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Abstract

In solid-state physics, energies of molecular systems are usually computed with a plane-wave dis-
cretization of Kohn-Sham equations. A priori estimates of plane-wave convergence for periodic Kohn-
Sham calculations with pseudopotentials have been proved , however in most computations in practice,
plane-wave cut-offs are not tight enough to target the desired accuracy. It is often advocated that the real
quantity of interest is not the value of the energy but of energy differences for different configurations.
The computed energy difference is believed to be much more accurate because of “discretization error
cancellation”, since the sources of numerical errors are essentially the same for different configurations.
In the present work, we focused on periodic linear Hamiltonians with Coulomb potentials where error
cancellation can be explained by the universality of the Kato cusp condition. Using weighted Sobolev
spaces, Taylor-type expansions of the eigenfunctions are available yielding a precise characterization of
this singularity. This then gives an explicit formula of the first order term of the decay of the Fourier
coefficients of the eigenfunctions. As a consequence, the error on the difference of discretized eigenvalues
for different configurations is indeed reduced by an explicit factor. However, this error converges at the
same rate as the error on the eigenvalue. Plane-wave methods for periodic Hamiltonians with Coulomb
potentials are thus still inefficient to compute energy differences.

Keywords. Eigenvalue problems, Spectral method, Error analysis.
AMS subject classifications. 65N15, 65G99, 35P15, 65N35.

Introduction
In solid-state electronic structure computations, a widely used method is density functional theory, often in the form
of Kohn-Sham model. In order to discretize this model, it is natural to use plane-wave expansions. The Kohn-Sham
wave functions are known to have cusps at the positions of the nuclei. These singularities imply poor convergence rate
of plane-wave methods. The use of pseudopotentials is designed to smooth out the cusps, hence improve plane-wave
convergence. In this context, precise convergence estimates have been proved [CCM12, CGH+13]. These results seem
to indicate that in general, the plane-wave cut-off is not large enough to reach the desired accuracy on the computed
eigenvalues.

However, when computing quantities of interest (energies, forces, response functions...) one often find errors which
are much smaller than the ones predicted by the aforementioned works. A commonly admitted explanation for this is
the fact that the computed quantities are mostly differences of energies between different (rather close) configurations.
The sources of the numerical errors being essentially the same for different configurations, the final output is more
precisely computed than the original eigenvalues [PCH08]. This was analyzed in a one-dimensional model in [CD17],
corroborating the above argument.

The aim of the present work is to generalize the results on discretization error cancellation obtained in [CD17]. The
setting here is three-dimensional, with a linear Hamiltonian involving Coulomb interactions. We prove that numerical
errors do partially cancel when computing the difference of eigenvalues of two close configurations. However, this
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difference of computed eigenvalues converges at the same rate as the computed eigenvalues. Plane-wave methods are
thus not accurate enough to compute energy differences.

The article is organized as follows. In Section 1, we present the mathematical setting and our main result (see
Theorem 1.3 below). In Section 2, we prove Theorem 1.3 and in Section 3, we present some numerical results, which
are in good agreement with our theoretical results.

1 Discretization error cancellation for linear Hamiltonians

1.1 Eigenvalue problem and plane-wave discretization
Let Γ = [−L

2
, L

2
]3, L > 0 be the unit cell repeated over a periodic lattice

R = LZ3.

We consider the Hamiltonian H acting on L2
per(Γ) with domain H2

per(Γ):

H = −1

2
∆ + Vper +Wper. (1.1)

The potential Vper is an R-periodic potential defined as the unique solution of−∆Vper = 4π

( ∑
T∈R

Nat∑
I=1

ZI
(
δRI (·+ T )− 1

|Γ|

))
Vper is R-periodic.

(1.2)

The potential Vper models Nat ∈ N point charges at positions RI in the unit cell Γ and of charge ZI > 0. The potential
Wper is a smooth R-periodic function.

The operator H is self-adjoint, bounded below with compact resolvent [RS78]. Thus it has a discrete spectrum
of infinite eigenvalues E1 ≤ E2 ≤ · · · ≤ En → ∞, counted with multiplicities, and the associated eigenfunctions
(ψn)n∈N∗ form an orthonormal basis of L2

per(Γ):

Hψn = Enψn,

∫
Γ

ψnψm = δnm. (1.3)

The eigenvalue problem (1.3) is solved using a plane-wave basis. Let R∗ be the reciprocal lattice

R∗ =
2π

L
Z3.

For K ∈ R∗, let eK = eiK·x

|Γ|1/2 be the plane-wave with wavevector K, where |Γ| is the volume of the unit cell. The
family (eK)K∈R∗ forms an orthonormal basis of L2

per(Γ) and for all u ∈ L2
per(Γ),

u(x) =
∑
K∈R∗

ûKeK(x), ûK =
1

|Γ|1/2

∫
Γ

u(x)e−iK·x dx.

Since we only consider real-valued functions, the Sobolev spaces Hs
per(Γ), s ∈ R, of real-valued R-periodic functions

are defined by

Hs
per(Γ) =

{
u(x) =

∑
K∈R∗

ûKeK(x)
∣∣∣ ∑
K∈R∗

(1 + |K|2)s|ûK |2 <∞, û∗K = û−K

}
,

endowed with the inner product

(u, v)Hs =
∑
K∈R∗

(1 + |K|2)sû∗K v̂K .

The norm associated to the inner product (·, ·)Hs is denoted by ‖ · ‖Hs . The discretization space VM , M ∈ N, is
defined by

VM =

 ∑
|K|≤ 2π

L
M

cKeK

∣∣∣ c−K = c∗K

 . (1.4)
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The constraint c−K = c∗K ensures that functions of VM are real-valued.

