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Abstract

We propose a hybridizable discontinuous Galerkin (HDG) finite element method to approx-
imate the solution of the time dependent drift-diffusion problem. This system involves a non-
linear convection diffusion equation for the electron concentration u coupled to a linear Poisson
problem for the the electric potential φ. The non-linearity in this system is the product of the
∇φ with u. An improper choice of a numerical scheme can reduce the convergence rate. To
obtain optimal HDG error estimates for φ, u and their gradients, we utilize two different HDG
schemes to discretize the nonlinear convection diffusion equation and the Poisson equation. We
prove optimal order error estimates for the semidiscrete problem. We also present numerical
experiments to support our theoretical results.

1 Introduction

Drift-diffusion equations play an important role in modeling the movement of charged particles
particularly in semiconductor physics [1,2,9,27,44,45,47,53]. Besides the applications to semicon-
ductors, these kinds of PDEs have many applications in the simulation of batteries [54,65], charged
particles in biology [52,66] and physical chemistry [29,42,43,63].

We consider the following model time dependent drift-diffusion equation posed on a Lipschitz
polyhedral domain Ω ⊂ Rd(d ≥ 2): we seek to determine the unknown electron density u and the
electric potential φ that satisfy

ut −∆u+∇ · (u∇φ) = 0 in Ω× (0, T ], (1.1a)

−ε∆φ+ u = 0 in Ω× (0, T ], (1.1b)

u = gu on ∂Ω× (0, T ], (1.1c)

φ = gφ on ∂Ω× (0, T ], (1.1d)

u(·, 0) = u0 in Ω, (1.1e)

where ε is a constant and typically small in real applications. In our analysis, we assume ε = O(1)
and have not analyzed the ε dependence of the coefficients. This will be considered in future work.
We shall discuss the smoothness assumptions on gu, gφ and u0 needed for our analysis later in
the paper. Applications of the drift-diffusion model often involve more complicated versions of
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the above model, for example including additional particle transport equations (for example, for
holes) and recombination terms. However the above system contains the principle difficulty from
the point of view of proving convergence: the term ∇ · (u∇φ).

Theoretical and numerical studies for this type of partial differential equation (PDE) have a
long history. For the theoretical analysis of the drift-diffusion system; see [5, 6, 33, 34, 46, 56] and
the references therein. Computational studies started in the 1960s [28,38] and many discretization
methods have been used for the drift-diffusion system in the past decades. For an extensive body
of literature devoted to this subject we refer to, e.g., the finite difference method [30, 39, 50, 55],
the finite volume method [3, 4, 11–13], the standard finite element method (FEM) [35, 52, 62], and
mixed FEM [36,40]. Furthermore, there are many new models in which the drift-diffusion equation
coupled with other PDEs; such as Stokes [41], Navier-Stokes [61] and Darcy flow [31]. However
these extensions are outside the scope of this paper.

The product of the gradient of the electric potential, ∇φ with electron concentration u in (1.1a)
can cause a reduction in the convergence rate of the solution if the numerical schemes for the two
equations are not properly devised. In [62], they obtained an optimal convergence rate in H1 norm
but a suboptimal in L2 norm by the standard FEM. To overcome the convergence order reduction,
a new method was proposed to discretize the system (1.1); mixed FEM for Poisson equation (1.1b)
and standard FEM for (1.1a),. This scheme provides optimal error estimates for u and φ in both
H1 or H(div) as appropriate as well as in the L2 norm. Very recently, the authors in [36] obtained
an optimal convergence rate by using mixed FEM for both (1.1a) and (1.1b).

In the drift-diffusion model, typically, the magnitude of ∇φ is huge (see [8]). Therefore, it is
natural to consider the discontinuous Galerkin (DG) method to discretize the system (1.1). In [51],
a local DG (LDG) method was used to study a 1D drift-diffsuion equation, they obtained an optimal
convergence rate by using an important relationship between the gradient and interface jump of the
numerical solution with the independent numerical solution of the gradient in the LDG methods;
see [64, Lemma 2.4] and [51, Lemma 4.3]. However, to the best of our knowledge, the inequality
in [64, Lemma 2.4] is not straightforward to extend to high dimensions.

Moreover, the number of degrees of freedom for the DG or LDG methods is much larger com-
pared to standard FEM; this is the main drawback of DG methods. Hybridizable discontinuous
Galerkin (HDG) methods were originally proposed in [24] to remedy this issue. The global sys-
tem of HDG methods only involve the degrees of freedom on the boundary face of the element.
Therefore, HDG methods have a significantly smaller number of degrees of freedom in the global
system compared to DG methods, LDG methods or mixed FEM. Moreover, HDG methods keep
the advantages of DG methods, which are suitable for the drift term if ∇φ is large. For more
information of the HDG methods for convection diffusion problems; see, e.g., [16–18,32,59].

There are many different HDG schemes, see for example [19–24,48]. Among all of these methods,
two are most popular, following standard terminology we call them are HDGk and HDG(A) in the
rest of the paper. The HDGk method uses polynomials of degree k to approximate the solution,
the flux, and the trace on the boundary face together with a positive stabilization parameter
is chosen to be O(1). The HDG(A) method uses polynomial degree k + 1 to approximate the
solution, polynomial degree k to approximate the flux and uses the so called Lehrenfeld-Schöberl
stabilization function, see [48, Remark 1.2.4]. These two methods were used to study the Poisson
equation in [26,49,57], the linear elasticity [21,58], the convection diffusion equation in [17,18,59],
the Stokes equation in [25,37] and the Navier-Stokes equation in [10,60].

The goal of this paper is to design an HDG scheme by the appropriate choice of HDG spaces
such that the overall scheme is optimally convergent and to prove semi-discrete optimal convergence
rates in d spatial dimensions (d = 2, 3). The result is a new HDG scheme for the drift-diffusion
system with attractive convergence properties. We shall assume that a suitably regular solution of
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the drift-diffusion system exists. For existence theory, see for example the book of Markowich [53].

To develop our HDG method, we write the drift-diffusion system as a first order system by
introducing new variable q and p such that q + ∇u = 0, p + ∇φ = 0. Then (1.1), becomes the
problem of finding (u, q, φ,p) such that

q +∇u = 0 in Ω× (0, T ], (1.2a)

p +∇φ = 0 in Ω× (0, T ], (1.2b)

ut +∇ · q −∇ · (pu) = 0 in Ω× (0, T ], (1.2c)

∇ · p + u = 0 in Ω× (0, T ], (1.2d)

u = gu on ∂Ω× (0, T ], (1.2e)

φ = gφ on ∂Ω× (0, T ], (1.2f)

u(·, 0) = u0 in Ω. (1.2g)

We can now introduce our HDG formulation by first defining the mesh. Let Th denote a collection
of disjoint simplexes K that partition Ω and let ∂Th be the set {∂K : K ∈ Th}. Here h denotes the
maximum diameter of the simplices in Th. Since we will need to use an inverse inequality in our
analysis, we assume that the mesh is shape regular and quasi-uniform.

We denote by Eh the set of all faces in the mesh. Then we define the set of interior and boundary
faces (or edges when d = 2) denoted Eoh and E∂h respectively. For each edge e we say e ∈ Eoh is an
interior face if the Lebesgue measure of e = ∂K+ ∩ ∂K− for some pair of elements K+,K− ∈ Th is
non-zero, similarly, e ∈ E∂h is a boundary face if the Lebesgue measure of e = ∂K ∩ ∂Ω is non-zero.
We set

(w, v)Th :=
∑
K∈Th

(w, v)K , 〈ζ, ρ〉∂Th :=
∑
K∈Th

〈ζ, ρ〉∂K ,

where (·, ·)K denotes the L2(K) inner product and 〈·, ·〉∂K denotes the L2 inner product on ∂K.

