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Algorithm for Hamilton-Jacobi equations in density space via a

generalized Hopf formula

Yat Tin Chow∗ Wuchen Li∗ Stanley Osher∗ Wotao Yin∗

Abstract

We design fast numerical methods for Hamilton-Jacobi equations in density space (HJD),
which arises in optimal transport and mean field games. We overcome the curse-of-infinite-
dimensionality nature of HJD by proposing a generalized Hopf formula1 in density space.
The formula transfers optimal control problems in density space, which are constrained
minimizations supported on both spatial and time variables, to optimization problems over
only spatial variables. This transformation allows us to compute HJD efficiently via multi-
level approaches and coordinate descent methods.

Keywords: Hamilton-Jacobi equation in density space; Generalized Hopf formula; Mean
field games; Optimal transport.

1 Introduction

In recent years, optimal control problems in density space have started to play vital roles in
physics [25], fluid dynamics [5] and probability [8]. Two typical examples are mean field games
(MFGs) [20, 22] and optimal transportation [27]. For these optimal control problems, Hamilton-
Jacobi equation in density space (HJD) determines the global information of the system [17, 18],
which describes the time evolution of the optimal value in density space. More precisely, HJD
refers to the functional differential equation as follows: Let x ∈ X, and ρ(·) ∈ P(X) represent
the probability density space supported on X. Let U : [0,∞)×P(X) → R be the value function.
Consider

{

∂sU(s, ρ) +H(ρ, δρU) = 0

U(0, ρ) = G(ρ),

where δρ is the L2 first variation w.r.t. ρ and H represents the total Hamiltonian function in
P(X):

H(ρ, δρ(x)U) :=

∫

X

H(x,∇xδρ(x)U)ρ(x)dx + F (ρ),

with the given Hamiltonian function H on X. Here, F , G : P(X) → R are given interaction
potential and initial cost functional in density space, respectively.

∗Department of Mathematics, UCLA, Los Angeles, CA 90095-1555 (ytchow@math.ucla.edu,
wcli@math.ucla.edu, sjo@math.ucla.edu, wotaoyin@math.ucla.edu). Research supported by AFOSR MURI
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ECCS-1462398 and DOE grant de-sc00183838.

1We drop the word “generalized” in what follows.
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In applications, HJD has been shown very effective at modeling population differential games,
also known as MFGs, which study strategic dynamical interactions in large populations by
extending finite players’ differential games. This setting provides powerful tools for modeling
macro-economics, stock markets, and wealth distribution [19]. In this setting, a Nash equilibrium
(NE) describes a status in which no individual player in the population is willing to change
his/her strategy unilaterally. A widely-studied special class of MFG is the potential game [24],
where all players face the same cost function or potential, and every player minimizes this
potential. This amounts to solving an optimal control problem in density space. In this case,
a NE refers to the characteristics of HJD, which form a PDE system consisting of continuity
equation and Hamilton-Jacobi equation in X. These two equations represent the dynamical
evolutions of the population density and the cost value, respectively.

Despite the importance of HJD, solving it numerically is not a simple task. It is known that
computing Hamilton-Jacobi equations using a grid in a dimension greater than or equal to three
is difficult. The cost increases exponentially with the dimension, which is known as the curse
of dimensionality [15]. HJD is even harder to compute since it involves an infinite-dimensional
functional PDE. In this paper, expanding the ideas in [12, 13, 14, 15], we overcome the curse
of infinite dimensionality in HJD by exploiting a Hopf formula in density space. This approach
considers a particular primal-dual formulation associated with the optimal control problem in
density space. Specifically, the Hopf formula is given as

U(t, ρ) := sup
Φt

{

∫

X

ρtΦtdx−

∫ t

0

(

F (ρs)−

∫

X

ρsδρsF (ρs)dx

)

ds −G∗(Φ0) :

∂sρs = δΦsH(ρs,Φs), ∂sΦs = −δρsH(ρs,Φs)
ρ(x, t) = ρt(x), Φ(x, t) = Φt(x)

}

,

where Φ0(x) = Φ(0, x) and

G∗(Φ0) := sup
ρ0∈P(X)

∫

X

ρ0Φ0dx−G(ρ0).

We further discretize the above variational problem following the same discretization as in
optimal transport on graphs [9, 10, 11, 16, 23]. We then apply a multi-level block stochastic
gradient descent method to optimize the discretized problem.

In the literature of numerical methods for potential MFGs are seminal works of Achdou,
Camilli, and Dolcetta [1, 2, 3]. Their approaches utilize the primal-dual structure of the optimal
control formulation, simplifying it by a Legendre transform and applying Newton’s method
to the resulting saddle point system. Different from their approaches, we focus on solving
the dual problem, in which the optimal control problem is an optimization problem over the
terminal adjoint state Φ(x) := Φ(x, t), satisfying the MFG system. Since this is a functional of
a single variable, many optimization techniques for high-dimensional problems can be applied,
for example, coordinate gradient descent methods. Also, numerical methods for special cases
of potential games were introduced in [7]. They transform the optimal control problem into
a regularized linear program. Unlike these methods, our methods can be applied to general
Lagrangians for optimal control problems in density space. Yet another well-known line of
research focuses on stationary MFG systems [6, 4], for which proximal splitting methods have
been used. They are different from our focus on time-dependent MFGs.

2



The Hopf maximization principle gives us an optimal balance between the indirect method
(Pontryagin’s maximum principle), e.g. the well-known MFG system (49)-(51) below in [22],
and the direct method (optimization over the spaces of curves), e.g. the primal-dual formulation
in [1, 2, 3] and Hopf formula (57)-(59) in [22]. This balance leads to computational efficiency.
There are several existing formulations for solving HJD numerically: (i) the original formulation
in (2.2a)-(2.2b) or its resulting (primal) Lagrangian formulation, (ii) the intermediate primal-
dual formulation in [1, 2, 3], (iii) the dual formulation (Hopf formula) (2.3) in (57)-(59) in
[22], (iv) the resulting KKT optimality condition (2.1) (the MFG system (49)-(51) in [22]),
and (v) the proposed Hopf formulation (3.4) in this paper. Under suitable conditions, the five
formulations are equivalent, but their effects on computation are different. Formulations (i), (ii),
and (iii) involve a large number of variables, which lead to high complexities on problems with
high dimensions and long time intervals; (iv) is a forward-backward system that needs different
numerical methods. Our approach (v) is a balance between the indirect and direct methods and
reduces the number of variables to a single terminal adjoint state Φt(x) := Φ(x, t). The memory
requirement is thus greatly reduced in our approach. On the other hand, we keep a variable and
a functional such that our algorithm produces a descending sequence that converges to a local
minimum.

We utilize the coordinate descent method, which avoids the difficulties coming from a non-
smooth functional. We remark that the proposed approach can handle Hamiltonians of ho-
mogeneous degree 1, which can be used as a mean-field level set approach for the reachability
problem. Moreover, we choose the Hopf formulation to handle the case where the Hamiltonian
H is non-convex. We propose to check the computed limit (i.e., whether it is a global minimum)
via the condition Φ(x, 0) ∈ ∂G(ρ(x, 0)).