The eigenvalue problem (1.3) is solved on the Galerkin space VM . The approximate eigenvalues
EM1 ≤ EM2 ≤ . . . and the corresponding eigenfunctions (ψMi ) are such that

∀v ∈ VM ,
∫

Γ

(
−1

2
∆ + V

)
ψMi v = EMi

∫
Γ

ψMi v,

∫
Γ

ψMi ψ
M
j = δij . (1.5)

The bilinear form associated to the operator H is H1-bounded and coercive. Hence if M is sufficiently large, the
eigenpairs (EMi , ψ

M
i ) of the variational approximation (1.5) satisfy [BO89]

0 ≤ EMi − Ei ≤ C sup
ψ∈M(Ei)
‖ψ‖

H1=1

inf
v∈VM

‖ψ − v‖2H1 , (1.6)

and there exists ψi ∈ M(Ei) (M(Ei) is the vector space of eigenfunctions of (1.3) associated to the eigenvalue Ei)
such that

‖ψMi − ψi‖H1 ≤ C sup
ψ∈M(Ei)
‖ψ‖

H1=1

inf
v∈VM

‖ψ − v‖H1 . (1.7)

By Sobolev embedding theorem, H3/2+ε
per (Γ) ↪→ C0

per(Γ) for all ε > 0, hence
∑
T∈R

δRI (· + T ) ∈ H−3/2−ε
per (Γ). Thus

Vper defined by (1.2) belongs to H1/2−ε
per (Γ) for all ε > 0. Using elliptic regularity, eigenfunctions ψn of the eigenvalue

problem (1.3) belongs to H5/2−ε
per (Γ) for all ε > 0.

Let ΠM be the L2-orthogonal projector onto VM . Since (eK)K∈R∗ is an orthogonal basis of Hs
per(Γ) for all s ∈ R

(if s = 0, H0
per(Γ) = L2

per(Γ)), the best approximation of ψ ∈ Hs
per(Γ) in VM is simply ΠMψ. Hence using that for all

r, s ∈ R with r ≤ s, we have for f ∈ Hs
per(Γ)

‖f −ΠMf‖Hr ≤
(

L

2πM

)s−r
‖f −ΠMf‖Hs , (1.8)

we deduce that for all ε > 0,

0 < EMi − Ei ≤ C‖ψi −ΠMψi‖2H1 ≤
C

M3−ε ‖ψ‖
2
H(5−ε)/2 . (1.9)

The goal of this paper is to give an explicit expression of the first order term in (1.9) using the particular nature of
the singularity of the eigenfunctions ψ in (1.3). Weighted Sobolev space and singular expansion of these eigenfunctions
constitute the appropriate way to characterize precisely such singularities.

1.2 Singular expansion
The theory of weighted Sobolev spaces has been introduced to study singularities of boundary value problems in
conical domains with corners and edges [BR73, Gri92]. It is also closely linked to the b-calculus of pseudodifferential
operators developed by Melrose [Mel93]. Although the geometry here is simple, Coulomb singularities generated by
the nuclei fit perfectly in this treatment. The behavior of the electronic wave function close the nucleus has been
precisely characterized using this theory [FSS08, HNS08]. Those results paved the way to the analysis of the muffin-tin
and LAPW methods [CS15] and the VPAW method [Dup18]. The interested reader may refer to [KMR97, ES97] for
a detailed exposition of this theory. We briefly expose the definition of the weighted Sobolev space in our setting and
some important results used to prove Theorem 1.3.

Let S be the set of the positions of the nuclei:

S = {RI + T, I = 1, . . . , Nat, T ∈ R}.

Let % be a R-periodic continuous function such that %(RI + x) = |x| for small x, % ∈ C∞loc(R3 \ S).

Definition 1.1. Let k ∈ N and γ ∈ R. We define the k-th weighted Sobolev space with index γ by

Kk,γ(Γ) =
{
u ∈ L2

per(Γ) : %|α|−γ∂αu ∈ L2
per(Γ) ∀ |α| ≤ k

}
. (1.10)
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Consider a subspace of functions with the asymptotic expansions

∀ I = 1, . . . , Nat, u(RI + x) ∼
∑
j∈N

cj(x̂)|x|j as x→ 0, (1.11)

where cj belongs to the finite dimensional subspace Mj = span{Y`m, 0 ≤ ` ≤ j, |m| ≤ `} and for x ∈ R3, x̂ = x
|x| .

We define the weighted Sobolev spaces with asymptotic type (1.11):

K k,γ(Γ) =

{
u ∈ Kk,γ(Γ)

∣∣∣∣ ηN ∈ Kk,γ+N+1(Γ) where ηN is the Γ-periodic function defined in Γ by

∀N ∈ N, ∀x ∈ Γ, ηN (x) = u(x)−
Nat∑
I=1

ω(|x−RI |)
N∑
j=0

cIj (x̂−RI)|x−RI |j
}
,

(1.12)

where ω is a smooth positive cutoff function, i.e. ω = 1 near 0 and ω = 0 outside some neighbourhood of 0.
The definition (1.12) slightly differs from the definition of the weighted Sobolev space given in [CS15] (Equation

(2.6)). However, our definition is consistent with the results that can be found in [HNS08] (see Theorem I.1) and the
original paper [FSS08] (see Proposition 1) from which the definition appearing in [CS15] is taken.

The expansion (1.11) can be viewed as a “regularity expansion”. Let us suppose that the functions cj in the singular
expansion are constant. Then all the even terms appearing in (1.12) are smooth since for any k ∈ N, x 7→ |x|2k is
smooth. For the odd terms in the expansion, the function x 7→ |x| is continuous but not differentiable at the origin,
the function x 7→ |x|3 is C2 but not C3 and so on. Since the decay of the Fourier coefficients depends on the regularity
of the function, this expansion enables one to characterize precisely this decay.