The HDG method uses discontinuous finite element spaces Qh, Vh, V̂h, Sh, Ψh, Ψ̂h that we shall
discuss shortly. Assuming these are given, the approximate the solution of the mixed weak problem
(1.2) by the HDG method seeks (qh, uh, ûh) ∈ Qh×Vh× V̂h(gu) and (ph, φh, φ̂h) ∈ Sh×Ψh×Ψ̂h(gφ)
satisfying

(qh, r1)Th − (uh,∇ · r1)Th + 〈ûh, r1 · n〉∂Th = 0, (1.3a)

(ph, r2)Th − (φh,∇ · r2)Th + 〈φ̂h, r1 · n〉∂Th = 0, (1.3b)

for all (r1, r2) ∈ Qh × Sh, together with

(uh,t, w1)Th − (qh,∇w1)Th + 〈q̂h · n, w1〉∂Th + (phuh,∇w1)Th
−〈p̂h · nûh, w1〉∂Th = 0, (1.3c)

−(ph,∇w2)Th + 〈p̂h · n, w2〉∂Th + (uh, w2)Th = 0 (1.3d)

for all (w1, w2) ∈ Vh ×Ψh. The boundary fluxes must satisfy

〈q̂h · n, µ1〉∂Th\∂Ω = 0, (1.3e)

〈p̂h · n, µ2〉∂Th\∂Ω = 0 (1.3f)

for all (µ1, µ2) ∈ V̂h(0)× Ψ̂h(0). The numerical fluxes q̂h and p̂h will be specified later.
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As in [10,51], we shall need the following energy estimate

‖∇uh‖Th + ‖h−1/2
K (uh − ûh)‖2∂Th

≤ C
(
‖qh‖2Th + ‖h−1/2

K (Π∂
kuh − ûh)‖2∂Th

)
. (1.4)

where Π∂
k is a L2 projection define in (2.6). Inequality (1.4) cannot hold for the HDGk method

unless we take the stabilization function to be h−1
K . However, in this case we only have a suboptimal

convergence rate for the flux q. Hence we need to use the HDG(A) method to approximate the
equation (1.1a), i.e., we choose

Qh := {vh ∈ [L2(Ω)]d : vh|K ∈ [Pk(K)]d, ∀K ∈ Th},
Vh := {vh ∈ L2(Ω) : vh|K ∈ Pk+1(K),∀K ∈ Th},

V̂h(g) := {v̂h ∈ L2(Eh) : v̂h|E ∈ Pk(Eh),∀E ∈ Eh, v̂h|E∂h = Π∂
kg},

where Pk(K) denotes the set of polynomials of degree at most k on the element K (similarly
Pk(Eh) denotes the set of polynomials of degree at most k on the faces in the mesh). Moreover,
the numerical trace of the flux on ∂Th is defined as

q̂h · n = qh · n + h−1
K (Π∂

kuh − ûh), (1.5)

where Π∂
k denotes L2 projection onto Pk(Eh) which can be done face by face.

To avoid a reduction in the convergence rate for the solution uh, the polynomial degree of the
space Vh for uh and the space Sh for ph need to be the same, i.e.,

Sh := {vh ∈ [L2(Ω)]d : vh|K ∈ [Pk+1(K)]d, ∀K ∈ Th}.

If we choose the HDG(A) method to discretize (1.1b) we would need to use polynomials of degree
k + 2 to approximate φ, but in this case, we get a suboptimal convergence rate for φ. Therefore,
we use HDGk+1 to discretize (1.1b) and so choose

Ψh := {vh ∈ L2(Ω) : vh|K ∈ Pk+1(K),∀K ∈ Th},

Ψ̂h(g) := {v̂h ∈ L2(Eh) : v̂h|E ∈ Pk+1(Eh), ∀E ∈ Eh, v̂h|E∂h = Π∂
k+1g}.

and the numerical trace of the flux on ∂Th is defined as

p̂h · n = ph · n + τ(φh − φ̂h), (1.6)

where τ is a positive O(1) function and the initial condition uh(0) will be specifically in Section 3.1.
If needed, τ can be chosen to provide upwind stabilization as in [59].

The organization of the paper is as follows. In Section 2, we present our main results and some
useful projections. Then the proof of the main results is given in Section 3. In Section 4, we provide
some numerical experiments to support our theoretical results.

In this paper we denote by ‖ · ‖s,D the Hs(D) Sobolev norm. As we have already done, bold
face quantities denote vectors. If s is not present, the L2 norm is assumed so that, for example,
‖w‖Th =

√
(w,w)Th .
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2 Main result and preliminary material

In this section, we first present the main result in Section 2.1 for the semidiscrete HDG formulation
(1.3). Next, we provide preliminary material in Section 2.2, which are required for the analysis.

We use the standard notation Wm,p(D) for Sobolev spaces on D with norm ‖ · ‖m,p,D and
seminorm | · |m, p,D. We also write Hm(D) instead of Wm,2(D), and we omit the index p in the
corresponding norms and seminorms. Moreover, we omit the index m when m = 0.

Throughout, we assume the data and the solution of (1.1) are smooth enough for our analysis.

2.1 Main result

The proof of our main error estimate relies on the use of duality arguments and requires sufficient
regularity for the solution of the corresponding problem. In particular:

Assumption 1. Let p ∈ H1((0, T ),W∞
1 (Ω)) denote a given vector function of position and time.

Let M > 0 such that for all time t ∈ (0, T )

M ≥ ‖∇ · p(t)‖0,∞ + 2‖∂tp(t)‖0,∞. (2.1)

If p = 0, set M = 0. Then, for Θ ∈ L2(Ω× (0, T )), let (Ψ,Φ) be the solution of

Ψ +∇Φ = 0 in Ω,

MΦ +∇ ·Ψ + p · ∇Φ = Θ in Ω,

Φ = 0 on ∂Ω.

(2.2)

We assume the solution (Ψ,Φ) has the following regularity

‖Ψ‖H1(Ω) + ‖Φ‖H2(Ω) ≤ Creg‖Θ‖Th . (2.3)

It is well known that the above regularity holds if the domain is convex, which is usually the case
in solar cell applications.

We can now state our main result for the HDG method.

Theorem 1. Assume that (2.3) hold and that the mesh is quasi-uniform. Let

(q, u) ∈ H2((0, T ),Hk+1(Ω))×H2((0, T ), Hk+2(Ω)),

(p, φ) ∈ H2((0, T ),Hk+2(Ω))×H2((0, T ), Hk+3(Ω))

solve (1.2) and let (qh, uh,ph, φh)∈ Qh × Vh × Sh ×Ψh be the solution of the semi-discrete HDG
equations (1.3). Then we have

‖u− uh‖Th + ‖φ− φh‖Th + ‖p− ph‖Th ≤ Ch
k+2

for all t ∈ [0, T ], and √∫ T

0
‖q − qh‖2Thdt ≤ Ch

k+1.

Remark 1. The error estimates in Theorem 1 are optimal for the variables q, u, p and φ. Since
the global degrees of freedom are the numerical traces, then from the point of view of global degrees
of freedom, the error estimates for the variable u is superconvergent, which, to our knowledge, is
the first time this has been proved in the literature.
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2.2 Preliminary material

We first introduce the HDGk projection operator Πh(p, φ) := (ΠV p,ΠWφ) defined in [26], where
ΠV p and ΠWφ denote components of the projection of p and φ into Sh and Ψh, respectively. For
each element K ∈ Th, the projection is determined by the equations

(ΠV p, r)K = (p, r)K , ∀r ∈ [Pk(K)]d, (2.4a)

(ΠWφ,w)K = (φ,w)K , ∀w ∈ Pk(K), (2.4b)

〈ΠV p · n + τΠWφ, µ〉e = 〈p · n + τφ, µ〉e, ∀µ ∈ Pk+1(e) (2.4c)

for all faces e of the simplex K. The approximation properties of the HDGk projection (2.4) are
given in the following result from [26]:

Lemma 1. Suppose k ≥ 0, τ |∂K is nonnegative and τmax
K := max τ |∂K > 0. Then the system (2.4)

is uniquely solvable for ΠV p and ΠWφ. Furthermore, there is a constant C independent of K and
τ such that

‖ΠV p− p‖K ≤ Ch
`p+1
K |p|`p+1,K + Ch

`φ+1
K τ∗K |φ|`φ+1,K , (2.5a)

‖ΠWφ− φ‖K ≤ Ch
`φ+1
K |φ|`φ+1,K + C

h
`p+1
K

τmax
K

|∇ · p|`p,K (2.5b)

for `p, `φ in [0, k+ 1]. Here τ∗K := max τ |∂K\e∗ , where e∗ is a face of K at which τ |∂K is maximum.