The rest of this paper is organized as follows. In Section 2, we briefly review potential MFGs
and related HJD and formally derive the Hopf formula in density space. We also propose a
rigorous approach on discrete grid approximations of optimal control problems and show the
validity of the Hopf formula under proper assumptions. In Section 4, we design a fast multi-level
random coordinate descent method for solving the discrete Hopf formula that we obtained in
Section 3. Several numerical examples are presented in Section 5 to illustrate the effectiveness
of the proposed algorithm.

2 Hopf formula in mean field games

In this section, we briefly review potential MFGs. They are related to optimal control
problems in density space, which induce Hamilton-Jacobi equations in density space. We propose
the Hopf formula in density space for subsequent numerical computation.

2.1 Potential mean field games

Consider a differential game played by one population, which contains countably infinitely
many agents. Each agent selects a pure strategy from a strategy set X, which is a d-dimensional
torus. The aggregated state of the population can be described by the population state ρ(x) ∈
P(X) =

{

ρ(·) :
∫

X
ρ(x)dx = 1, ρ(x) ≥ 0

}

, where ρ(x) represents the population density of
players choosing strategy x ∈ X. The game assumes that each player’s cost is independent
of his/her identity (autonomous game). In a differential game, each agent plays the game
dynamically facing the same Lagrangian L : X × TX → R, where TX represents the tangent
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space of X. The term “mean field” makes sense when each player’s potential energy f and
terminal cost g rely on mean-field quantities of all other players’ choices, mathematically written
as f, g : X × P(X) → R.

The Nash equilibrium (NE) describes a status in which no player in population is willing to
change his/her strategy unilaterally. In a MFG, it is represented as a primal-dual dynamical
system:











∂sρ(x, s) +∇x · (ρ(x, s)DpH(x,∇xΦ(x, s))) = 0

∂sΦ(x, s) +H(x,∇xΦ(x, s)) + f(x, ρ(·, s)) = 0

ρ(x, t) = ρ(x), Φ(x, 0) = g(x, ρ(·, 0)),

(2.1)

where the Hamiltonian H is defined as

H(x, p) := sup
v∈TX

〈v, p〉 − L(x, v).

Here H relates to the Lagrangian L through a Legendre transform in v. And ρ(s, ·) represents
the population state at time s satisfying the continuity equation while Φ(s, ·) governs the velocity
of population according to the Hamilton-Jacobi equation.

A game is called a potential game when there exists a differentiable potential energy F : P(X) →
R and terminal cost G : P(X) → R such that

δρ(x)F (ρ) = f(x, ρ), δρ(x)G(ρ) = g(x, ρ),

where δρ(x) is the L
2 first variation operator. The above definition represents that the incentives

of all the players can be globally modeled by a functional called the potential [8]. In this case,
the game is modeled as the following optimal control problem in density space:

inf
ρ,v

{∫ t

0

[

∫

X

L(x, v(x, s))ρ(x, s) dx − F (ρ(·, s))
]

ds+G(ρ(·, 0))

}

, (2.2a)

where the infimum is taken among all vector fields v(x, s) and densities ρ(x, s) subject to the
continuity equation

{

∂
∂s
ρ(x, s) +∇ · (ρ(x, s)v(x, s)) = 0, 0 ≤ s ≤ t ,

ρ(x, t) = ρ(x) .
(2.2b)

It can be shown that, under suitable conditions of L, F , G, NEs are minimizers of po-
tential games. In other words, every NE (2.1) satisfies the Euler-Lagrange equation (Karush-
Kuhn-Tucker conditions) of the optimal control problem (2.2). Let H(ρ,Φ) denote the total
Hamiltonian defined over the primal-dual pair (ρ,Φ):

H(ρ,Φ) :=

∫

X

ρ(x)H(x,∇xΦ(x)) dx+ F (ρ(·)),

where δρ, δΦ are L2 first variations w.r.t. ρ and Φ. Then, NE (2.1) is given as

{

∂sρs = δΦsH(ρs,Φs), ∂sΦs = −δρsH(ρs,Φs)

ρt = ρ(x), Φ0 = δρ0G(ρ0).
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The time evolution of the minimal value in optimal control satisfies the Hamilton-Jacobi
equation. In the case of density space, the optimal value function in (2.2a) is denoted by
U : [0,+∞) × P(X) → R. As shown in [17, 18], U satisfies the Hamilton-Jacobi equation in
density space

{

∂sU(s, ρ(·)) +H(ρ(·), δρU) = 0

U(0, ρ) = G(ρ) .

Here, HJD is a functional partial differential equation. If U is solved, then its characteristics
in density space, i.e. (ρ,Φ), are known. In particular, Φ(t, x) = δρ(x)U(t, ρ). Thus, NE (2.1) is
found. Next, we shall design a fast numerical algorithm for HJD.

2.2 Hopf formula in density space

Our approach is based on a primal-dual reformulation of the optimal control problem (2.2),
which we call the Hopf formula.

Proposition 2.1 (Hopf formula in density space). Assume the duality gap between the primal
problem (2.2) and its dual problem is zero, then

U(t, ρ) := sup
Φ

{

∫

X

ρ(x)Φ(x)dx−

∫ t

0

(

F (ρ(·, s)) −

∫

X

ρ(s, x)δρsF (ρ(·, s))dx

)

ds−G∗(Φ(·, 0)) :

∂sρ(x, s) +∇ · (ρ(x, s)DpH(x,∇Φ(x, s))) = 0
∂sΦ(x, s) +H(x,∇Φ(x, s)) + δρs(x)F (ρ(·, s)) = 0

ρ(x, t) = ρ(x), Φ(x, t) = Φ(x)

}

(2.3)

where

G∗(Φ(·, 0)) := sup
ρ(·,0)∈P(X)

{

G(ρ(·, 0)) −

∫

X

ρ(x, 0)Φ(x, 0)dx
}

.

Formal derivation. We first define the flux function m(s, x) := ρ(s, x)v(s, x) in (2.2). Thus
problem (2.2) takes the form

U(t, ρ) := inf
ρ,v

{
∫ t

0

[

∫

X

L(x,
m(x, s)

ρ(x, s)
)ρ(x, s) dx − F (ρ(·, s))

]

ds+G(ρ(·, 0))

}

,

where the infimum is taken among all flux functions m(x, s) and densities ρ(x, s) subject to

{

∂
∂s
ρ(x, s) +∇ ·m(x, s) = 0, 0 ≤ s ≤ t ,

ρ(x, t) = ρ(x).