The following result, stated in [HNS08, CS15] (see also [FSS08] for similar results in the Hartree-Fock model),
gives the regularity of the eigenfunction of (1.3) in terms of the previously defined weighted Sobolev space.

Theorem 1.2. Let ψ be an eigenfunction of Hψ = Eψ where H is defined in (1.1). Then ψ belongs to K ∞,γ(Γ) for
all γ < 3

2
. The first two terms of the asymptotic expansion (1.11) are explicit and given by

cI0 = ψ(RI), cI1 = −ZIψ(RI) +

1∑
m=−1

αmY1m, αm ∈ R. (1.13)

In [FSS08, CS15], functions belonging to K ∞,γ(Γ) are called “well-behaved”. It is easy to see that if u is asymp-
totically well-behaved then by the definition of the weighted Sobolev space with asymptotic type (1.11), the remainder
ηN is in the classical Sobolev space H5/2+N−ε

per (Γ).
The last assertion is the well-known Kato cusp condition [Kat57].

1.3 Main result
Using the previous characterization of the eigenfunctions of the periodic Hamiltonian (1.1), an explicit expression of
the error cancellation factor can be obtained. The proof of the next theorem can be found in Section 2.

Theorem 1.3. Let (ψi, Ei) be an eigenpair of the operator H defined in (1.1). Let EMi be the corresponding eigenvalue
obtained by the plane-wave variational approximation on VM given by (1.4). Let M0 > 0 sufficiently large such that
(1.7) holds for all M ≥ M0. Then for all ε > 0, there exists a positive constant Cε,M0 such that for all M ≥ M0, we
have ∣∣∣∣∣EMi − Ei − 2L3

3π3M3

Nat∑
I=1

Z2
Iψi(RI)

2

∣∣∣∣∣ ≤ Cε,M0

M4−ε . (1.14)

For two different atomic configurations, R(1) = (R
(1)
1 , . . . , R

(1)
Nat

) and R(2) = (R
(2)
1 , . . . , R

(2)
Nat

), the error on the
discretized eigenvalue difference is

ER1,M
i − ER2,M

i = ER1
i − ER2

i +
2L3

3π3M3

Nat∑
I=1

Z2
I

(
ψ(1)

(
R

(1)
I

)2

− ψ(2)
(
R

(2)
I

)2
)

+O
(

1

M4−ε

)
,

where ψ(1) and ψ(2) are L2-normalized eigenfunctions associated respectively to ER1
i and ER2

i . Since there is a dif-
ferentiable dependence on the atomic positions, the error cancellation is of order |R

(1)−R(2)|
M3 . The convergence rate
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of the eigenvalue difference is the same as the eigenvalue error, however the prefactor is reduced (see Figure 2 for an
example on a simple model).

In [CD17], the authors analyzed the phenomenon of error cancellation in the case of the lowest eigenvalue of the
periodic one-dimensional Schrödinger operator

H = − d2

dx2
− Z0

∑
k∈Z

δk − ZR
∑
k∈Z

δk+R, 0 < R < 1, Z0, ZR > 0.

The authors showed that the convergence of the lowest eigenvalue EM computed with plane-waves with wavenumber
|k| ≤M is given by

EM = E +
Z2

0ψ(0)2 + Z2
Rψ(R)2

2π2M
+O

(
1

M2−ε

)
,

for all ε > 0 and M sufficiently large. The function ψ is an L2-normalized eigenfunction associated to the eigenvalue
E. It is interesting to notice the similarity with the expression (1.14) obtained here. This stems from the fact that in
both models, the singularities of the eigenfunctions are comparable: eigenfunctions are Lipschitz at the positions of
the nuclei but generally not differentiable.

Equation (1.14) gives a first order correction formula to the computed eigenvalue EMi . Since ψi ∈ H5/2−ε
per (Γ) and

H
3/2+ε
per (Γ) ↪→ C0

per(Γ) for all ε > 0, by Equations (1.7) and (1.8), for all ε > 0, there is a constant Cε such that
‖ψMi − ψi‖L∞ ≤ C‖ψMi − ψi‖H3/2+ε/2 ≤ Cε

M1−ε . Thus the error estimate (1.14) can be written,

EMi − Ei =
2L3

3π3M3

Nat∑
I=1

Z2
Iψ

M
i (RI)

2 +O
(

1

M4−ε

)
. (1.15)

Computing the first order correction only requires an inverse FFT to get the value of the wave function at the positions
of the nuclei. This correction improves the convergence rate by a factor 1

M
. Other approaches dealing directly (see

[CS15, Dup18]) or indirectly (e.g. using pseudopotentials [CCM12, CDM+16]) with the Coulomb singularities exist
and are more efficient.

The numerical study in [CD17] suggests that error cancellation also happens in periodic Kohn-Sham computations
with pseudopotentials. In these models, under some assumptions on the regularity of the exchange-correlation potential
and the positivity of the whole electronic density (frozen-core and valence electron densities), the eigenfunctions are
smooth in the whole domain except at some spheres centered at the positions of the nuclei. These spheres correspond
to the regions where the pseudopotentials are not smooth, because of a mismatch of higher derivatives with the true
electronic potential. With a precise characterization of the singularity induced by the pseudopotentials, a similar
analysis of the discretization error cancellation in plane-wave calculations should be possible.

2 Proof of Theorem 1.3
In this section, M is an integer large enough so that (1.7) holds. ΠM denotes the L2-orthogonal projector onto VM
defined in (1.4). We denote by Π⊥M = Id−ΠM .