We next define the standard L2 projections Πo
k : [L2(Ω)]d → Qh, Πo

k+1 : L2(Ω) → Vh, and

Π∂
k : L2(Eh)→ V̂h, which satisfy

(Πo
kq, r1)K = (q, r1)K , ∀r1 ∈ [Pk(K)]d,

(Πo
k+1u,w1)K = (u,w1)K , ∀w1 ∈ Pk+1(K),

〈Π∂
ku, µ1〉e = 〈u, µ1〉e , ∀µ1 ∈ Pk(e).

(2.6)

In the analysis, we use the following classical results [15, Lemma 3.3]:

‖q −Πo
kq‖Th ≤ Ch

k+1‖q‖k+1,Ω, ‖u−Πo
k+1u‖Th ≤ Ch

k+2‖u‖k+2,Ω, (2.7a)

‖u−Πo
k+1u‖∂Th ≤ Ch

k+ 3
2 ‖u‖k+2,Ω, ‖w‖∂Th ≤ Ch

− 1
2 ‖w‖Th , ∀w ∈ Vh. (2.7b)

To shorten lengthy equations, we rewrite the HDG formulation (1.3) in the following compact
form: find (qh, uh, ûh) ∈ Qh × Vh × V̂h(gu) and (ph, φh, φ̂h) ∈ Sh ×Ψh × Ψ̂h(gφ) such that

(∂tuh, w1)Th + A (qh, uh, ûh; r1, w1, µ1) + C (ph, p̂h;uh, ûh;w1) = 0, (2.8a)

B(ph, φh, φ̂h; r2, w2, µ2) + (uh, w2)Th = 0, (2.8b)

for all (r1, r2, w1, w2, µ1, µ2) ∈ Qh ×Sh × Vh ×Ψh × V̂h(0)× Ψ̂h(0), where the HDG bilinear forms
A , B and the trilinear form C are defined by

A (qh, uh, ûh; r1, w1, µ1)

= (qh, r1)Th − (uh,∇ · r1)Th + 〈ûh, r1 · n〉∂Th + (∇ · qh, w1)Th

− 〈qh · n, µ1〉∂Th + 〈h−1
K (Π∂

kuh − ûh),Π∂
kw1 − µ1〉∂Th

(2.8c)
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for all (qh, uh, ûh, r1, w1, µ1) ∈ Qh × Vh × V̂h(gu)×Qh × Vh × V̂h(0),

B(ph, φh, φ̂h; r2, w2, µ2)

= (ph, r2)Th − (φh,∇ · r2)Th + 〈φ̂h, r2 · n〉∂Th + (∇ · ph, w2)Th

− 〈ph · n, µ2〉∂Th + 〈τ(φh − φ̂h), w2 − µ2〉∂Th

(2.8d)

for all (ph, φh, φ̂h, r2, w2, µ2) ∈ Sh ×Ψh × Ψ̂h(gφ)× Sh ×Ψh × Ψ̂h(0),

C (p, p̂;uh, ûh;w1) = (puh,∇w1)Th − 〈p̂ · nûh, w1〉∂Th (2.8e)

for all (uh, ûh, w1, µ1) ∈ Vh × V̂h(gu)× Vh × V̂h(0).
Next, we present basic properties of the operators A and B.

Lemma 2. For any (qh, uh, ûh, r1, w1, µ1) ∈ Qh × Vh × V̂h(0)×Qh × Vh × V̂h(0) and (ph, φh, φ̂h,
r2, w2, µ2) ∈ Sh ×Ψh × Ψ̂h(0)× Sh ×Ψh × Ψ̂h(0), we have

A (qh, uh, ûh;−r1, w1, µ1) = A (r1, w1, µ1;−qh, uh, ûh),

B(ph, φh, φ̂h;−r2, w2, µ2) = B(r2, w2, µ2;−ph, φh, φ̂h),

and

A (qh, uh, ûh; qh, uh, ûh) = ‖qh‖2Th + ‖h−1/2
K (Π∂

kuh − ûh)‖2∂Th ,

B(ph, φh, φ̂h;ph, φh, φ̂h) = ‖ph‖2Th + ‖
√
τ(φh − φ̂h)‖2∂Th .

The proof of Lemma 2 is straightforward, hence we omit it here.
The proof of the following two lemmas are found in [59, Lemma 3.2 ] and [7, Equation (1.3)],

respectively .

Lemma 3. If (qh, uh, ûh) satisfies the equation (1.3a), then we have

‖∇uh‖Th + ‖h−1/2
K (uh − ûh)‖∂Th ≤ C

(
‖qh‖Th + ‖h−1/2

K (Π∂
kuh − ûh)‖∂Th

)
.

Lemma 4 (Piecewise Poincáre-Friedrichs’ inequality). Let vh ∈ H1(Th), then we have

‖vh‖2Th ≤ C

‖∇vh‖2Th + |〈vh, 1〉∂Ω|2 +
∑
e∈Eoh

|e|d/(1−d)

(∫
e
[[vh]] ds

)2
 ,

where |e| denotes the measure of e.

By Lemma 4, we immediately have the following lemma.

Lemma 5 (HDG Poinćare inequality). If (vh, v̂h) ∈ Vh × V̂h(0), then we have

‖vh‖2Th ≤ C
(
‖∇vh‖2Th + ‖h−1/2

K (Π∂
kvh − v̂h)‖2∂Th

)
.

Proof. By Lemma 5, v̂h is zero on ∂Ω and is single valued on interior faces. We have

‖vh‖2Th ≤ C
(
‖∇vh‖2Th + ‖h−1/2

K [[vh]]‖2Eh
)

= C
(
‖∇vh‖2Th + ‖h−1/2

K [[vh −Π∂
kvh + Π∂

kvh − v̂h]]‖2Eh
)

≤ C
(
‖∇vh‖2Th + ‖h−1/2

K (vh −Π∂
kvh)‖2∂Th + ‖h−1/2

K (Π∂
kvh − v̂h)‖2∂Th

)
≤ C

(
‖∇vh‖2Th + ‖h−1/2

K (Π∂
kvh − v̂h)‖2∂Th

)
.
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3 Proof of Theorem 1.

To prove Theorem 1, we follow a similar strategy to that in [14]. We first bound the error between
the solution of an HDG elliptic projection defined in (3.1) and the solution of the system (1.1a).
Then we bound the error between the solution of the HDG elliptic projection (3.1) and the HDG
formulation (2.8a) and the error between the solution of the system (1.1b) and the solution of the
HDG formulation (2.8b). A simple application of the triangle inequality then gives a bound on the
error between the solution of the HDG formulation (2.8) and the system (1.1). First, we present
the HDG elliptic projection.