Next, we compute the dual of the optimal control problem (2.2). Assume that, under suitable
assumptions of F , G, L, the duality gap of optimal control problem (2.2) is zero. Hence we can
switch “inf” and “sup” signs in our derivations. Let the Lagrange multiplier of continuity
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equation (2.2b) be denoted by Φ(x, s). The optimal control problem (2.2) becomes

U(t, ρ) = inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

sup
Φ(·,t)

{

∫ t

0

∫

X

L

(

x,
m(x, s)

ρ(x, s)

)

ρ(x, s) dxds −

∫ t

0
F (ρ(·, s))ds +G(ρ(·, 0))

+

∫ t

0

∫

X

(∂sρ(x, s) +∇ ·m(x, s)) Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

{

∫ t

0

∫

X

L

(

x,
m(x, s)

ρ(x, s)

)

ρ(x, s) dxds −

∫ t

0
F (ρ(·, s))ds +G(ρ(·, 0))

+

∫ t

0

∫

X

(∂sρ(x, s) +∇ ·m(x, s)) Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

{

∫ t

0

∫

X

[

L

(

x,
m(x, s)

ρ(x, s)

)

−
m(x, s)

ρ(x, s)
· ∇Φ(x, s)

]

ρ(x, s) dxds

−

∫ t

0
F (ρ(·, s))ds +G(ρ(·, 0)) +

∫ t

0

∫

X

∂sρ(x, s)Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
ρ(·,s),ρ(·,t)=ρ

{

−

∫ t

0

∫

X

ρ(x, s)H(x,∇Φ(x, s)) dxds −

∫ t

0
F (ρ(·, s))ds

+G(ρ(·, 0)) +

∫ t

0

∫

X

∂sρ(x, s)Φ(x, s)dxds

}

,

where the third equality is given by integration by parts, and the fourth equality follows by the
Legendre transform in the third equality, i.e., with v(x, s) := m(x,s)

ρ(x,s) ,

H(x,∇Φ) = sup
v∈TX

∇Φ · v − L(x, v).

By integration by parts w.r.t. s for the functional
∫ t

0

∫

X
∂sρ(x, s)Φ(x, s)dxds, we obtain

U(t, ρ) = sup
Φ(·,s)

inf
ρ(·,s),ρ(·,t)=ρ

{

−

∫ t

0

∫

X

ρ(x, s)H(x,∇Φ(x, s)) dxds −

∫ t

0
F (ρ(·, s))ds

+G(ρ(·, 0)) −

∫

X

ρ(x, 0)Φ(x, 0)dx

+

∫

X

ρ(x, t)Φ(x, t)dx −

∫ t

0

∫

X

ρ(x, s)∂sΦ(x, s)dxds

}

.

Then,

U(t, ρ) = sup
Φ

sup
Φ(·,s),Φ(·,t)=Φ

inf
ρ(·,s),ρ(·,t)=ρ

{

−

∫ t

0

∫

X

ρ(x, s)H(x,∇Φ(x, s)) dxds −

∫ t

0
F (ρ(·, s))ds

−G∗(Φ(·, 0)) +

∫

X

ρ(x, t)Φ(x, t)dx −

∫ t

0

∫

X

ρ(x, s)∂sΦ(x, s)dxds

}

.
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We optimize the above formula w.r.t. ρ(x, s) and φ(x, s). Suppose for a fixed Φ = Φ(t, ·),
the saddle point problem

sup
Φ(·,s),Φ(·,t)=Φ

inf
ρ(·,s),ρ(·,t)=ρ

{

−

∫ t

0

∫

X

ρ(x, s)H(x,∇Φ(x, s)) dxds −

∫ t

0

∫

X

ρ(x, s)∂sΦ(x, s)dxds

−

∫ t

0
F (ρ(·, s))ds −G∗(Φ(·, 0)) +

∫

X

ρ(x, t)Φ(x, t)dx

}

has a unique solution. It is simple to check that this saddle point satisfies (2.1). Substituting
(2.1) into (2.4), we derive the Hopf formula (2.3).

Equation (2.3) can be viewed as the Hopf formula of the optimal control problem (2.2). This
goes in line with [12, 13, 14]. That means that (2.3) contains an optimization problem and uses
a minimal number of unknown variables. We develop fast algorithms based on this formula.

Remark 2.2. When (−F ), G and L are convex and smooth, the discrete formulation of the
primal dual formulation of (2.2) has been used for numerical computation in [1, 2, 3] along
with Newton’s method. We, on the other hand, prefer sticking to the formulation (2.3) since we
hope to solve for non-convex (−F ), G and L with nonsmooth H(x, p), while keeping a minimal
number of variables. In addition, the Hopf formula (2.3) can be further simplified into

U(t, ρ) = sup
Φ(·,s)

{

∫

X

ρ(x)Φ(x)dx−

∫ t

0
F ∗(Φ(·, s))ds −G∗(Φ(·, 0))

}

, (2.4)

which coincides with (57)-(59) in [22]. However, the formulation (2.4), similar to the Lagrangian
formulation (2.2), has more independent variables after discretization of Φ(x, s). Hence, it is
not ideal for numerical computation.

Remark 2.3. The Hopf formula (2.3) is also related to the dual formulation of an optimal
transport problem. When F (ρ) = 0, the primal equation in (2.3) can be dropped. Let ρ = ρ1 in

U(t, ρ1) = sup
Φ

{∫

X

ρ(x)Φ(x)dx−G∗(Φ(·, 0)) : ∂sΦ(x, s) +H(x,∇Φ(x, s)) = 0, Φ(x, t) = Φ(x)

}

.

This is precisely the Kantorovich dual of the optimal transport problem from ρ0 to ρ1 when we
choose G(ρ) = ιρ0(ρ) and let t = 1. Here, for a set A and a subset B ⊂ A, the indicator function
ιB : A → {0,∞} is defined as

ιB(x) =

{

0 if x ∈ B

∞ if x /∈ B
.

If B = {x0} is a singleton, we write ιx0(x) := ι{x0}(x), abusing the notation.

Remark 2.4. As in remark 2.3, our Hopf formula (2.3) reduces to Monge-Kantorovich duality
of the optimal transport with a specific choices of F , G and t. Moreover, the simplified formula
can be used to compute the proximal map of p-Wasserstein distance in the L2 sense. Let us
recall the connection between optimal transport and (2.2). The optimal transport problem can
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be formulated in an optimal control problem in density space, known as the Benamou-Brenier
formula [27]. Consider L(x, q) = 1

2 |q|
p
2. Then,

U(1, ρ1)
(Definition)

=
inf

v(·,s),ρ(·,s)

{

∫ 1

0

∫

X

L(v(x, s))ρ(x, s) dxds +G(ρ(x, 0)) :

∂sρ+∇ · (ρv) = 0, ρ(1) = ρ1

}

(Benamou-Brenier)
=

inf
ρ0

{

(

Wp(ρ0, ρ1)
)p

+G(ρ0)

}

(Kantorovich duality)
=

inf
ρ0

sup
Φ1

{

∫

Y

Φ(y, 1)ρ1(y)dy −

∫

X

Φ(x, 0)ρ0(x)dx+G(ρ0) :

∂sΦ(x, s) +H(∇Φ(x, s)) ≤ 0, Φ(x, 1) = Φ1(x)

}

(Convexity of G,H)
=

sup
Φ1

{

∫

Y

Φ(y, 1)ρ1(y)dy −G∗(Φ(·, 0)) :

∂sΦ(x, s) +H(∇Φ(x, s)) = 0, Φ(x, 1) = Φ1(x)

}

,

where Wp(ρ0, ρ1) is the Lp-Wasserstein metric which can be defined via the Benamou-Brenier
formulation as follows:

(

Wp(ρ0, ρ1)
)p

:= inf
v(·,s),ρ(·,s)

{

∫ 1

0

∫

X

L(v(x, s))ρ(x, s) dxds : ∂sρ+∇·(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}

.