2.1 Estimates on the Fourier coefficients
Lemma 2.1. Let ψ be an L2-normalized eigenfunction of (1.3).

1. Then for s < 5
2
and all ε > 0, we have a positive constant Cs,ε independent of M such that

‖Π⊥Mψ‖Hs ≤
Cs,ε

M5/2−s−ε . (2.1)

2. Let ψMi be an eigenfunction of the variational approximation (1.5). Let ψi be the corresponding eigenfunction
such that (1.7) holds. Then for s < 5

2
and all ε > 0, we have a positive constant Cs,ε independent of M such

that
‖ψMi − ψi‖Hs ≤

Cs,ε
M5/2−s−ε . (2.2)
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Proof. This lemma is proved by noticing that ψ ∈ H5/2−ε
per (Γ) and using (1.8).

Lemma 2.2. Let K ∈ R∗ and let η̂K be the Fourier coefficient for the wavenumber K of the remainder of the singular
expansion (1.12) for N = 1. Then, for any n ∈ N, we have

ψ̂K =
1

|Γ|1/2

∫
Γ

ψ(x)e−iK·x dx =
8π

|Γ|1/2|K|4
Nat∑
I=1

ZIψ(RI)e
−iK·RI + η̂K + o

(
1

Kn

)
. (2.3)

Proof. Let η be the remainder of the singular expansion of ψ for N = 1. Hence, η ∈ K∞,
7
2
−ε(Γ) for all ε > 0. Using

Theorem 1.2 and noticing that |x−RI |Y1m(x̂−RI) is a polynomial hence a smooth function, we have∫
Γ

ψ(x)e−iK·x dx =

∫
Γ

Nat∑
I=1

ω(|x−RI |)
1∑
j=0

cIj (x̂−RI)|x−RI |je−iK·x dx+

∫
Γ

η(x)e−iK·x dx

= −
∫

Γ

Nat∑
I=1

ω(|x−RI |)ZIψ(RI)|x−RI |e−iK·x dx+

∫
Γ

η(x)e−iK·x dx+ o

(
1

Kn

)
.

ω is a smooth function such that ω = 1 near 0 and 0 outside a neighbourhood of 0, hence for each
I = 1, . . . , Nat, we have ∫

Γ

ω(|x−RI |)|x−RI |e−iK·x dx = e−iK·RI
∫
B(0,R)

ω(|x|)|x|e−iK·x dx.

Written in spherical coordinates and using the radial symmetry to replace K · x by Kr cos(θ), this yields∫
Γ

ω(|x−RI |)|x−RI |e−iK·x dx = e−iK·RI
∫
B(0,R)

ω(r)e−i|K|r cos(θ)r3 sin(θ) dφ dθ dr.

Thus we have ∫
B(0,R)

ω(r)e−i|K|r cos(θ)r3 sin(θ) dφdθ dr = 2π

∫ R

0

ω(r)r3

∫ π

0

e−i|K|r cos(θ) dθ dr

=
2π

i|K|

∫ R

0

ω(r)
[
e−i|K|r cos(θ)

]π
0
r2 dr

=
4π

|K|

∫ R

0

ω(r) sin(|K|r)r2 dr.

Using successive integration by parts and noticing that ω′ ∈ C∞c (0, R), we have for any n ∈ N∫
B(0,R)

ω(r)e−i|K|r cos(θ)r3 sin(θ) dφ dθ dr = − 8π

|K|4 + o

(
1

|K|n

)
.

2.2 Error estimates
Lemma 2.3. Let ψMi be the i-th eigenvalue EMi of the variational approximation (1.5). Let ψi be the corresponding
eigenfunction associated to the eigenvalue Ei such that (1.7) holds.

The error on the discretized eigenvalue is given by

EMi − Ei = −
(∫

Γ

VΠ⊥Mψiψ
M
i

)(
1 +O

(
1

M5/2−ε

))
. (2.4)

Proof. Let ψMi be an L2-normalized eigenfunction of the variational approximation (1.5) satisfying

∀f ∈ VM ,
∫

Γ

(−1

2
∆ψMj + V ψMj )f = EMj

∫
Γ

ψMj f,

∫
Γ

ψMj ψ
M
k = δjk. (2.5)

Let ψi be the corresponding eigenfunction such that (1.7) is satisfied. For this eigenfunction, we have

∀f ∈ L2(Γ),

∫
Γ

(−1

2
∆ψj + V ψj)f = Ej

∫
Γ

ψjf. (2.6)
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Taking f = ΠMψi in (2.5) and f = ψMi in (2.6) and subtracting both equations, we obtain

EMi

∫
Γ

ψMi ΠMψi − Ei
∫

Γ

ψiψ
M
i =

∫
Γ

(−1

2
∆ψMi + V ψMi )ΠMψi −

∫
Γ

(−1

2
∆ψi + V ψi)ψ

M
i .

Since the plane-waves (eK)K∈R∗ are orthogonal in L2
per(Γ) and in H1

per(Γ), we have∫
Γ

ψMi ΠMψi =

∫
Γ

ψMi ψi, and
∫

Γ

−1

2
∆ψMi ΠMψi =

∫
Γ

−1

2
∆ψMi ψi.

Thus, we have

(EMi − Ei)
∫

Γ

ψMi ψi =

∫
Γ

VΠMψiψ
M
i −

∫
Γ

V ψiψ
M
i = −

∫
Γ

VΠ⊥Mψiψ
M
i .

Since for all ε > 0, ψi ∈ H5/2−ε
per (Γ) and is such that (1.7) holds, we have∫

Γ

ψMi ψi =

∫
Γ

|ψMi |2 −
∫

Γ

ψMi (ψi − ψMi ) = 1 +O
(

1

M5/2−ε

)
.