3.1 HDG elliptic projection and basic estimates

For t ∈ [0, T ], let (qIh, uIh, ûIh) ∈ Qh × Vh × V̂h(gu) be the solution of

M(uIh, w1)Th + A (qIh, uIh, ûIh; r1, w1, µ1) + C (p,p;uIh, ûIh;w1)

= (Mu− ut, w1)Th
(3.1)

for all (r1, w1, µ1) ∈ Qh × Vh × V̂h(0) where M is a given constant such that (2.1) holds.
Take the partial derivative of (3.1) with respect to t, hence, (∂tqIh, ∂tuIh,

∂tûIh) ∈ Qh × Vh × V̂h(∂tgu) is the solution of

M(∂tuIh, w1)Th + A (∂tqIh, ∂tuIh, ∂tûIh; r1, w1, µ1)

+ C (∂tp, ∂tp;uIh, ûIh;w1) + C (p,p; ∂tuIh, ∂tûIh;w1)

= (Mut − utt, w1)Th

(3.2)

for all (r1, w1, µ1) ∈ Qh × Vh × V̂h(0).
We choose the initial condition uh(0) = uIh(0) for the purposes of analysis. In fact, the initial

condition uh(0) can be chosen to be the L2 projection of u0, i.e., Πo
ku0.

The following result, Theorem 2, gives the error between the solution of an HDG elliptic pro-
jection (3.1) and the solution of the system (1.1a) and the proofs are given in Appendix A.

Theorem 2. For any t ∈ [0, T ], if the elliptic regularity inequality (2.3) holds and h is small
enough, then we have the following error estimates

‖u− uIh‖Th ≤ Ch
k+2‖u‖k+2, (3.3a)

‖q − qIh‖Th + ‖h−1/2
K (Π∂

kuIh − ûIh)‖∂Th ≤ Ch
k+1‖u‖k+2. (3.3b)

In addition, we have

‖∂tu− ∂tuIh‖Th ≤ Ch
k+2‖∂tu‖k+2. (3.3c)

3.2 Error equation between the HDG formulation (2.8) and the HDG elliptic
projection (3.1).

To bound the error between the solution of the HDG elliptic projection (3.1) and the system (2.8a),
and the error between the solution of the HDG formulation (2.8b) and the system (1.1b). We first
derive the error equation summarized in the next lemma. To simplify notation, we define

ξqh = qIh − qh, ξuh = uIh − uh, ξûh = ûIh − ûh,

ξph = ΠV p− ph, ξφh = ΠWφ− φh, ξφ̂h = Π∂
k+1φ− φ̂h.

8
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Lemma 6. For any (r1, w1, µ1, r2, w2, µ2) ∈ Qh × Vh × V̂h(0) × Sh × Ψh × Ψ̂h(0), we have the
following error equation

(∂tξ
u
h , w1)Th + A (ξqh , ξ

u
h , ξ

û
h ; r1, w1, µ1)

= (∂t(uIh − u), w1)Th +M(u− uIh, w1)Th

− C (p,p; ξuh , ξ
û
h ;w1)− C (p− ph,p− p̂h;uh, ûh;w1), (3.4a)

B(ξph , ξ
φ
h , ξ

φ̂
h ; r2, w2, µ2) = (ΠV p− p, r2)Th − (u− uh, w2)Th . (3.4b)

Proof. We first prove (3.4a). Subtracting equation (2.8a) from (3.1) and using the definition of A
and C we get

M(uIh, w1)Th + A (ξqh , ξ
u
h , ξ

û
h ; r1, w1, µ1) + C (p,p;uIh, ûIh;w1)

− (∂tuh, w1)Th − C (ph, p̂h;uh, ûh;w1)

= (Mu− ut, w1)Th .

This gives

(∂tξ
u
h , w1)Th + A (ξqh , ξ

u
h , ξ

û
h ; r1, w1, µ1)

+ C (p,p;uh, ûh;w1)− C (ph, p̂h;uIh, ûIh;w1)

= (∂tuIh, w1)Th − (ut, w1)Th +M(u− uIh, w1)Th .

We note that the nonlinear operator C is linear for each variables, hence we have

C (p,p;uIh, ûIh;w1)− C (ph, p̂h;uh, ûh;w1)

= C (p,p;uIh, ûIh;w1)− C (p,p;uh, ûh;w1)

+ C (p,p;uh, ûh;w1)− C (ph, p̂h;uh, ûh;w1)

= C (p,p; ξuh , ξ
û
h ;w1) + C (p− ph,p− p̂h;uh, ûh;w1).

This implies

(∂tξ
u
h , w1)Th + A (ξqh , ξ

u
h , ξ

û
h ; r1, w1, µ1)

= (∂t(uIh − u), w1)Th +M(u− uIh, w1)Th

− C (p,p; ξuh , ξ
û
h ;w1)− C (p− ph,p− p̂h;uh, ûh;w1).

Next, we prove (3.4b). By the definition of B in (2.8d), we have

B(ΠV p,ΠWφ,Π
∂
k+1φ; r2, w2, µ2)

= (ΠV p, r2)Th − (ΠWφ,∇ · r2)Th + 〈Π∂
k+1φ, r2 · n〉∂Th

+ (∇ ·ΠV p, w2)Th − 〈ΠV p · n, µ2〉∂Th
+ 〈τ(ΠWφ−Π∂

k+1φ), w2 − µ2〉∂Th−〈p · n, µ2〉∂Th .

By the definition of ΠV and ΠW in (2.4) we get

B(ΠV p,ΠWφ,Π
∂
k+1φ; r2, w2, µ2)

= (ΠV p− p, r2)Th + (p, r2)Th − (φ,∇ · r2)Th + 〈φ, r2 · n〉∂Th
+ (∇ · (ΠV p− p), w2)Th + (∇ · p, w2)Th + 〈(p−ΠV p) · n, µ2〉∂Th
+ 〈τ(ΠWφ−Π∂

k+1φ), w2 − µ2〉∂Th
= B(p, φ, φ; r2, w2, µ2) + (ΠV p− p, r2)Th + (∇ · (ΠV p− p), w2)Th

+〈(p−ΠV p) · n, µ2〉∂Th + 〈τ(ΠWφ−Π∂
k+1φ), w2 − µ2〉∂Th

9



G. Chen, P. Monk, Y. Zhang

Since

(∇ · (ΠV p− p), w2)Th = 〈(ΠV p− p) · n, w2〉∂Th − (ΠV p− p,∇w2)Th
= 〈(ΠV p− p) · n, w2〉∂Th .

We have

B(ΠV p,ΠWφ,Π
∂
k+1φ; r2, w2, µ2)

= B(p, φ, φ; r2, w2, µ2) + (ΠV p− p, r2)Th

+ 〈(p−ΠV p) · n, µ2 − w2〉∂Th + 〈τ(ΠWφ−Π∂
k+1φ), w2 − µ2〉∂Th .

Using the analogue of Equation (2.8b) for the exact solution, and (2.4) we get

B(ΠV p,ΠWφ,Π
∂
k+1φ; r2, w2, µ2) = (ΠV p− p, r2)Th − (u,w2)Th .

Therefore, subtracting Equation (2.8b) we have the following error equation

B(ξph , ξ
φ
h , ξ

φ̂
h ; r2, w2, µ2) = (ΠV p− p, r2)Th − (u− uh, w2)Th .

3.2.1 L2 Error estimates for p and φ.

Lemma 7. We have the following estimate

‖ξph‖
2
Th + ‖

√
τ(Π∂

k+1ξ
φ
h − ξ

φ̂
h)‖2∂Th ≤ ‖u− uh‖Th‖ξ

φ
h‖Th .

Proof. We take (r2, w2, µ2) = (ξph , ξ
φ
h , ξ

φ̂
h) in (3.4b) to get

B(ξph , ξ
φ
h , ξ

φ̂
h ; ξph , ξ

φ
h , ξ

φ̂
h) = −(u− uh, ξφh)Th ≤ ‖u− uh‖Th‖ξ

φ
h‖Th .

