Skip to main content
Log in

A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient adaptive moving mesh finite element method for the numerical solution of the Keller–Segel chemotaxis model. The mesh points are continuously redistributed by a coordinate transformation defined from the computational domain to the physical domain to concentrate the grid nodes in regions of large solution variations in the physical domain. The Keller–Segel equations are discretized using an implicit-explicit finite element method using piecewise polynomials defined on triangular meshes. The spatial discretization scheme is designed with a positivity preserving property, if the initial solutions of the physical model are positive then the computed solutions stay positive at all time levels. Several numerical experiments are presented to demonstrate the performance of the proposed method for solving Keller–Segel model. The numerical results show that the proposed method can reduce the computational cost while improving the overall accuracy of the computed solutions of the Keller–Segel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  3. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  MATH  Google Scholar 

  4. Alder, J.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341–356 (1975)

    Article  Google Scholar 

  5. Bonner, J.T.: The Sellular Slime Molds. Princeton University Press, Princeton (1967)

    Book  Google Scholar 

  6. Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of escherichia coli. Nature 349, 630–633 (1991)

    Article  Google Scholar 

  7. Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)

    Article  Google Scholar 

  8. Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)

    Article  Google Scholar 

  10. Herrero, M., Medina, E., VelÃzquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739–1754 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESIAM: Math. Model. Numer. Anal. 37(4), 617–630 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006). https://doi.org/10.1007/s00211-006-0024-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007). https://doi.org/10.1093/imanum/drl018

    Article  MathSciNet  MATH  Google Scholar 

  15. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111(2), 457–488 (2008). https://doi.org/10.1007/s00211-008-0188-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Tyson, R., Stern, L.J., Leveque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, X., Shu, C., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 368–408 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Budd, C., Carretero-González, R., Russell, R.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202(2), 463–487 (2005). https://doi.org/10.1016/j.jcp.2004.07.010

    Article  MathSciNet  MATH  Google Scholar 

  20. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foundations and Applications. North-Holland Publishing Co., New York (1985)

    MATH  Google Scholar 

  21. Dorfi, E., Drury, L.: Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69(1), 175–195 (1987). https://doi.org/10.1016/0021-9991(87)90161-6

    Article  MATH  Google Scholar 

  22. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, W., Russel, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    Book  Google Scholar 

  24. Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comp. Appl. Math. 239(1), 290–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973), pp. 12–20. Lecture Notes in Math., Vol. 363. Springer, Berlin (1974)

  27. Huang, W.: Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171(2), 753–775 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knott, M., Smith, C.S.: On the optimal mapping of distributions. J. Optim. Theory Appl. 43(1), 39–49 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sulman, M., Williams, J., Russell, R.D.: An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 61(3), 298–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006). https://doi.org/10.1016/j.jcp.2006.03.034

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009). https://doi.org/10.1016/j.jcp.2008.12.011

    Article  MathSciNet  MATH  Google Scholar 

  34. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Epshteyn, Y., Kurganov, A.: Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. J. Comput. Appl. Math. 10(2), 219–232 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was partially supported by the NSF MRI Award No. 1531923, and would like to acknowledge the funding he received from the Graduate School at Wright State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sulman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulman, M., Nguyen, T. A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model. J Sci Comput 80, 649–666 (2019). https://doi.org/10.1007/s10915-019-00951-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00951-0

Keywords

Navigation