If one aims to consider a general optimization problem over G regularized by W p
p as in

min
ρ0

{βW p
p (ρ0, ρ) +G(ρ0)},

we can either apply the above formulation directly or apply a splitting method, in which we need
the proximal maps of W p

p (in L2 sense) as

ProxβW p
p (·,ρ)(ρ1) = argmin

ρ0

{

βW p
p (ρ0, ρ) +

1

2
‖ρ0 − ρ1‖

2

}

= ρ1 − β
˜̂
Φ,

where

˜̂
Φ := argmax

Φ̃

{

∫

X

ρ(x)Φ̃(x)dx−

∫

X

ρ1(x)Φ(Φ̃, 0, ·)dx +
β

2
‖Φ(Φ̃, 0, ·)‖2 :

∂sΦ+H(x,∇xΦ) = 0 ,Φ(Φ̃, t, ·) = Φ̃

}

.
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3 Discretization and rigorous treatment

In this section, we aim to give a rigorous treatment to the discrete spatial states in potential
MFGs. Our spatial discretization follows the same work on optimal transport on graphs as in
[16, 23] and our proof follows the ideas in [12].

For illustrative purposes, we focus on the following special form of the Lagrangian:

L(x, v) :=

n
∑

i=1

L(vi),

where L : R1 → R
1 is a proper function, define the Hamiltonian H : R

1 → R
1 as

H(p) := sup
v∈R1

{pv − L(v)} .

Consider G = (V,E) as a uniform toroidal graph with equal spacing ∆x = 1
M

in each
dimension. Here, V is a vertex set with |V | = (M + 1)d nodes, and each node, i = (ik)

d
k=1 ∈ V ,

1 ≤ k ≤ d, 0 ≤ ik ≤ n, represents a cube with length ∆x:

Ci = {(x1, · · · , xd) ∈ [0, 1]d : |x1 − i1∆x| ≤ ∆x/2, · · · , |xd − id∆x| ≤ ∆x/2}.

Here E is an edge set, where i+ ev
2 := edge(i, i+ ev), and ev is a unit vector at vth column.

Define

ρi :=

∫

Ci

ρ(x)dx ∈ [0, 1]

on each i ∈ V . Let the discrete flux function be m := (mi+ ev
2
)i+ ev

2
∈E, where mi+ ev

2
represents

the discrete flux on the edge i+ ev
2 , i.e.,

mi+ ev
2
≈

∫

C
i+ ev

2
(x)

mv(x) dx ,

where m(x) = (mv(x))
d
v=1 is the flux function in continuous space.

Thus the discrete divergence operator is:

div(m)|i =
1

∆x

d
∑

v=1

(mi+ 1
2
ev

−mi− 1
2
ev
).

The discretized cost functional forms

L(m,ρ) :=
∑

i+ ev
2
∈E

L̃
(

mi+ 1
2
ev
, θi+ 1

2
ev

)

where

L̃
(

mi+ 1
2
ev
, θi+ 1

2
ev

)

:=



















L

(

m
i+1

2 ev

θ
i+1

2 ev

)

θi+ 1
2
ev

if θi+ 1
2
ev

> 0 ;

0 if θi+ 1
2
ev

= 0 and mi+ ev
2
= 0 ;

+∞ Otherwise .
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and θi+ 1
2
ev

:= 1
2(ρi + ρi+ev) is the discrete probability on the edge i+ ev

2 ∈ E.

We further introduce a time discretization. The time interval [0, 1] is divided into N intervals
with endpoints tn = n∆t, ∆t = 1

N
, l = 0, 1, · · · , N . Combining the above spatial discretization

and a forward finite difference scheme on the time variable, we arrive at the following discrete
optimal control problem:

Ũ(t, ρ) := inf
m,ρ

{

N
∑

n=1

∆tL(mn, ρn)−
N
∑

n=1

∆t F (ρn) +G(ρ0)
}

(3.1a)

where the minimizer is taken among {ρ}ni , {m}n
i+ ev

2
, such that for n = 0, ..., N − 1

{

ρn+1
i − ρni +∆t · div(mn+1)|i = 0 ,

ρNi = ρi .
(3.1b)

We next derive the discrete Hopf formula for minimization (3.1). Denote ρNi := ρi and

(m, ρ,Φ) :=
(

{mn
i+ 1

2
ev
}N−1
n=0 , {ρ

n
i }

N−1
n=0 , {Φ

n
i }

N
n=1

)

∈ R
|E|N × [0, 1]|V |N × R

|V |N .

Hence by an application of Lagrange multiplier at (3.1), then we have

Ũ(t, {ρi}) = inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }
N
n=1∈R

|V |N

F(m, ρ,Φ)

where

F(m, ρ,Φ) :=

N−1
∑

n=0

∑

i+ ev
2
∈E

∆tL

(

mn+1
i+ 1

2
ev
, θn+1

i+ 1
2
ev

)

−

N−1
∑

n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i ) (3.2)

+

N−1
∑

n=0

∑

i∈V

Φn+1
i

(

ρn+1
i − ρni +∆t · div(mn+1)|i

)

. (3.3)

For a rigorous treatment, we assume:

(A1) The Lagrangian L : R → R is a proper, lower semi-continuous, convex functional.

(A2) The Lagrangian L : R → R has the following properties:

• for any fixed x 6= 0, limy→0+ L
(

x
y

)

y = ∞;

• for any fixed y, the function (x, y) → L
(

x
y

)

y is equi-coercive (under parameter y)

w.r.t x in the following sense: for all N > 0, there exists K (independent of y)

∣

∣

∣

∣

L

(

x

y

)

y

∣

∣

∣

∣

≥ K

whenever |x| ≥ N .

(A3) The functional F : [0, 1]|V | → R is a proper, upper semi-continuous, concave functional.
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(A4) The functional G : [0, 1]|V | → R is proper, lower semi-continuous, and convex in {ρi}
|V |
i=1.

(A5) H : R1 → R
1 is in C2, and F : [0, 1]|V | → R and G : [0, 1]|V | → R are in C2((0, 1)|V |).