On the other hand, by Lemma 2 we have

‖ξph‖
2
Th + ‖

√
τ(ξφh − ξ

φ̂
h)‖2∂Th ≤ ‖u− uh‖Th‖ξ

φ
h‖Th .

If we directly apply Lemma 5 to get the estimate of ‖ξφh‖Th , we will obtain only suboptimal
convergence rates. To obtain optimal rates we use the dual problem introduced in equation (2.2)
with p = 0 and M = 0 and assume the regularity estimate (2.3).

We follow the proof of Lemma 6 to get the following lemma.

Lemma 8. Let (Φ,Ψ) solve (2.2) with p = 0 and M = 0 having data Θ. Then for any (r2, w2, µ2) ∈
Sh ×Ψh × Ψ̂h(0), we have the following equation

B(ΠV Φ,ΠWΨ,Π∂
k+1Ψ; r2, w2, µ2) = (ΠV Φ−Φ, r2)Th + (Θ, w2)Th .

Using this lemma we can now estimate ξφh in terms of u− uh and other consistency terms.

Lemma 9. For any t ∈ [0, T ], if the elliptic regularity inequality (2.3) holds, then we have the
following error estimates

‖ξφh‖
2
Th ≤ Ch

2‖ΠV p− p‖2Th + C‖u− uh‖2Th .

10
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Proof. Consider the dual problem (2.2) with p = 0 and M = 0 and Θ = ξφh . We take (r2, w2, µ2) =
(−ΠV Φ,ΠWΨ,Π∂

k+1Ψ) in Equation (3.4b) of Lemma 6 to get

B(ξph , ξ
φ
h , ξ

φ̂
h ;−ΠV Φ,ΠWΨ,Π∂

k+1Ψ) = −(ΠV p− p,ΠV Φ)Th − (u− uh, ξφh)Th . (3.5)

On the other hand, by Lemmas 2 and 8, we have

B(ξph , ξ
φ
h , ξ

φ̂
h ;−ΠV Φ,ΠWΨ,Π∂

k+1Ψ)

= B(ΠV Φ,ΠWΨ,Π∂
k+1Ψ;−ξph , ξ

φ
h , ξ

φ̂
h)

= −(ΠV Φ−Φ, ξph)Th + ‖ξφh‖
2
Th .

(3.6)

Comparing the above two equalities (3.5) and (3.6) gives

‖ξφh‖
2
Th = (ΠV Φ−Φ, ξph)Th − (ΠV p− p,ΠV Φ)Th − (u− uh, ξφh)Th

= (ΠV Φ−Φ, ξph)Th − (ΠV p− p,ΠV Φ−Φ)Th

− (ΠV p− p,Φ)Th − (u− uh, ξφh)Th
= (ΠV Φ−Φ, ξph)Th − (ΠV p− p,ΠV Φ−Φ)Th

+ (ΠV p− p,∇Ψ)Th − (u− uh, ξφh)Th
= (ΠV Φ−Φ, ξph)Th − (ΠV p− p,ΠV Φ−Φ)Th

+ (ΠV p− p,∇(Ψ−ΠWΨ))Th − (u− uh, ξφh)Th

≤ Ch2‖ξph‖
2
Th + Ch2‖ΠV p− p‖2Th + C‖u− uh‖2Th +

1

2
‖ξφh‖

2
Th .

By Lemma 7 and the Cauchy-Schwarz inequality we obtain the result of the lemma:

‖ξφh‖
2
Th ≤ Ch

2‖ΠV p− p‖2Th + C‖u− uh‖2Th .

As a consequence of the above result, a simple application of the triangle inequality and Lem-
mas 7 and 9 give the following bounds of ‖φ− φh‖Th and ‖p− ph‖Th :

Lemma 10. Let (p, φ) and (ph, φh) be the solution of (1.2) and (1.3), respectively. For any
t ∈ [0, T ], if the elliptic regularity inequality (2.3) holds, then we have the following error estimates

‖φ− φh‖Th + ‖p− ph‖Th ≤ C1h
k+2 + C‖u− uh‖Th

where C1 depends on the Hk+1(Ω) norm of p at each time.

3.3 L2 Error estimates for u.

Having the result of Lemma 10 it remains to estimate u−uh. The fundamental estimate is contained
in the next lemma.

Lemma 11. If h small enough, then there exists t?h ∈ [0, T ] such that for all t ∈ [0, t?h] we have

‖ξuh‖2Th +

∫ t

0

(
‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

)
dt ≤ Ch2k+4.

11
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Proof. We take (r1, w1, µ1) = (ξqh , ξ
u
h , ξ

û
h) in (3.4a) to get

(∂tξ
u
h , ξ

u
h)Th + ‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

= (∂t(uIh − u), ξuh)Th +M(u− uIh, ξuh)Th

− ((p− ph)uh,∇ξuh)Th + 〈(p− p̂h) · nûh, ξuh − ξûh〉∂Th
− (pξuh ,∇ξuh)Th + 〈p · nξûh , ξuh〉∂Th

=: R1 +R2 +R3 +R4 +R5 +R6.

(3.7)

We note that ξuh(0) = uh(0)− uIh(0) = 0. Let t = 0 in (3.7) to get

‖ξqh(0)‖2Th + ‖h−1/2
K (Π∂

kξ
u
h(0)− ξûh(0))‖2∂Th = 0.

This implies ξûh(0) = ξuh(0) = 0. Hence we have ûh(0) = ûIh(0). By Theorem 2 we have

‖Πo
k+1u(0)− uh(0)‖Th = ‖Πo

k+1u(0)− uIh(0)‖Th ≤ Ch
k+2,

‖Π∂
ku(0)− ûh(0)‖∂Th = ‖Π∂

ku(0)− ûIh(0)‖∂Th ≤ Ch
k+3/2.

For h small enough these estimates imply that

‖u(t)−Πo
k+1u(t)‖L∞(Ω) ≤ 1/2 and ‖u(t)−Π∂

ku(t)‖L∞(Eh) ≤ 1/2 for all t ∈ [0, T ]. (3.8)

Let M = max(t,x)∈[0,T ]×Ω |u(t, x)|, then the inverse inequality gives

‖uh(0)‖L∞(Ω) ≤ Ch−d/2‖Πo
k+1u(0)− uh(0)‖Th

+ ‖Πo
k+1u(0)− u(0)‖L∞(Ω) + ‖u(0)‖L∞(Ω)

≤ Chk+2−d/2 +M+ 1/2,

‖ûh(0)‖L∞(Eh) ≤ Ch1/2−d/2‖Π∂
ku(0)− ûh(0)‖Th

+ ‖Π∂
ku(0)− u(0)‖L∞(Eh) + ‖u(0)‖L∞(Eh)

≤ Chk+2−d/2 +M+ 1/2.

Also, since the error equation (3.4a) is continuous with respect to the time t, then there exists
t?h ∈ [0, T ] such that for h small enough,

‖uh‖L∞(Ω) + ‖ûh‖L∞(Eh) ≤ 2M+ 2. (3.9)

By the Cauchy-Schwarz inequality, Theorem 2 and lemma 3 we get

R1 +R2 ≤ Chk+2‖ξuh‖Th

≤ Ch2k+4 +
1

8

(
‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

)
.

For the term R3, by the Cauchy-Schwarz, Lemma 10, Lemma 5 and Lemma 3 we get

R3 ≤ C‖p− ph‖Th‖∇ξ
u
h‖Th

≤ C‖p− ph‖2Th +
1

C
‖∇ξuh‖2Th

≤ Ch2k+4 + C‖u− uh‖2Th +
1

C
‖∇ξuh‖2Th

≤ Ch2k+4 + C‖ξuh‖2Th +
1

8

(
‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

)
.