Since Equations (2.3) and (2.4) do not involve other energy levels, we drop the index i in the remainder of the
proof.

Lemma 2.4. Let M ∈ N and V the potential of the periodic Hamiltonian in (1.1). Then∫
Γ

VΠ⊥Mψψ
M = − 4π

|Γ|

Nat∑
I=1

∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

ZI
e−iK·RI eiK

′·RI

|K′ −K|2 ψ̂∗K ψ̂K′ +O
(

1

M9/2−ε

)
. (2.7)

Proof. We have ∫
Γ

VΠ⊥MψψM =

∫
Γ

(Vper +Wper)Π
⊥
MψψM

=

∫
Γ

VperΠ
⊥
MψΠMψ +

∫
Γ

WperΠ
⊥
MψΠMψ +

∫
Γ

VΠ⊥Mψ(ψM −ΠMψ).

We first bound the last two terms. Using Lemma 2.1, we have∣∣∣∣∫
Γ

VΠ⊥Mψ(ψM −ΠMψ)

∣∣∣∣ ≤ ∥∥∥VΠ⊥Mψ
∥∥∥
L2
‖ψM −ΠMψ‖L2

≤ Cε
M5/2−ε/2 ‖V ‖H−1/2−ε/2‖Π⊥Mψ‖H1/2+ε/2

≤ Cε
M9/2−ε ,

for some positive constant Cε independent of M . Since Wper is smooth, we have for any n ∈ N∗, a positive constant
Cn independent of M such that∣∣∣∣∫

Γ

WperΠ
⊥
MψΠMψ

∣∣∣∣ ≤ ‖ΠMWperΠ
⊥
M‖L2‖Π⊥Mψ‖L2‖ΠMψ‖L2

≤ Cn
Mn

.

Finally since Vper is defined by (1.2), we have∫
Γ

VperΠ
⊥
MψΠMψ = − 4π

|Γ|

Nat∑
I=1

ZI

∫
Γ

∑
K 6=0

e−iK·RI

|K|2 eiK·x
1

|Γ|1/2
∑

|K′|> 2π
L
M

ψ̂K′e
iK′·x 1

|Γ|1/2
∑

|K′′|≤ 2π
L
M

ψ̂K′′e
iK′′·x dx

= − 4π

|Γ|2
Nat∑
I=1

ZI

∫
Γ

∑
|K′|> 2π

L
M

∑
K 6=K′

e−iK·RI eiK
′·RI

|K −K′|2 ψ̂K′e
iK·x

∑
|K′′|≤ 2π

L
M

ψ̂K′′e
iK′′·x dx

= − 4π

|Γ|

Nat∑
I=1

∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

ZI
e−iK·RI eiK

′·RI

|K′ −K|2 ψ̂∗K ψ̂K′ ,

where we used that
∫

Γ
eiK·xeiK

′′·x dx = |Γ|δK+K′′ and ψ̂−K′′ = ψ̂∗K′′ by definition of the variational space VM .
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Lemma 2.5. Let M0 be a positive constant. Then for all ε > 0 and 1 ≤ I ≤ Nat, there exists a constant Cε,M0 such
that for all M ≥M0 we have∣∣∣∣∣∣

∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

e−iK·RI ψ̂∗Ke
iK′·RI ψ̂K′

|K −K′|2 − 8π

|Γ|1/2
Nat∑
J=1

ZJ
∑

|K|≤ 2π
L
M

ψ̂∗Ke
−iK·RI

∑
|K′|> 2π

L
M

eiK
′·(RI−RJ )

|K′|6

∣∣∣∣∣∣ ≤ Cε,M0

M4−ε .

(2.8)

Proof. By Lemma 2.2, we have

∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

e−iK·RI ψ̂∗Ke
iK′·RI ψ̂K′

|K −K′|2 =
8π

|Γ|1/2
Nat∑
J=1

ZJ
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

e−iK·RI ψ̂∗Ke
iK′·RI e−iK

′·RJ

|K′|4|K −K′|2

+
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

e−iK·RI ψ̂∗Ke
iK′·RIηK′

|K −K′|2 ,

where in an abuse of notation we have included the o
(

1
|K′|n

)
in ηK′ .

The second double sum can be rewritten∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

e−iK·RI ψ̂∗Ke
iK′·RIηK′

|K −K′|2 =

∫
Γ

VperΠ
⊥
MηΠMψ.

The operator ΠMVperΠ
⊥
M : H

−1/2−ε
per (Γ) → H

−5/2+ε
per (Γ) is continuous for all ε > 0. Let f ∈ H

5/2−ε
per (Γ) and

g ∈ H1/2+ε
per (Γ), then we have

〈f,ΠMVperΠ
⊥
Mg〉H5/2−ε,H−5/2+ε ≤ 〈ΠMf, VperΠ

⊥
Mg〉H5/2−ε,H−5/2+ε

≤ ‖f‖H5/2−ε‖VperΠ
⊥
Mg‖H−5/2+ε

≤ ‖f‖H5/2−ε‖Vper‖H−1/2−ε‖Π⊥Mg‖H−2

≤ ‖Vper‖H−1/2−ε

M3/2−ε ‖f‖H5/2−ε‖g‖H−1/2−ε .

Thus, using item 1 of Lemma 2.1 applied to η ∈ H7/2−ε/2
per (Γ) for all ε > 0, we have for a constant Cε independent of

M ∣∣∣∣∫
Γ

VperΠ
⊥
MηΠMψ

∣∣∣∣ ≤ Cε
M3/2−ε/2 ‖Π

⊥
Mη‖H−1/2−ε/2‖ΠMψ‖H5/2−ε/2

≤ Cε
M11/2−ε ‖η‖H7/2−ε/2‖ψ‖H5/2−ε/2

≤ Cε
M11/2−ε .