(A6) Denote the Legendre transform of the function F : [0, 1]|V | → R by F ∗. Suppose F ∗ is
coercive, i.e.

|F ∗(x)| → ∞

as x → ∞.

(A7) The derivative of the function F : [0, 1]|V | → R
1 satisfies, for any ρ̄ ∈ {0, 1}|V |

|∂ρF ({ρi})|
2
2 → ∞

whenever {ρi} → ρ̄.

Under the above assumptions, we introduce the discrete Hopf formula by the following theorem

Theorem 3.1. If (A1)-(A7) holds, then the value function Ũ(t, {ρi}) in (3.1) equals

Ũ(t, {ρi}) = sup{Φi}∈R|V |

{

∑

i∈V ΦN
i ρi −

∑N
n=1∆t (F ({ρ}ni )−

∑

i[∇ρF ({ρ}ni )]iρ
n
i )−G∗({Φ}0i ) :

ρni − ρn−1
i +∆t

∑d
v=1 DpH

(

1
∆x

(Φn
i − Φn

i+ev
)
)

θn
i+ 1

2
ev

= 0

Φn+1
i − Φn

i + ∆t
4

∑d
v=1 H

(

1
∆x

(Φn
i − Φn

i+ev
)
)

+∆t[∇ρF ({ρ}ni )]i = 0
ρNi = ρi, Φ

N
i = Φi

}

(3.4)

Remark 3.2. We remark that if ({ρni }, {Φ
n
i }) are computed according to the constraints given

in (3.4) for all n = 0, .., N − 1, then for each n, the numerical Hamiltonian

H(ρn,Φn) =
∑

i+ ev
2
∈E

H

(

1

∆x
(Φn

i − Φn
i+ev)

)

θn
i+ 1

2
ev

+ F ({ρ}ni )

is conserved, where we write ρn := {ρni } and Φn := {Φn
i }.

Remark 3.3. If F (ρ) = 0, (3.4) is an unstable scheme for initial value Hamilton-Jacobi equa-
tions. In computations, we handle it using a monotone scheme; see section 4 (Remark 4.1)
below.

Remark 3.4. We note in numerical examples in Section 5 that our formula appears to be
valid beyond the assumptions (A1)-(A7), e.g., in the case when H is a nonsmooth, nonconvex
Hamiltonian. The continuous analog of (3.4) is discussed and proposed in Section 2.2. The
minimal assumptions of validity for (3.4) to hold may be an interesting direction to explore, and
some possibilities are discussed in, e.g., [12, 22, 28].

We prove Theorem 3.1 by showing the following three lemmas.

Lemma 3.5. Assume (A1). Then, the functional L(m,ρ) is convex.
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Proof. We shall show that L is convex. Since

L(m,ρ) :=
∑

i+ ev
2
∈E

L̃
(

mi+ 1
2
ev
, θi+ 1

2
ev

)

We only need to show that L̃ is convex. In other words, for y > 0, L(x
y
)y is convex for (x, y).

In fact, that is true since

Hess

(

L

(

x

y

)

y

)

= L′′

(

x

y

)

(

1
y

− x
y2

− x
y2

x2

y3

)

� 0 .

We now proceed as in [12] and obtain the following lemma. This lemma is similar to the
primal-dual formulation in [1, 2, 3], but we provide it here for the sake of completeness.

Lemma 3.6. Write

(m, ρ,Φ) :=
(

{mn
i+ 1

2
ev
}N−1
n=0 , {ρ

n
i }

N−1
n=0 , {Φ

n
i }

N
n=1

)

∈ R
|E|N × [0, 1]|V |N × R

|V |N .

and
(ρ̃,Φ) :=

(

{ρni }
N−1
n=0 , {Φ

n
i }

N
n=1

)

∈ [0, 1]|V |N × R
|V |(N−1) .

and let F(m, ρ,Φ) given in (3.3), and

F̃(ρ̃,Φ) := −

N
∑

n=1

∑

i+ ev
2
∈E

H

(

1

∆x
(Φn

i − Φn
i+ev)

)

θn
i+ 1

2
ev
∆t−

N
∑

n=1

∆tF ({ρ}ni )−G∗({Φ}0i )

+

N−1
∑

n=1

∑

i∈V

(

Φn
i − Φn+1

i

)

ρni +
∑

i∈V

ΦN
i ρi

If (A1), (A2), (A3), (A4) are satisfied, then

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }
N
n=1∈R

|V |N

F(m, ρ,Φ)

= sup
{Φn

i }
N
n=1∈R

|V |N

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ) .
(3.5)

Proof. In fact, from the equi-coercivity (A2), we find that there exists a closed and bounded
interval C ⊂ R s.t.

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }
N
n=1∈R

|V |N

F(m, ρ,Φ)

= inf
{mn

i+1
2 ev

}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }
N
n=1∈R

|V |N

F(m, ρ,Φ)
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Now that F(m, ρ,Φ) is lower-semicontinuous and quasi-convex w.r.t. (m, ρ) (from (A1), (A3)
and (A4)) and upper-semicontinuous and quasi-concave w.r.t. Φ (from linearity), as well as
C |E|N × [0, 1]|V |N , we have by an application of Sion’s minimax theorem [21, 26] that

inf
{mn

i+1
2 ev

}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }
N
n=1∈R

|V |N

F(m, ρ,Φ)

= sup
{Φn

i }
N
n=1∈R

|V |N

inf
{mn

i+1
2 ev

}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

F(m, ρ,Φ)

= sup
{Φn

i }
N
n=1∈R

|V |N

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

F(m, ρ,Φ)

where the last equality is again obtained by equi-coercivity in (A2).
Now let us fix (ρ̃,Φ) = ({ρni }

N−1
n=1 , {Φ

n
i }

N
n=1), and consider the optimization

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]

|V |
F(m, ρ,Φ) .

We next derive its duality formula. Following the discrete integration by part, then

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]

|V |
F(m, ρ,Φ)

= inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]

|V |

{

N−1
∑

n=0

∑

i+ ev
2
∈E

∆tL

(

mn+1
i+ 1

2
ev
, θn+1

i+ 1
2
ev

)

−

N−1
∑

n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i )

+
N−1
∑

n=0

∑

i∈V

Φn+1
i

(

ρn+1
i − ρni +∆t · div(mn+1)|i

)

}

= inf
{ρ0i }∈[0,1]

|V |

{

N−1
∑

n=0

∑

i+ ev
2
∈E

∆t inf
m

i+1
2 ev

{

L





mn+1
i+ 1

2
ev

θn+1
i+ 1

2
ev



 θn+1
i+ 1

2
ev

+
1

∆x
(Φn+1

i − Φn+1
i+ev

)mn+1
i+ 1

2
ev

}

−

N−1
∑

n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i ) +

N−1
∑

n=0

∑

i∈V

Φn+1
i

(

ρn+1
i − ρni

)

}

where the last equality is from the spatial integration by parts for
∑N−1

n=0

∑

i∈V Φn+1
i div(mn+1)|i.

