Skip to main content
Log in

High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics

  • Technical Note
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The recently proposed targeted ENO (TENO) schemes (Fu et al. J Comput Phys 305:333–359, 2016) are demonstrated to feature the controllable low numerical dissipation and sharp shock-capturing property in compressible gas dynamic simulations. However, the application of low-dissipation TENO schemes to ideal magnetohydrodynamics (MHD) is not straightforward. The complex interaction between fluid mechanics and electromagnetism induces extra numerical challenges, including simultaneously preserving the ENO-property, maintaining good numerical robustness and low dissipation as well as controlling divergence errors. In this paper, based on an unstaggered constrained transport framework to control the divergence error, we extend a set of high-order low-dissipation TENO schemes ranging from 5-point to 8-point stencils to solving the ideal MHD equations. A unique set of built-in parameters for each TENO scheme is determined. Different from the TENO schemes in Fu et al.  (2016), a modified scale-separation formula is developed. The new formula can achieve stronger scale separation, and it is simpler and more efficient than the previous version as the computation cost of high-order global smoothness measure \({\tau _K}\) is avoided. The performances of tailored schemes are systematically studied by several benchmark simulations. Numerical experiments demonstrate that the TENO schemes in the constrained transport framework are promising to simulate more complex MHD flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. Computing time is measured based on the same desktop workstation and CentOS Linux system.

References

  1. Acker, F., Borges, R.D.R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arshed, G.M., Hoffmann, K.A.: Minimizing errors from linear and nonlinear weights of WENO scheme for broadband applications with shock waves. J. Comput. Phys. 246, 58–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174(2), 614–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231(22), 7476–7503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S., Kim, J.: A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys. J. 602(2), 1079 (2004)

    Article  Google Scholar 

  6. Brackbill, J.U., Barnes, D.: The effect of nonzero \(\nabla \cdot B\) on the numerical solution of the magnetohydrodynamic equation. J. Comput. Phys. 35(3), 426–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75(2), 400–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christlieb, A.J., Feng, X., Jiang, Y., Tang, Q.: A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM J. Sci. Comput. 40(4), A2631–A2666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. J. Comput. Phys. 316, 218–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christlieb, A.J., Rossmanith, J.A., Tang, Q.: Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J. Comput. Phys. 268, 302–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahlburg, R., Picone, J.: Evolution of the Orszag–Tang vortex system in a compressible medium. I. Initial average subsonic flow. Phys. Fluids B Plasma Phys. (1989–1993) 1(11), 2153–2171 (1989)

    Article  MathSciNet  Google Scholar 

  14. De Sterck, H.: Multi-dimensional upwind constrained transport on unstructured grids for ’shallow water’ magnetohydrodynamics. In: AIAA Computational Fluid Dynamics Conference, 15th, Anaheim, CA (2001)

  15. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows-A constrained transport method. Astrophys. J. 332, 659–677 (1988)

    Article  Google Scholar 

  18. Fey, M., Torrilhon, M.: A constrained transport upwind scheme for divergence-free advection. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 529–538. Springer, Berlin (2003)

  19. Fu, L.: A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Comput. Phys. Commun. 235, 25–39 (2019)

    Article  MathSciNet  Google Scholar 

  20. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fu, L., Hu, X.Y., Adams, N.A.: A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. J. Comput. Phys. 374, 724–751 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput. Fluids 146, 105–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations. J. Comput. Phys. 230(10), 3803–3829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, G.-S., Wu, C.-C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150(2), 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kawai, S.: Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. J. Comput. Phys. 251, 292–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(1–3), 413–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230(12), 4828–4847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Orszag, S.A., Tang, C.-M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(01), 129–143 (1979)

    Article  Google Scholar 

  33. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154(2), 284–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192(2), 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rossmanith, J.A.: An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28(5), 1766–1797 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ryu, D., Jones, T.: Numerical magetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J. 442, 228–258 (1995)

    Article  Google Scholar 

  37. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, Z., Inaba, S., Xiao, F.: Boundary Variation Diminishing (BVD) reconstruction: a new approach to improve Godunov schemes. J. Comput. Phys. 322, 309–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Susanto, A.: High-Order Finite-Volume Schemes for Magnetohydrodynamics, Ph.D. thesis (2014)

  40. Torrilhon, M.: Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics. J. Plasma Phys. 69(03), 253–276 (2003)

    Article  Google Scholar 

  41. Tóth, G.: The \(\nabla \cdot B= 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161(2), 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, Y., Wan, M., Shi, Y., Yang, K., Chen, S.: A hybrid scheme for compressible magnetohydrodynamic turbulence. J. Comput. Phys. 306, 73–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yee, H.C., Sjögreen, B.: Non-linear filtering and limiting in high order methods for ideal and non-ideal MHD. J. Sci. Comput. 27(1–3), 507–521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yee, H.C., Sjögreen, B.: Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems. Comput. Fluids 37(5), 593–619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is funded by U.S. Air Force Office of Scientific Research (AFOSR) (Grant No. 1194592-1-TAAHO). The second author is supported by the Eliza Ricketts Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Tang, Q. High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics. J Sci Comput 80, 692–716 (2019). https://doi.org/10.1007/s10915-019-00941-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00941-2

Keywords

Navigation