12
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Also, applying Lemma 3 again to obtain

R4 = 〈(p− p̂h) · nûh, ξuh − ξûh〉∂Th
≤ C‖h1/2

K (p− p̂h)‖∂Th‖h
−1/2
K (ξuh − ξûh)‖∂Th

≤ Ch2k+4 + C‖ξuh‖2Th +
1

8

(
‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

)
.

For the last two terms R5 +R6, integration by parts to get

R5 +R6 = −(pξuh ,∇ξuh)Th + 〈p · nξûh , ξuh〉∂Th

= −1

2
〈p · n(ξuh − ξûh), ξuh − ξûh〉Th − (∇ · pξuh , ξuh)Th

≤ 1

8
‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th + ‖∇ · p‖L∞(Ω)‖ξuh‖2Th .

Sum the above estimates of {Ri}6i=1 to get

(∂tξ
u
h , ξ

u
h)Th + ‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th ≤ Ch

2k+4 + C‖ξuh‖2Th . (3.10)

Integrating both sides of (3.10) on [0, t∗h] we finally obtain

‖ξuh(t∗h)‖2Th +

∫ t∗h

0

(
‖ξqh‖

2
Th + ‖h−1/2

K (Π∂
kξ
u
h − ξûh)‖2∂Th

)
dt

≤ Ch2k+4 + C

∫ t∗h

0
‖ξuh‖2Thdt.

The use of Gronwall’s inequality gives the desired result.

Lemma 12. For h small enough, the result in Lemma 11 holds on the whole time interval [0, T ].

Proof. Fix h∗ > 0 so that Lemma 11 is true for all h ≤ h∗, and assume t∗h is the largest value for
which (3.9) is true for all h ≤ h∗. Define the set A = {h ∈ [0, h∗] : t∗h 6= T}. If the result is not
true, then A is nonempty, inf{h : h ∈ A} = 0, and also

‖uh‖L∞(Ω) + ‖ûh‖L∞(Eh) = 2M+ 2 for all h ∈ A. (3.11)

However, by the inverse inequality and since Lemma 11 holds, we have

‖uh‖L∞(Ω) + ‖ûh‖L∞(Eh) ≤ Ch2−d/2 + 2M+ 1 for all h ∈ A.

Since C does not depend on h, there exists h∗1 ≤ h∗ such that ‖uh‖L∞(Ω) + ‖ûh‖L∞(Eh) < 2M+ 2
for all h ∈ A such that h ≤ h∗1. This contradicts (3.11), and therefore t∗h = T for all h small
enough.

The above lemma, the triangle inequality, and Lemma 7 complete the proof of Theorem 1.

4 Numerical Results

In this section we present some numerical results in two spatial dimensions.

13
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Table 1: History of convergence for qh and uh for Example 1 under uniform mesh refinement.

Degree h√
2

‖q − qh‖0,Ω ‖p− ph‖0,Ω
Error Rate Error Rate

k = 0

2−1 4.2730E-02 6.4843E-03
2−2 2.2386E-02 0.93 1.9113E-03 1.76
2−3 1.1265E-02 0.99 5.1822E-04 1.88
2−4 5.6455E-03 1.00 1.3592E-04 1.93
2−5 2.8248E-03 1.00 3.4881E-05 1.96

k = 1

2−1 2.9547E-03 3.8888E-04
2−2 7.5335E-04 1.97 5.4882E-05 2.82
2−3 1.9796E-04 1.93 7.5341E-06 2.86
2−4 5.0451E-05 1.97 9.8858E-07 2.93
2−5 1.2748E-05 1.98 1.2705E-07 2.96

Table 2: History of convergence for ph and φh for Example 1 under uniform mesh refinement.

Degree h√
2

‖u− uh‖0,Ω ‖φ− φh‖0,Ω
Error Rate Error Rate

k = 0

2−1 1.8339E-02 1.0205E-02
2−2 4.9503E-03 1.89 2.3408E-03 2.12
2−3 1.2423E-03 2.00 4.9774E-04 2.23
2−4 3.1156E-04 2.00 1.1131E-04 2.16
2−5 7.7965E-05 2.00 2.6001E-05 2.09

k = 1

2−1 1.8339E-02 4.0894e-04
2−2 2.3140E-04 2.98 3.7700E-05 3.43
2−3 2.9565E-05 2.97 4.6167E-06 3.03
2−4 3.7026E-06 3.00 5.3872E-07 3.01
2−5 4.6363E-07 3.00 6.6418E-08 3.02

Example 1. We begin with an example with an exact solution in order to illustrate the convergence
theory. The domain is the unit square Ω = [0, 1]× [0, 1] ⊂ R2 and homogeneous Dirichlet boundary
conditions are applied on the boundary. The source terms f1, f2 and the initial condition are chosen
so that ε = 0.1 and the exact solution u = cos(t) sin(x) cos(y) and φ = sin(t) cos(x) sin(y). The
second order backward differentiation formula (BDF2) is applied for the time discretization and for
the space discretization we choose polynomial degrees k = 0 or k = 1 (used in the definition of the
discrete spaces in Section 1).. The time step is chosen to be ∆t = h when k = 0 and ∆t = h3/2

when k = 1. We report the errors at the final time T = 1. The observed convergence rates match
our theory.

Next, we test an example without a convergence rate but that show the performance of the
HDG method. We take k = 0, the domain is also the unit square Ω = [0, 1] × [0, 1] ⊂ R2 and
partition into 20000 triangles, i.e., h =

√
2/100. BDF2 is applied for time discretization and the

time step ∆t = 1/1000.

Example 2. This example has non-homogeneous Dirichlet data and demonstrates that our HDG
scheme can handle this case. We take ε = 10−2 and the source terms f1 = 0 and

f2 =

{
−0.8 (0, 0.5)× (1/2, 1),

0.8 else.

The Dirichlet boundary condition gu = 0.9, gφ = 1.1 on {y = 0}, and gu = 0.1, gφ = −1.1 on
{y = 1, 0 ≤ x ≤ 0.25}. Elsewhere we impose homogeneous Neumann boundary conditions. Initial

14
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Figure 1: From left to right, from top to bottom are the contour plots of uh at time: T =
0.01, 0.4, 0.7, 1 for Example 2.

condition u0 = (1 + f2)/2. A similar example was studied in [3] by a finite volume method. We
plot the solutions uh and φh at different final time T ; see Figures 1 and 2.

5 Conclusion

In this work, we proposed an HDG method for the drift-diffusion equation. We proved optimal
semi-discrete error estimates for all variables; moreover, from the point view of degrees of freedom,
we obtained a superconvergent convergence rate for the variable u. As far as we are aware, this is
the first such result in the literature.

Clearly it would be desirable to prove convergence without the need to assume an inverse
assumption. Equally, it would be useful to prove fully discrete estimates using, for example BDF2
in time.

This is the first of a series of papers in which we develop efficient HDG methods for drift-
diffusion equation, including devising HDG methods when ε approaches to zero. We have a great
interest in the numerical solution of steady state drift-diffusion equation, and we will explore this
problem in our future papers.
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Figure 2: From left to right, from top to bottom are the contour plots of φh at time: T =
0.01, 0.4, 0.7, 1 for Example 2.
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A Appendix

In this section we give a proof for (3.3a) and (3.3b). The proof of (3.3c) is similar and we do not
provide details.

A.1 Error equations

We start be deriving equations satisfied by standard projections (see (2.6)) of the exact solution.

Lemma 13. Let (q, u) be components of the solution of (1.2), then we have

M(Πo
k+1u,w1)Th + A (Πo

kq,Π
o
k+1u,Π

∂
ku; r1, w1, µ1) + C (p,p; Πo

k+1u,Π
∂
ku;w1)

= (Mu− ut, w1)Th + 〈(Πo
kq − q) · n, w1 − µ1〉∂Th + (p(Πo

k+1u− u),∇w1)Th

− 〈p · n(Π∂
ku− u), w1 − µ1〉∂Th + 〈h−1

K (Πo
k+1u− u),Π∂

kw1 − µ1〉∂Th .

holds for all (r1, w1, µ1) ∈ Qh × Vh × V̂h(0).