From the Legendre transform
H(p) = sup

v∈R1

pv − L(v)
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with p = 1
∆x

(Φn
i+ev

−Φn
i ) and v =

mn+1

i+1
2 ev

θn+1

i+1
2 ev

, we have

inf
{mn

i+1
2 ev

}N−1
n=0 ∈R|E|N , {ρ0

i
}∈[0,1]|V |

F(m, ρ,Φ)

= inf
{ρ0i }∈[0,1]

|V |

{

−

N
∑

n=1

∑

i+ ev
2
∈E

H

(

1

∆x
(Φn

i − Φn
i+ev)

)

θn
i+ 1

2
ev
∆t−

N
∑

n=1

F ({ρ}n+1
i )∆t

+G({ρ}0i ) +
N−1
∑

n=0

∑

i∈V

Φn+1
i

(

ρn+1
i − ρni

)

}

= inf
{ρ0i }∈[0,1]

|V |

{

−
N
∑

n=1

∑

i+ ev
2
∈E

H

(

1

∆x
(Φn

i − Φn
i+ev

)

)

θn
i+ 1

2
ev
∆t−

N
∑

n=1

F ({ρ}n+1
i )∆t+G({ρ}0i )

+

N−1
∑

n=1

∑

i∈V

(

Φn
i − Φn+1

i

)

ρni +
∑

i∈V

ΦN
i ρi −

∑

i∈V

Φ0
i ρ

0
i

}

= F̃(ρ̃,Φ),

where the last line follows from the definition of Legendre transform for {ρ0}Vi .

Remark 3.7. We remark that [1, 2, 3] utilized a similar version of the above lemma and
computed the saddle point uses Newton’s method. However, since we aim to reduce the number
of dimensions in our numerical scheme and also aim to handle nonsmooth cases, we do not stop
at this formulation.

Lemma 3.8. If (A1), (A3),(A4), (A5), (A6),(A7) are satisfied, then

sup
{Φn

i }
N
n=1∈R

|V |N

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ)

= sup
{Φi}∈R|V |

{

∑

i∈V

ΦN
i ρi −

N
∑

n=1

∆t

(

F ({ρ}ni )−
∑

i

[∇ρF ({ρ}ni )]iρ
n
i

)

−G∗({Φ}0i ) :

ρni − ρn−1
i +∆t

∑d
v=1 DpH

(

1
∆x

(Φn
i − Φn

i+ev
)
)

θn
i+ 1

2
ev

= 0

Φn+1
i −Φn

i + ∆t
4

∑d
v=1 H

(

1
∆x

(Φn
i − Φn

i+ev
)
)

+∆t[∇ρF ({ρ}ni )]i = 0
ρNi = ρi, Φ

N
i = Φi

}

.

Proof. Writing (ρ̃, Φ̃) = ({Φn
i }

N−1
n=1 , {ρ

n
i }

N−1
n=1 ), then we have

sup
{Φn

i }
N
n=1∈R

|V |N

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ) = sup
{ΦN

i }∈RN

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ).

Given (Φ̃,ΦN
i ), from (A3) and (A7), we have that the infimum

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )
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is attained in the interior of the domain [0, 1]|V |(N−1). From the smoothness given by (A5), there
exists ρ̃∗(Φ̃,ΦN ) smoothly depending on (Φ̃,ΦN

i ) such that

Φn+1
i − Φn

i

∆t
+

1

4

d
∑

v=1

H

(

1

∆x
(Φn

i − Φn
i+ev

)

)

+ [∇ρF ({ρ∗(Φ̃,ΦN )}ni )]i = 0,

holds. Now let us fix ΦN . From the definition, we have

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )

= −

N
∑

n=1

∆tF ∗

({

Φn+1
i − Φn

i

∆t
+

1

4

d
∑

v=1

H

(

1

∆x
(Φn

i − Φn
i+ev)

)

}n

i

)

−G∗({Φ}0i ) +
∑

i∈V

ΦN
i ρi.

Now for any given {V n
i }N−1

n=0 , by solving the difference equation, there exists {Φn
i }

N−1
n=1 such that

Φn+1
i − Φn

i

∆t
+

1

4

d
∑

v=1

H

(

1

∆x
(Φn

i − Φn
i+ev)

)

= V n−1
i .

Therefore we have

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )

= sup
{V n

i }N−1
n=1 ∈R|V |(N−1)

{

−

N−1
∑

n=0

∆tF ∗ (V n
i )−G∗({Φ}0i ) +

∑

i∈V

ΦN
i ρi

}

. (3.6)

Note that by (A6), the supremum in the above is attained, and hence there exists a maximum
point {V ∗n

i }
N−1
n=0 for the functional −

∑N−1
n=0 F ∗ (V n

i ). Now go back to find {Φ∗n
i }

N−1
n=1 such that

Φ∗n+1
i −Φ∗n

i

∆t
+

1

4

d
∑

v=1

H

(

1

∆x
(Φ∗n

i − Φ∗n
i+ev)

)

= V ∗n−1
i .

Now, fixing ΦN and noticing {Φ∗n
i }

N−1
n=1 is a maximum value of the function

Φ̃ = {Φn
i }

N−1
n=1 7→ inf

{ρni }
N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ) = F̃(ρ̃∗(Φ̃,ΦN ), Φ̃,ΦN ),

we see that the maximum is attained and by (A5), {Φ∗n
i }

N−1
n=1 can be characterized by

ρ∗(Φ̃,ΦN )
n

i − ρ∗(Φ̃,ΦN )
n−1

i +∆t

d
∑

v=1

DpH

(

1

∆x
(Φ∗n

i − Φ∗n
i+ev

)

)

θn
i+ 1

2
ev
(Φ̃,ΦN ) = 0.

Concluding the above argument, for each ΦN , we have

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ) = F̃(ρ̃∗(ΦN ), Φ̃∗(ΦN ),ΦN ),
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which satisfies the following pair of equations















ρni − ρn−1
i +∆t

∑d
v=1 DpH

(

1
∆x

(Φn
i − Φn

i+ev
)
)

θn
i+ 1

2
ev

= 0

Φn+1
i − Φn

i + ∆t
4

∑d
v=1 H

(

1
∆x

(Φn
i − Φn

i+ev
)
)

+∆t[∇ρF ({ρ}ni )]i = 0

ρNi = ρi, Φ
N
i = Φi

(3.7)

for all n = 0, 1, .., N − 1. The conclusion of the lemma thus follows.

Remark 3.9. We note that taking supremum of (3.6) over ΦN yields the discrete version of
the Hopf formula given in (57)-(59) of [22]. However, we are not trying to get back to (57)-(59)
in [22] since the formulation, though very elegant mathematically, contains too many variables
for numerical optimization of a low memory requirement, and is thus not our first choice.

Combining all the three lemmas above, we prove Theorem 3.1. In next section, we apply the
discrete Hopf formula (3.4) to design numerical methods for HJD.