It remains to show that for all 1 ≤ I, J ≤ Nat, there exists a constant Cε such that for all M > 0, we have∣∣∣∣∣∣
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

ψ̂∗Ke
−iK·RI eiK

′·(RI−RJ )

|K′|4|K −K′|2 =
∑

|K|≤ 2π
L
M

ψ̂∗Ke
−iK·RI

∑
|K′|> 2π

L
M

eiK
′·(RI−RJ )

|K′|6

∣∣∣∣∣∣ ≤ Cε
M4−ε , (2.9)

to complete the proof.
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We have∣∣∣∣∣∣
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

ψ̂Ke
iK′·(RI−RJ )e−iK·RI

|K′|4|K −K′|2 −
∑

|K|≤ 2π
L
M

ψ̂Ke
−iK·RI

∑
|K′|> 2π

L
M

eiK
′·(RI−RJ )

|K′|6

∣∣∣∣∣∣
≤

∑
|K′|> 2π

L
M

∑
|K|≤ 2π

L
M

|ψ̂K |
|K′|6|K′ −K|2

∣∣2|K′||K| cos(K,K′)− |K|2
∣∣

≤ 3
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

|ψ̂K ||K|
|K′|5|K′ −K|2

≤ 3

 ∑
|K|≤ 2π

L
M

|K|5−ε|ψ̂K |2
∑

|K′|> 2π
L
M

1

|K′|5

1/2 ∑
|K|≤ 2π

L
M

∑
|K′|> 2π

L
M

1

|K|3−ε|K −K′|4|K′|5

1/2

≤ Cε
M

 ∑
|K|≤ 2π

L
M

∑
|K′|> 2π

L
M

1

|K|3−ε|K −K′|4|K′|5

1/2

. (2.10)

For clarity, we set L = 2π. We split the double sum into 3 parts:

∑
|K′|>M

∑
|K|≤M

=
∑
|K′|>M

∑
|K|≤M−Mα0

+
∑

|K′|>M+Mα0

∑
M−Mα0≤|K|≤M

+
∑

M<|K′|≤M+Mα0

∑
M−Mα0<|K|≤M

,

where 0 < α0 < 1 will be determined later.
For the first and the second double sum, using that |K −K′| ≥Mα0 , we have∑

|K′|>M

∑
|K|≤M−Mα0

1

|K|3−ε|K −K′|4|K′|5 ≤
Cε

M2+4α0−ε
, (2.11)

and ∑
|K′|>M+Mα0

∑
M−Mα0≤|K|≤M

1

|K|3−ε|K −K′|4|K′|5 ≤
Cε

M3+3α0−ε
, (2.12)

where Cε is a constant independent of M .
The last sum is split into several double sums∑
M<|K′|≤M+Mα0

∑
M−Mα0<|K|≤M

=
∑

M−Mα0<|K|≤M

∑
M<|K′|≤M+Mα0

|K−K′|≥Mα0

+
∑

M−Mα0<|K|≤M

∑
M<|K′|≤M+Mα0

Mα1≤|K−K′|<Mα0

+
∑

M−Mα1<|K|≤M

∑
M<|K′|≤M+Mα1

Mα2≤|K−K′|<Mα1

+ · · · +
∑

M−Mαn−1<|K|≤M

∑
M<|K′|≤M+M

αn−1

Mαn≤|K−K′|<Mαn−1

+
∑

M−Mαn<|K|≤M

∑
M<|K′|≤M+Mαn

|K−K′|≤Mαn

,

(2.13)

where 0 < αn < · · · < α0 < 1 will be determined later. The first term in (2.13) can be estimated by∑
M−Mα0<|K|≤M

∑
M<|K′|≤M+Mα0

|K−K′|≥Mα0

1

|K|3−ε|K −K′|4|K′|5 ≤
Cα0,M0

M4+2α0−ε
, (2.14)

where Cα0,M0 is a constant independent of M . The last term in (2.13) can be bounded by∑
M−Mαn<|K|≤M

∑
M<|K′|≤M+Mαn

|K−K′|≤Mαn

1

|K|3−ε|K −K′|4|K′|5 ≤
Cαn,M0

M6−4αn−ε
. (2.15)
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For k = 1, . . . , n, we have∑
M−Mαk−1<|K|≤M

∑
M<|K′|≤M+M

αk−1

Mαk≤|K−K′|<Mαk−1

1

|K|3−ε|K −K′|4|K′|5 ≤
Cαk,M0

M6+4αk−4αk−1−ε
. (2.16)

We will show that the sequence (αk)0≤k≤n obtained by setting the exponents in (2.14) to (2.16) to be equal, i.e.

4 + 2α0 − ε = 6 + 4α1 − 4α0 − ε = · · · = 6 + 4αn − 4αn−1 − ε = 6− 4αn − ε,

satisfies

• for all n, (αk)0≤k≤n is a decreasing sequence with α0 < 1 and αn > 0;

• lim
n→∞

α0 = 1, hence the exponent lim
n→]infty

4 + 2α0 − ε = 6− ε.

