Skip to main content
Log in

Solving Elliptic PDE’s on Domains with Curved Boundaries with an Immersed Penalized Boundary Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to describe a method (which we call IPBM) for solving boundary value problems on domains with curved boundaries. The method combines two ideas from the PDE literature: (a) the idea of immersing the problem in a larger and simpler domain, and (b) the idea of enforcing boundary conditions by using a penalty term. The method has a number of advantages as compared to existing methods in the literature and can be considered as a viable alternative to the very popular isogeometric analysis methods. It can be used with a wide variety of spline spaces including tensor-product splines and splines on triangulations. It also works with splines on H-triangulations and splines on T-meshes, which opens the door to adaptive methods. The paper contains a series of examples both in 2D and 3D to illustrate the capability of the method to produce high order approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Apprich, C., Höllig, K., Hörner, J., Reif, U.: Collocation with WEB-splines. Adv. Comput. Math. 42, 823–842 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Eilliot, C.M.: Finite element approximation of the Dirichet problem using the boundary penalty method. Numer. Math. 49, 343–366 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bochev, P., Gunzburger, M.: Least-squares finite element methods. International Congress Mathematicians, vol. III, pp. 1137–1162. European Mathematical Society, Zürich (2006)

    Google Scholar 

  4. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  5. Bramble, J.: Rayleigh–Ritz–Galerkin methods for Dirichlet’s problem using subspaces without boundary condiitions. Commun. Pure Appl. Math. 23, 653–675 (1970)

    Article  MATH  Google Scholar 

  6. Buffat, M., Penven, L.: A spectral fictitious domain method with internal forcing for solving elliptic PDEs. J. Comput. Phys. 230, 2433–2450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199, 2680–2686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62, 328–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clark, B.W., Anderson, D.C.: The penalty boundary method. Finite Elem. Anal. Des. 39, 387–401 (2003)

    Article  Google Scholar 

  10. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  11. Davydov, O., Kostin, G., Saeed, A.: Polynomial finite element method for domains enclosed by piecewise conics. Comput. Aid. Geom. Des. 45, 48–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dörfel, M.R., Simeon, B., Jüttler, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eason, E.D.: A review of least-squares methods for solving partial differential equations. Int. J. Numer. Methods Eng. 10, 1021–1046 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eason, E.D., Mote, C.D.: Solution of non-linear boundary value problems by discrete least squares. Int. J. Numer. Methods Eng. 11, 641–652 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Fasshauer, G.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  17. Glowinski, R., Pan, T., Periaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Method. Appl. Mech. Eng. 111, 283–303 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Höllig, K.: Finite Element Methods with B-splines. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  19. Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lai, M.-J., Mersmann, C.: An adaptive triangulation method for bivariate spline solutions of PDE’s. In: Fasshauer, G., Schumaker, L. (eds.) Approximation Theory XV: San Antonio 2016, pp. 155–175. Springer, New York (2017)

    Chapter  Google Scholar 

  21. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  22. Laible, J.P., Pinder, G.F.: Least squares collocation solution of differential equations on irregularly shaped domains using orghogonal meshes. Numer. Method PDEs 5, 347–361 (1989)

    Article  MATH  Google Scholar 

  23. Larsson, E., Fornberg, B.: A numerical study of some radial function based solution methods for PDE’s. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, S., Schumaker, L.L.: Adaptive computation with splines on triangulations with hanging vertices. In: Fasshauer, G., Schumaker, L. (eds.) Approximation Theory XV: San Antonio 2016, pp. 197–218. Springer, New York (2017)

    Chapter  Google Scholar 

  25. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  26. Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Vis. Comput. 26, 277–286 (2010)

    Article  Google Scholar 

  27. Peskin, C.: The immersed boundary method. Acta Numer. 11, 1–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–252, 104–115 (2012)

    Article  MATH  Google Scholar 

  29. Sanches, R., Bornemann, P., Cirak, F.: Immersed B-spline (I-spline) finite element method for geometrically complex domains. Comput. Methods Appl. Mech. Eng. 200, 1432–1445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schumaker, L.L.: Spline Functions: Computational Methods. SIAM, Philadelphia (2015)

    Book  MATH  Google Scholar 

  32. Schumaker, L.L., Wang, L.: Spline spaces on TR-meshes with hanging vertices. Numer. Math. 118, 531–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schumaker, L.L., Wang, L.: Splines on triangulations with hanging vertices. Constr. Approx. 36, 487–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schumaker, L.L., Wang, L.: Approximation power of polynomial splines on T-meshes. Comput. Aid. Geom. Des. 29, 599–612 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCSs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  36. Serbin, S.M.: Computational investigations of least-squares type methods for the approximate solution of boundary value problems. Math. Comput. 29, 777–793 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, New York (2012)

    MATH  Google Scholar 

  38. Yao, G.: Immersed Boundary Method for CFD: Focusing on its Implementation. CreateSpace (Amazon) (2016)

  39. Zhu, T., Atluri, S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Schumaker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumaker, L.L. Solving Elliptic PDE’s on Domains with Curved Boundaries with an Immersed Penalized Boundary Method. J Sci Comput 80, 1369–1394 (2019). https://doi.org/10.1007/s10915-019-00978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00978-3

Keywords

Navigation