4 Algorithm

In this section, we compute the optimizer in the Hopf formula in (3.4). We shall perform
the following multi-level block stochastic gradient descent method.

We first consider a sequence of step-size hi = 2−i where i = 0, . . . , N and a nested sequence
of finite dimensional subspaces Vh0 ⊂ Vh2 ⊂ · · · ⊂ VhN−1

⊂ VhN
of a function space over

[−1, 1]d ⊂ X. Now, we also define a family of restriction and extension operators:

Rij : Vhi
→ Vhj

and Eji : Vhj
→ Vhi

Now, let us define the following approximation of the functional G(·) as

Gj : Vhj
→ R

Gj(Φ̃) :=

∫

X

RNj [ρ](x)Φ̃(x)dx−G∗(Φ(EjN [Φ̃], 0, ·))

−

∫ t

0

(

F (ρ(EjN [Φ̃], s, ·)) −

∫

X

[∇ρF (ρ(EjN [Φ̃], s, ·))]ρ(EjN [Φ̃], s, x)dx

)

dt

where (ρ(EjN [Φ̃], s, x),Φ(EjN [Φ̃], s, x)) numerically solves the following terminal value problem:











∂sρ(EjN [Φ̃], s, x) +∇ · (ρ(EjN [Φ̃], s, x)DpH(x,∇Φ(EjN [Φ̃], s, x))) = 0

∂sΦ(EjN [Φ̃], s, ·) +H(x,∇Φ(EjN [Φ̃], s, x)) +∇ρF (ρ(EjN [Φ̃], s, ·)) = 0

ρ(EjN [Φ̃], t, x) = ρ(x), Φ(EjN [Φ̃], t, x) = EjN [Φ̃](x) .

The numerical method to compute this Cauchy problem will be discussed after we present the
main algorithm in Remark 4.1.

With the above notation, we are ready to present our variant of stochastic gradient descent
to optimize GN (·). We utilize the following coordinate descent algorithm:

Algorithm 1. Take an initial guess [Φ0]
1 ∈ Vh0, for i = 0, ..., N , do:
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• Take an initial guess of the Lipschitz constant Li, set count := 0 and vi := 1/Li.

• For k = 1, ....,M , do:

1: Randomly select Ik ∈ 2{1,...,2
di},

2: Compute the following unit vector vIk where

[vIk ]l =

{

1/
√

|I| if l ∈ I,

0 otherwise.

3: Compute
{

[Φi]
k+1
I = [Φi]

k
I − vi∂vIkGi([Φi]

k
I ) if l ∈ I

[Φi]
k+1
l = [Φi]

k+1
l otherwise.

4: If |[Φi]
k+1
I − [Φi]

k
I | > ε, then set count := 0. If k = M , then reset k := 0 and set

vi := vi/2, (i.e. let Li := 2Li.)

5: If |[Φi]
k+1
I − [Φi]

k
I | < ε, set count := count+ 1.

5: If count = 2di, define [Φi]final := [Φi]
k+1
I , stop.

• If i < N , set [Φi+1]
1 = Ei (i+1) ([Φi]final) .

Output [ΦN ]final.

Remark 4.1. For computation of
(

ρ(EjN [Φ̃], s, x),Φ(EjN [Φ̃], s, x)
)

with numerical PDE tech-
niques, we notice that the primal-dual system in (3.4), i.e. the conservation law and the HJD,
may not provide a stable PDE algorithm. One way to address this pathology is to modify the
numerical Hamiltonian that we have implicitly chosen when we derive our algorithm. We no-
tice indeed that the system (3.4) is a symplectic scheme that conserves the following numerical
Hamiltonian (writing ρn := {ρni } and Φn := {Φn

i }):

H(ρn,Φn) =
∑

i+ ev
2
∈E

H

(

1

∆x
(Φn

i − Φn
i+ev

)

)

θn
i+ 1

2
ev

+ F ({ρ}ni ) .

On the other hand, we notice that the choice of such Hamiltonian is not unique: we can choose
another numerical Hamiltonian that corresponds to an upwind (monotone) scheme for the primal
system and monotone Hamiltonian for the dual system as follows (see also [1, 2, 3]):

H(ρn,Φn) :=
∑

i

d
∑

v=1

H

(

[

1

∆x
(Φn

i − Φn
i+ev)

]+
)

ρni + F ({ρ}ni ),

where [·]+ := max(0, ·) and [·]− := min(0, ·). With this, the primal dual system will instead be
as follows:

ρni − ρn−1
i

∆t
+

d
∑

v=1

DpH

(

[

1

∆x
(Φn

i −Φn
i+ev

)

]+
)

ρni +
d
∑

v=1

DpH

(

[

1

∆x
(Φn

i − Φn
i+ev

)

]−
)

ρni+ev
= 0

Φn+1
i − Φn

i

∆t
+

1

2

d
∑

v=1

H

(

[

1

∆x
(Φn

i − Φn
i+ev

)

]+
)

+ [∇ρF ({ρ}ni )]i = 0.
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To further enhance stability, we can add, given a regularization parameter β, a Lax-Friedrichs
scheme numerical diffusion term:

ρni − ρn−1
i

∆t
+
{

d
∑

v=1

DpH

(

[

1

∆x
(Φn

i − Φn
i+ev)

]+
)

ρni

+

d
∑

v=1

DpH

(

[

1

∆x
(Φn

i − Φn
i+ev)

]−
)

ρni+ev

}

+
β∆x

2(∆x)2

d
∑

v=1

(ρni − ρni+ev) = 0

Φn+1
i − Φn

i

∆t
+

1

2

d
∑

v=1

H

(

[

1

∆x
(Φn

i − Φn
i+ev)

]+
)

+ [∇ρF ({ρ}ni )]i +
β∆x

2(∆x)2

d
∑

v=1

(Φn
i − Φn

i+ev) = 0 .

This adds a magnitude of β∆x numerical diffusion in the system. We notice in our numerical
examples that stability improves after imposing v > 0 and considering an upwind monotone
scheme.

5 Numerical results

In this section, we present numerical results for solving HJD by Algorithm 1. We tested
several cases with the different Hamiltonians, including the convex

H1(x, p) =
1

2
(|p1|

2 + |p2|
2) ,

the non-convex

H2(x, p) =
1

2
(|p1|

2 − |p2|
2) ,

and the convex 1-homogeneous Hamiltonian

H3(x, p) = |p1|+ |p2|.

For a given center x0 and radius R, we consider

G(ρ) = inf
ρ̃∈P(X)

{

ιP(BR(x0))(ρ̃) +
1

2v

∫

X

[ρ̃− ρ(x)]2dx

}

,

where v is a regularization parameter, and we recall that, for a given convex subset B ⊂ P(X),
the indicator function ιB(ρ) = 0 if ρ ∈ B and ιB(ρ) = ∞ otherwise. A direct computation shows

ι∗P(BR(x0))
(Φ) = sup

ρ∈P(BR(x0))

∫

X

ρ(x)Φ(x)dx. = sup
x∈BR(x0)

Φ(x) .