The condition on the exponents can be equivalently written
3α0 − 2α1 = 1

αk − 2αk+1 + αk+2 = 0 ∀ 0 ≤ k ≤ n− 2

αn−1 − 2αn = 0

The sequence (αk)0≤k≤n is a solution to a homogeneous linear difference equation, hence there exist a, b ∈ R such
that αk = a + bk. Using the other conditions, we have a = n+1

n+3
and b = − 1

n+3
, thus αk = n+1−k

n+3
. So the sequence

(αk) is decreasing with α0 < 1 and αn > 0 and lim
n→∞

α0 = 1.
Hence, for all ε > 0 and M0 > 0, by choosing n sufficiently large such that 2 + 4α0 ≥ 6 − ε, for all M ≥ M0, we

have ∑
|K|≤ 2π

L
M

∑
|K′|> 2π

L
M

1

|K|3−ε|K −K′|4|K′|5 ≤
Cε,M0

M6−2ε
.

Inserting this estimate in (2.10) finishes the proof of the lemma.

Lemma 2.6. Let 1 ≤ I 6= J ≤ Nat. Then, there exists a positive constant C independent of M such that∣∣∣∣∣∣
∑
|K′|>M

eiK
′·(RI−RJ )

|K′|6

∣∣∣∣∣∣ ≤ C

M4
. (2.17)

Proof. For simplicity, we restrict ourself to the case L = 2π. In that case, R∗ = Z3 and for K ∈ Z3, we denote
K = (k1, k2, k3) its components. The proof of this lemma relies on an Abel transformation and noticing that if

θ 6= 0 [2π], then
N∑
k=n

eikθ = einθ−ei(N+1)θ

1−eiθ is bounded independently of n and N .

Without loss of generality, we can assume that (RI−RJ)·(1, 0, 0)T 6= 0. In the following, we denote by θ = RI−RJ .
We have∑

|K|>M

eiK·θ

|K|6 =
∑

|K|>M2

eiK·θ

|K|6 +
∑

M<|K|≤M2

eiK·θ

|K|6

=
∑

|K|>M2

eiK·θ

|K|6 +
∑

(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋∑
k1=

⌊√
M2−k22−k

2
3

⌋
eiK·θ

|K|6 +
∑

(k2,k3)∈B
M2\BM

⌊√
M4−k22−k

2
3

⌋∑
k1=0

eiK·θ

|K|6 ,

where BR is the two-dimensional ball of radius R and origin 0. The sums are estimated separately.
First, using a sum-integral comparison, we have∣∣∣∣∣∣

∑
|K|>M2

eiK·θ

|K|6

∣∣∣∣∣∣ ≤
∑

|K|>M2

1

|K|6 ≤
∫
|x|>M2−1

dx

|x|6 ≤
C

M6
,

where C is a constant independent of M .
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For the second sum, using that eiK·θ =
M4∑
`=k1

eiK`·θ −
M4∑

`=k1+1

eiK`·θ, where K` = (`, k2, k3), we have

∑
(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋∑
k1=

⌊√
M2−k22−k

2
3

⌋
eiK·θ

|K|6 =
∑

(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋∑
k1=

⌊√
M2−k22−k

2
3

⌋
1

|K|6
M4∑
`=k1

eiK`·θ

−
∑

(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋∑
k1=

⌊√
M2−k22−k

2
3

⌋
1

|K|6
M4∑

`=k1+1

eiK`·θ

=
∑

(k2,k3)∈BM

1∣∣∣(⌊√M2 − k2
2 − k2

3

⌋
, k2, k3

)∣∣∣6
M4∑

`=
⌊√

M2−k22−k
2
3

⌋ eiK`·θ

−
∑

(k2,k3)∈BM

1∣∣∣(⌊√M4 − k2
2 − k2

3

⌋
+ 1, k2, k3

)∣∣∣6
M4∑

`=
⌊√

M4−k22−k
2
3

⌋
+1

eiK`·θ

(2.18)

+
∑

(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋∑
k1=

⌊√
M2−k22−k

2
3

⌋
+1

(
1

|K|6 −
1

|Kk1−1|6

) M4∑
`=k1

eiK`·θ.

The first term in (2.18) can be estimated as follows. 1∣∣∣(⌊√M2−k22−k
2
3

⌋
,k2,k3

)∣∣∣6 is equivalent to 1
M6 and

M4∑
`=
⌊√

M2−k22−k
2
3

⌋ eiK`·θ
can be bounded independently of M . Hence, there is a constant C independent of M such that∣∣∣∣∣∣∣

∑
(k2,k3)∈BM

1∣∣∣(⌊√M2 − k2
2 − k2

3

⌋
, k2, k3

)∣∣∣6
M4∑

`=
⌊√

M2−k22−k
2
3

⌋ eiK`·θ
∣∣∣∣∣∣∣ ≤

C

M4
.

The second term in (2.18) can be treated the same way. Finally, noticing that 1
|K|6 −

1
|Kk1−1|6

= O
(

1
|K|7

)
, we deduce

that for a constant C independent of M , we have∣∣∣∣∣∣∣
∑

(k2,k3)∈BM

⌊√
M4−k22−k

2
3

⌋
+1∑

k1=
⌊√

M2−k22−k
2
3

⌋
+1

(
1

|K|6 −
1

|Kk1−1|6

)M4−1∑
`=k1

eiK`·θ

∣∣∣∣∣∣∣ ≤ C
∑
|K|≥M

1

|K|7 ≤
C

M4
.

This finishes the proof of the lemma.

We have now all the necessary tools to prove Theorem 1.3.

Proof of Theorem 1.3. Let EM be an eigenvalue of the variational approximation (1.5) and E the corresponding exact
eigenvalue. Let ψ be an eigenfunction associated to E. By Lemma 2.3 and Lemma 2.4, we know that

EM − E = − 4π

|Γ|

Nat∑
I=1

ZIψ(RI)
∑

|K′|> 2π
L
M

∑
|K|≤ 2π

L
M

ZI
e−iK·RI eiK

′·RI

|K′ −K|2 ψ̂∗K ψ̂
′
K

(
1 +O

(
1

M5/2−ε

))
+O

(
1

M9/2−ε

)
.