Proof. By the definition of A and C in (2.8c) and (2.8e) respectively, the projections and integrating
by parts, we get

A (Πo
kq,Π

o
k+1u,Π

∂
ku; r1, w1, µ1)

= 〈(Πo
kq − q) · n, w1 − µ1〉∂Th + (∇ · q, w1)Th

+ 〈h−1
K (Πo

k+1u− u),Π∂
kw1 − µ1〉∂Th ,

where we have also used (1.2a). In addition,

C (p,p; Πo
k+1u,Π

∂
ku;w1) = (pΠo

k+1u,∇w1)Th − 〈p · nΠ∂
ku,w1〉∂Th .

Hence, again using the projections, we have

M(Πo
k+1u,w1)Th + A (Πo

kq,Π
o
k+1u,Π

∂
ku; r1, w1, µ1) + C (p; Πo

k+1u,Π
∂
ku;w1)

= (Mu,w1)Th + 〈(Πo
kq − q) · n, w1 − µ1〉∂Th + (∇ · q, w1)Th

+ 〈h−1
K (Πo

k+1u− u),Π∂
kw1 − µ1〉∂Th + (pΠo

k+1u,∇w1)Th − 〈p · nΠ∂
ku,w1〉∂Th .

Since, using (1.2c), ∇ · q = ∇ · (pu)− ut, then we have

(∇ · q, w1)Th = −(ut, w1)Th + 〈p · nu,w1〉∂Th − (pu,∇u)Th .

This implies that

M(Πo
k+1u,w1)Th + A (Πo

kq,Π
o
k+1u,Π

∂
ku; r1, w1, µ1) + C (p; Πo

k+1u,Π
∂
ku;w1)

= (Mu− ut, w1)Th + 〈(Πo
kq − q) · n, w1 − µ1〉∂Th + (p(Πo

k+1u− u),∇w1)Th

− 〈p · n(Π∂
ku− u), w1 − µ1〉∂Th + 〈h−1

K (Πo
k+1u− u),Π∂

kw1 − µ1〉∂Th .

and completes the proof of the lemma.
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To simplify notation, we define

ηqh := Πo
kq − qIh, ηuh := Πo

k+1u− uIh, ηûh := Π∂
ku− ûIh.

We then subtract the equation in Lemma 13 from (3.1) to get the following lemma.

Lemma 14. Under the conditions of Lemma 13, we have the error equation

M(ηuh , w1)Th + A (ηqh, η
u
h , η

û
h ; r1, w1, µ1) + C (p,p; ηuh , η

û
h ;w1)

= 〈(Πo
kq − q) · n, w1 − µ1〉∂Th + (p(Πo

k+1u− u),∇w1)Th

− 〈p · n(Π∂
ku− u), w1〉∂Th + 〈h−1

K (Πo
k+1u− u),Π∂

kw1 − µ1〉∂Th .
(A.1)

holds for all (r1, w1, µ1) ∈ Qh × Vh × V̂h(0).

A.2 Main error estimate

We can now prove (3.3b).

Lemma 15. For h small enough, we have the error estimates

‖q − qIh‖Th + ‖h−1/2
K (Π∂

kuIh − ûIh)‖∂Th ≤ Ch
k+1|u|k+2.

Proof. We take (r1, w1, µ1) = (ηqh, η
u
h , η

û
h) in (A.1). First

A (ηqh, η
u
h , η

û
h ; ηqh, η

u
h , η

û
h) = ‖ηqh‖

2
Th + ‖h−1/2

K (Π∂
kη

u
h − ηûh)‖2∂Th .

Next,

M(ηuh , η
u
h)Th + C (p,p; ηuh , η

û
h ; ηuh)

= M(ηuh , η
u
h)Th + (pηuh ,∇ηuh)Th − 〈p · nη

û
h , η

u
h〉∂Th

= (M − 1

2
∇ · p, ηuhηuh)Th +

1

2
〈p · nηuh , ηuh〉∂Th − 〈p · nη

û
h , η

u
h〉∂Th

= (M − 1

2
∇ · p, ηuhηuh)Th +

1

2
〈p · n(ηuh − ηûh), ηuh − ηûh〉∂Th

≥ M

2
‖ηuh‖Th −

1

2
‖|p · n|(Π∂

kη
u
h − ηûh)‖2∂Th − Ch‖p‖0,∞‖∇ξ

u
h‖2Th .

For h small enough, we obtain

M(ηuh , η
u
h)Th + A (ηqh, η

u
h , η

û
h ; ηqh, η

u
h , η

û
h) + C (p,p; ηuh , η

û
h ; ηuh)

≥ 1

2

(
M‖ηuh‖2Th + ‖ηqh‖

2
Th + ‖h−1/2

K (Π∂
kη

u
h − ηûh)‖2∂Th

)
.

On the other hand,

M(ηuh , η
u
h)Th + A (ηqh, η

u
h , η

û
h ; ηqh, η

u
h , η

û
h) + C (p,p; ηuh , η

û
h ; ηuh)

= 〈(Πo
kq − q) · n, ηuh − ηûh〉∂Th + (p(Πo

k+1u− u),∇ηuh)Th

− 〈p · n(Π∂
ku− u), ηuh − ηûh〉∂Th + 〈h−1

K (Πo
k+1u− u),Π∂

kη
u
h − ηûh〉∂Th

=: R1 +R2 +R3 +R4.
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Next, we estimate {Ri}4i=1 term by term. For the first term R1, Lemma 3 gives

R1 ≤ Chk+1|q|k+1‖h
−1/2
K (ηuh − ηûh)‖∂Th ,

≤ Chk+1|q|k+1

(
‖ηqh‖Th + ‖h−1/2

K (Π∂
kη

u
h − ηûh)‖∂Th

)
.

For the term R2, by Lemma 5 and Lemma 3 to get

R2 ≤ Chk+2|u|k+2‖∇ηuh‖Th
≤ Chk+2|u|k+2

(
‖ηph‖Th + ‖h−1/2

K (Π∂
kη

u
h − ηûh)‖∂Th

)
.

For the term R3, we use Lemma 3 to get

R3 = 〈p · n(Π∂
ku− u), ηuh − ηûh〉∂Th

≤ Chk+1|u|k+1‖h
−1/2
K (ηuh − ηûh)‖∂Th

≤ Chk+1|u|k+1

(
‖ηph‖Th + ‖h−1/2

K (Π∂
kη

u
h − ηûh)‖∂Th

)
.

Moreover, for the last term we have

R4 ≤ Chk+1|u|k+1‖h
−1/2
K (Π∂

kη
u
h − ηûh)‖∂Th .

Use the Cauchy-Schwarz inequality for the above estimates of {Ri}4i=1, we get

‖ηqh‖Th + ‖h−1/2
K (Π∂

kη
u
h − ηûh)‖∂Th ≤ Ch

k+1|u|k+2.

Use of the triangle inequality and estimates (2.7a) and (2.7b) completes the estimate.

A.3 Duality arguments

To obtain a L2 norm estimate of ‖ηuh‖Th , we use the dual problem (2.2) with corresponding a priori
estimate (2.3). To perform the error analysis, the main difficulty is to deal with the nonlinearity.
We define a new form C ? which is related to the trilinear form C :

C ?(p,p;uh, ûh;w1) = −(puh,∇w1)Th + 〈p · nûh, w1〉∂Th − (∇ · puh, w1)Th . (A.2)

Next, we give a property of the operators C and C ?. We omit the proof since it is very
straightforward.