With the correspondence of summation and infimum convolution via Legendre transform, we
arrive at

G∗(Φ) = sup
x∈BR(x0)

Φ(x) +
v

2

∫

X

[Φ(x)]2dx.

In numerical examples, we set v = 10−3. This helps us compute a regularized projection of a
given ρ to the set of all the measures supported at an unit ball. For simplicity, we set F (ρ) = 0
in all our examples.
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We utilize Algorithm 1 for numerical computations. The number of levels M = 3 is always
chosen. The Lipschitz constant is always chosen as Li = L = 2. For numerical approximation of
PDE, we choose the upwind numerical Hamiltonian, together with an addition of Lax-Friedrichs
numerical diffusion where β = 2 is chosen. The discretization parameters are chosen as ∆x =
0.04 and ∆t = 0.008. In all experiments, we consider X = T

2.

Example 5.1. In this example, we consider the Hamiltonian H1 and the input distribution ρ(x)
as follows:
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Figure 1: The distribution of the input ρ.

We choose the center and radius (x0, R) which helps to define G(ρ) as x0 = (0, 0), R = 1. Figure
2 gives the optimizer Φ̃ (left) in (3.4) and its gradient ∇xΦ̃ (right) computed using Algorithm 1
when t = 1 in the Hamiltonian. The gradient ∇xΦ̃ generates the final kick of the drift for the
masses to be flown accordingly.
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Figure 2: Left: optimizer Φ̃ in U(t, ρ) in (2.3), right: vector field ∇xΦ̃.

In Figure 3, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. It describes
the transportation of the masses according to the flow generated by the gradient of Φ(t, x) at
different times t.
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Figure 3: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

From the figures, we can see that our proposed method identifies simultaneously the two non-
unique points closets from two mass lumps at antipodal positions to the ball in the center. In
particular, the projected measure is the average of the two Dirac masses at the boundary of the
circle, where each of them is the closest point of the mass lumps. The algorithm uses reversed
time, and the reconstruction moves from the points on the balls to the two respective masses.

Example 5.2. In this example, we consider the Hamiltonian H1 above and the input distribution
ρ(x) as follows:
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Figure 4: The distribution of the input ρ.

We choose the center and radius (x0, R), which helps to define G(ρ) as x0 = (3, 0), R = 2. Since
this is a torus, the mass sees a “non-convex” object from both sides from afar. Figure 5 gives
the optimizer Φ̃ (left) in (2.3) and its gradient ∇xΦ̃ (right) computed using Algorithm 1 when
t = 1 in the Hamiltonian. We fix Li = 2 in Algorithm 1.

 

 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 5: Left: optimizer Φ̃ in U(t, ρ) in (2.3), right: vector field ∇xΦ̃.

In Figure 6, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
t = 0
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t = 0.4
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Figure 6: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

In this example, our method accurately finds the projections of a mass to the two non-unique
closest points on the “non-convex” body (which is in fact a ball ”split” in two). In particular,
the flow of the mass splits into two opposite directions; each brings half of the densities to the
boundary of the target body.

Example 5.3. In this example, we consider the non-convex Hamiltonian H3 above and the input
distribution ρ(x) in Figure 7.
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Figure 7: The distribution of the input ρ.
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In order to compute the absolute value in the conservation law in a stable way, we replace
the function with a soft absolute value as follows

soft-abs-value(x) :=
2

π
arctan(cx) ,

where we choose c = 20. With this regularization, the Hamiltonian under consideration is
actually

H3,c(p) := Hc(p1) +Hc(p2)

where

Hc(s) =
2

π
s arctan(s)−

1

cπ
log(1 + c2s2) ,

and thus the Lagrangian cost functional is

L3,c(v) := Lc(v1) + Lc(v2),

where

Lc(t) =

{

1
cπ

log
(

sec2
(

πt
2

))

if |t| < 1 ,

∞ if |t| ≥ 1 .

As in Example 1, we choose the center and radius (x0, R) which helps to define G(ρ) as x0 =
(0, 0), R = 1. Figure 10 gives the optimizer Φ̃ (left) in (3.4) and its gradient ∇xΦ̃ (right)
computed using Algorithm 1 when t = 1 in the Hamiltonian.
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Figure 8: Left: optimizer Φ̃ in U(t, ρ) in (2.3), right: vector field ∇xΦ̃.

Figure 11 plots the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

23



t = 0
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Figure 9: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

We identify reachability of the measure to the boundary of the ball w.r.t. to the l1 Hamilto-
nian. With our choice of regularization, we, however, see a defect in our numerical computation:
there are three small tails that are left behind in the conservation law as the mass is moving since
the exact cutoff of the absolute value is regularized. Nonetheless, the solution makes perfect sense
in term of identifying reachability.

Example 5.4. In this example, we consider the non-convex Hamiltonian H2 above and the input
distribution ρ(x) the same as in Example 1 in Figure 1.
Again, we choose the center and radius (x0, R), which helps to define G(ρ) as x0 = (0, 0), R = 1.
Figure 10 gives the optimizer Φ̃ (left) in (3.4) and its gradient ∇xΦ̃ (right)computed using
Algorithm 1 when t = 1 in the Hamiltonian.
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Figure 10: Left: optimizer Φ̃ in U(t, ρ) in (2.3), right: vector field ∇xΦ̃.

Figure 11 plots the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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t = 0.8
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Figure 11: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

We can see the competing nature of the Hamiltonian, where one part of the Hamiltonian tries
to drift the mass to the ball inward along one direction, while the other part of the Hamiltonian
tries to drift the mass away along another direction. This tears each mass lump apart into
two lumps. Although the problem has not been fully understood mathematically, the numerical
behavior of the solution shows the competing nature of a differential game problem in the mean
field setting.

6 Discussions

To summarize, we propose a generalized Hopf formula for potential mean field games. Our
algorithm inherits main ideas in optimal transport on graphs and the Hopf formula for state-
dependent optimal control problems.

Compared to the existing methods, the advantage of the proposed algorithm is three fold.
First, the Hopf formula in density space introduces a minimization with variables depending
on solely spatial grids. It has a lower complexity than the original optimal control problem.
Second, the Hopf formula gives a simple parameterization for boundary problems in NE. This
parameterization helps us design a simple first-order gradient descent method. This property
allows us to compute the case of nonconvex Hamiltonians efficiently. Finally, our spatial dis-
cretization follows the dual of optimal transport on graphs. Hence, it is approximately discrete
time reversible. This property conserves the primal-dual structure of potential mean field games.

We notice that the Hopf formula in density space appears to go beyond monotonicity con-
ditions and give legitimate numerical results, as shown in Section 5. Although it is beyond the
scope of this paper, it is interesting to search for the precise conditions for the validity of the
Hopf formula. Also, our current study only considers potential games without noise perturba-
tions in players’ decision processes. We will extend it to compute NEs for general non-potential
games in future work.
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