By Lemma 2.5, for all ε > 0 and M0 > 0, there exists a constant Cε,M0 such that for all M ≥M0 we have∣∣∣∣∣EM − E − 32π2

|Γ|3/2
Nat∑
I=1

ZIψ(RI)

Nat∑
J=1

ZJ
∑

|K|≤ 2π
L
M

ψ̂∗Ke
−iK·RI

∑
|K′|> 2π

L
M

eiK
′·(RI−RJ )

|K′|6

(
1 +O

(
1

M5/2−ε

)) ∣∣∣∣∣
≤ Cε,M0

M4−ε
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Using Lemma 2.6, we get for all M ≥M0∣∣∣∣∣EM − E − 32π2

|Γ|3/2
Nat∑
I=1

Z2
Iψ(RI)

∑
|K|≤ 2π

L
M

ψ̂∗Ke
−iK·RI

∑
|K′|> 2π

L
M

1

|K′|6

(
1 +O

(
1

M5/2−ε

)) ∣∣∣∣∣ ≤ Cε,M0

M4−ε .

We have
1

|Γ|1/2
Nat∑
I=1

Z2
I

∑
|K|≤ π

L
M

ψ̂∗Ke
−iK·RI =

Nat∑
I=1

Z2
I (ΠMψ)(RI)

∗ =

Nat∑
I=1

Z2
Iψ(RI) +O

(
1

M1−ε

)
,

since H3/2+ε
per (Γ) ↪→ C0

per(Γ) for all ε > 0. Moreover, by a sum-integral comparison, we deduce that

∑
|K′|> 2π

L
M

1

|K′|6 =
L6

(2π)6

∑
|(k1,k2,k3)|>M

1

|(k1, k2, k3)|6 =
L6

16π5

1

3M3
+O

(
1

M4

)
.

Hence, for all M ≥M0 ∣∣∣∣∣EM − E − 2L3

3π3M3

Nat∑
I=1

Z2
Iψ(RI)

2

∣∣∣∣∣ ≤ Cε,M0

M4−ε .

3 Numerical tests
In this section, we present some numerical results for the Hamiltonian H

H = −1

2
∆− Z∣∣x− R

2

∣∣ − Z∣∣x+ R
2

∣∣ , (3.1)

with periodic boundary conditions on the unit cell [−L
2
, L

2
]3 for L = 2.

The eigenvalue problem Hψ = Eψ for H defined above is solved using a slightly different plane-wave discretization
space

VM =

 ∑
|K|∞≤ 2π

L
M

cKeK

∣∣∣ c−K = c∗K

 ,

where for K = (k1, k2, k3), |K|∞ = max(|k1|, |k2|, |k3|). Theorem 1.3 still holds, but with another error cancellation
prefactor since ∫

R3\{|x|∞≤1}

1

(x2
1 + x2

2 + x2
3)3

dx1 dx2 dx3 =
1

3
+

5
√

2

2
arctan( 1√

2
) =: A.

Hence, the error estimate (1.14) becomes

EM − E =
AL3Z2

2π4

ψ(−R
2

)2 + ψ(R
2

)2

M3
+O

(
1

M4−ε

)
. (3.2)

In the following, the prefactor is denoted by C(R,Z,L) = AL3Z2

2π4

(
ψ(R/2)2 + ψ(−R/2)2

)
.

In Figure 1, the discretization error EM − E is compared to the first order correction (3.2). To compute the
energy reference and the value ψ(R

2
), the eigenvalue problem (3.1) is solved using a sufficiently large plane-wave cutoff

(M = 100). We notice a very good agreement between the error on the eigenvalue and the first order correction.
In Figure 2, the discretization error cancellation for our simple model (3.1) is highlighted. In this case, the

discretization error on the energy difference is simply

DM = |(ER1,M − ER2,M )− (ER1 − ER2)|

and the sum of the discretization errors on the lowest eigenvalue for both configurations is given by

SM = |ER1,M − ER1 |+ |ER2,M − ER2 | .
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(a) Z = 2 (b) Z = 3

Figure 1: Error on the lowest eigenvalue of the plane-wave discretization

(a) Z = 2 (b) Z = 3

Figure 2: Error on the computed energy difference DM compared to the total discretization error SM .

We can see that the discretization error DM converges as the same rate as the sum of the discretization errors SM ,
however a prefactor of order |R2 −R1| is gained.

In Figure 3, the error on the lowest eigenvalue with the first order correction (1.15) is given. In our example, the
convergence rate of the error is in accordance with the convergence rate given by Theorem 1.3.

(a) Z = 2, R = 0.7e1 (b) Z = 3, R = 0.7e1

Figure 3: Error on the lowest eigenvalue of the plane-wave discretization with and without the first order
correction.
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4 Conclusion
In the present work, discretization error cancellation has been analyzed for plane-wave discretization of a periodic
Hamiltonian with Coulomb potentials. Using weighted Sobolev spaces and singular expansions of the eigenfunctions,
an explicit formula of the leading term of the plane-wave convergence of the eigenvalue is proved. This yields a precise
characterization of the error cancellation in agreement with our numerical tests.

In [CD17], numerical tests of plane-wave methods on periodic Hamiltonian with pseudopotentials have suggested
that error cancellation also occurs. The same analysis may be reproduced in that case, if the singularities on the
eigenfunctions due to the pseudopotential can be characterized. It would be interesting to investigate the discretization
error cancellation in other settings, for different models or different families of basis sets (finite elements, . . . ).
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