburger, M., Iliescu, T., Schneier, M.: A Leray regularized ensemble-proper orthogonal decomposition method for parameterized convection-dominated flows. IMA J. Numer. Anal. (in Press) (2019)

  20. Gunzburger, M., Jiang, N., Schneier, M.: An ensemble-proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. SIAM J. Numer. Anal. 55, 286–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gunzburger, M., Jiang, N., Schneier, M.: A higher-order ensemble/proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. Int. J. Numer. Anal. Model. 15, 608–627 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Gunzburger, M., Jiang, N., Wang, Z.: An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J. Numer. Anal. (in Press) (2018)

  23. Gunzburger, M., Jiang, N., Wang, Z.: A second-order time-stepping scheme for simulating ensembles of parameterized flow problems. Comput. Methods Appl. Math. (in Press) (2017)

  24. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  25. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)

    Article  Google Scholar 

  27. Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. AIAA-Paper 2006-891, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January, CD-ROM (2006)

  28. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4, 273–301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, N.: A higher order ensemble simulation algorithm for fluid flows. J. Sci. Comput. 64, 264–288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 33, 34–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31, 630–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, N., Kaya, S., Layton, W.: Analysis of model variance for ensemble based turbulence modeling. Comput. Methods Appl. Math. 15, 173–188 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019)

    Article  MathSciNet  Google Scholar 

  34. Jiang, N., Schneier, M.: An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numer. Methods Partial Differ. Equ. 34, 2129–2152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. John, V.: Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, vol. 51. Springer, Berlin (2016)

    Book  Google Scholar 

  36. Kuo, F., Schwab, C., Sloan, I.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, J., Wang, C., Johnston, H.: A fourth order scheme for incompressible Boussinesq equations. J. Sci. Comput. 18, 253–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

  39. Luo, Y., Wang, Z.: An ensemble algorithm for numerical solutions to deterministic and random parabolic PDEs. SIAM J. Numer. Anal. 56, 859–876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohebujjaman, M., Rebholz, L.: An efficient algorithm for computation of MHD flow ensembles. Comput. Methods Appl. Math. 17, 121–137 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Maulik, R., San, O.: A dynamic subgrid-scale modeling framework for Boussinesq turbulence. Int. J. Heat Mass Transf. 108, 1656–1675 (2017)

    Article  MATH  Google Scholar 

  42. Nochetto, R.H., Pyo, J.-H.: Error estimates for semi-discrete Gauge methods for the Navier–Stokes equations. Math. Comput. 74, 521–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  44. Qian, Y., Zhang, T.: On error estimates of the projection method for the time-dependent natural convection problem: first order scheme. Comput. Math. Appl. 72, 1444–1465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qian, Y., Zhang, T.: The second order projection method in time for the time-dependent natural convection problem. Appl. Math. 61, 299–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Reagan, M., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)

    Article  Google Scholar 

  47. Romero, V., Burkardt, J., Gunzburger, M., Peterson, J.: Comparison of pure and ”Latinized” centroidal Voronoi tessellation against various other statistical sampling methods. Reliab. Eng. Syst. Saf. 91, 1266–1280 (2006)

    Article  Google Scholar 

  48. San, O., Borggaard, J.: Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows. Int. J. Numer. Methods Fluids 78, 37–62 (2015)

    Article  MathSciNet  Google Scholar 

  49. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. San, O., Maulik, R.: Machine learning closures for model order reduction of thermal fluids. Appl. Math. Model. 60, 681–710 (2018)

    Article  MathSciNet  Google Scholar 

  52. Takhirov, A., Neda, M., Waters, J.: Time relaxation algorithm for flow ensembles. Numer. Methods Partial Differ. Equ. 32, 757–777 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Temam, R.: Sur l’approximation de la solution des equations de Navier–Stokes par la méthode des fractionnarires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  54. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, C., Liu, J.-G.: Convergence of gauge method for incompressible flow. Math. Comput. 69, 1385–1407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Weinan, E., Liu, J.-G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1, 317–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This author was partially supported by the US National Science Foundation Grant DMS-1720001 and a University of Missouri Research Board Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N. A Pressure-Correction Ensemble Scheme for Computing Evolutionary Boussinesq Equations. J Sci Comput 80, 315–350 (2019). https://doi.org/10.1007/s10915-019-00939-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00939-w

Keywords

Navigation