Lemma 16. For all (uh, ûh, w1, µ1) ∈ Vh × V̂h(0)× Vh × V̂h(0), we have

C (p,p;uh, ûh;w1) + C ?(p,p;w1, µ1;−uh) = 〈p · n(uh − ûh), w1 − µ1〉∂Th .

Similarly to Lemma 13, we have the following lemma.

Lemma 17. Assuming M is chosen sufficiently large, let (Φ,Ψ) solve (2.2) then we have the
equation

M(Πo
k+1Φ, w1)Th + A (Πo

kΨ,Πo
k+1Φ,Π∂

kΦ; r1, w1, µ1) + C ?(p,p; Πo
k+1Φ,Π∂

kΦ;w1)

= (Θ, w1) + 〈(Πo
kΨ−Ψ·)n, w1 − µ1〉∂Th + 〈h−1

K (Πo
k+1Φ− Φ),Π∂

kw1 − µ1〉∂Th
− (p(Πo

k+1Φ− Φ),∇w1)Th + 〈p · n(Π∂
kΦ− Φ), w1〉∂Th

− (∇ · p(Πo
k+1Φ− Φ), w1)Th .

holds for all (r1, w1, µ1) ∈ Qh × Vh × V̂h(0).
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With the above preparation we can now derive estimate (3.3a).

Theorem 3. Let u and uIh be the solutions of (1.2) and (3.1), respectively. If h is small enough,
then we have the error estimate

‖u− uIh‖Th ≤ Ch
k+2‖u‖k+2.

Proof. We take (r1, w1, µ1) = (ηqh,−η
u
h ,−ηûh) and Θ = −ηuh in Lemma 17 to get

−M(Πo
k+1Φ, ηuh)Th + A (Πo

kΨ,Πo
k+1Φ,Π∂

kΦ; ηqh,−η
u
h ,−ηûh) + C ?(p; Πo

k+1Φ,Π∂
kΦ;−ηuh)

= −M(ηuh ,Π
o
k+1Φ)Th −A (ηqh, η

u
h , η

û
h ;−Πo

kΨ,Πo
k+1Φ,Π∂

kΦ) + C ?(p; Πo
k+1Φ,Π∂

kΦ;−ηuh)

= −M(ηuh ,Π
o
k+1Φ)Th − 〈(Π

o
kq − q) · n,Πo

k+1Φ−Π∂
kΦ〉∂Th − (p(Πo

k+1u− u),∇Πo
k+1Φ)Th

+ 〈p · n(Π∂
ku− u),Πo

k+1Φ−Π∂
kΦ〉∂Th − 〈h

−1
K (Πo

k+1u− u),Π∂
kΠo

k+1Φ−Π∂
kΦ〉∂Th

+M(ηuh ,Π
o
k+1Φ)Th + C (p; ηuh , η

û
h ; Πo

k+1Φ) + C ?(p; Πo
k+1Φ,Π∂

kΦ;−ηuh).

By Lemma 16 we have

C (p,p; ηuh , η
û
h ; Πo

k+1Φ) + C ?(p,p; Πo
k+1Φ,Π∂

kΦ;−ηuh) = 〈p · n(ηuh − ηûh),Πo
k+1Φ−Π∂

kΦ〉∂Th .

This implies

−M(Πo
k+1Φ, ηuh)Th + A (Πo

kΨ,Πo
k+1Φ,Π∂

kΦ; ηqh,−η
u
h ,−ηûh) + C ?(p,p; Πo

k+1Φ,Π∂
kΦ;−ηuh)

= −〈(Πo
kq − q) · n,Πo

k+1Φ−Π∂
kΦ〉∂Th − (p(Πo

k+1u− u),∇Πo
k+1Φ)Th

+ 〈p · n(Π∂
ku− u),Πo

k+1Φ−Π∂
kΦ〉∂Th − 〈h

−1
K (Πo

k+1u− u),Π∂
kΠo

k+1Φ−Π∂
kΦ〉∂Th

+ 〈p · n(ηuh − ηûh),Πo
k+1Φ−Π∂

kΦ〉∂Th .

On the other hand, we have

−M(Πo
k+1Φ, ηuh)Th + A (Πo

kΨ,Πo
k+1Φ,Π∂

kΦ; ηqh,−η
u
h ,−ηûh) + C ?(p,p; Πo

k+1Φ,Π∂
kΦ;−ηuh)

= −‖ηuh‖2Th − 〈(Π
o
kΨ−Ψ·)n, ηuh ,−ηûh〉∂Th − 〈h

−1
K (Πo

k+1Φ− Φ),Π∂
kη

u
h − ηûh〉∂Th

+ (p(Πo
k+1Φ− Φ),∇ηuh)Th − 〈p · n(Π∂

kΦ− Φ), ηuh − ηûh〉∂Th + (∇ · p(Πo
k+1Φ− Φ), ηuh)Th .

Comparing the above two equations, we get

‖ηuh‖2Th = −〈Πo
kq · n− q · n,Πo

k+1Φ−Π∂
kΦ〉∂Th − 〈h

−1
K (Πo

k+1u− u),Π∂
kΠo

k+1Φ−Π∂
kΦ〉∂Th

− (p(Πo
k+1u− u),∇Πo

k+1Φ)Th + 〈p · n(Π∂
ku− u),Πo

k+1Φ−Π∂
kΦ〉∂Th

+ 〈p · n(ηuh − ηûh),Πo
k+1Φ−Π∂

kΦ〉∂Th
− 〈Πo

kΨ · n−Ψ · n, ηûh − ηuh〉∂Th − 〈h
−1
K (Πo

k+1Φ− Φ),Π∂
kη

u
h − ηûh〉∂Th

+ (p(Πo
k+1Φ− Φ),∇ηuh)Th − 〈p · n(Π∂

kΦ− Φ), ηuh − ηûh〉∂Th
+ (∇ · p(Πo

k+1Φ− Φ), ηuh)Th

=

10∑
i=1

Si.
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We estimate {Si}10
i=1 as follows (we omit some of the details):

S1 = −〈Πo
kq · n− q · n,Φ−Πo

k+1Φ〉∂Th ≤ Ch
k+2|q|k+1‖Φ‖2,

S2 = −〈h−1
K (Πo

k+1u− u),Πo
k+1Φ− Φ〉∂Th ≤ Ch

k+2|u|k+2‖Φ‖2,
S3 = −(p(Πo

k+1u− u),∇Πo
k+1Φ)Th ≤ Ch

k+2|u|k+2|Φ|1,
S4 = 〈p · n(Π∂

ku− u),Πo
k+1Φ− Φ〉∂Th ≤ Ch

k+2|u|k+1‖Φ‖2,

S5 ≤ C‖h−1/2
K (ηuh − ηûh)‖∂Thh|Φ|1 ≤ Ch

k+2|u|k+2|Φ|1,

S6 ≤ Ch‖h−1/2
K (ηuh − ηûh)‖∂Th‖Ψ‖1 ≤ Ch

k+2‖Ψ‖1,

S7 ≤ Ch‖h−1/2
K (ηuh − ηûh)‖∂Th‖Φ‖2 ≤ Ch

k+2|u|k+2‖Φ‖2,
S8 ≤ Ch2‖Φ‖2‖∇ηuh‖Th ≤ Ch

k+2‖Φ‖2|u|k+2,

S9 = −〈p · n(Π∂
kΦ− Φ), ηuh − ηûh〉∂Th ≤ Ch

k+2|Φ|1|u|k+2,

S10 ≤ Ch2‖Φ‖2‖ηuh‖Th .

Summing the above estimates, we get

‖ηuh‖2Th ≤ Ch
k+2‖u‖k+2‖ηuh‖Th + Ch2‖ηuh‖2Th

Let h be small enough, we have

‖ηuh‖Th ≤ Ch
k+2‖u‖k+2.

A simple application of the triangle inequality finishes the proof.
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