Skip to main content
Log in

Optimal Convergence Analysis of a Second Order Scheme for a Thin Film Model Without Slope Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Li et al. (J Sci Comput 76(3):1905–1937, 2018), a temporal second-order mixed finite element scheme has been proposed for the thin film epitaxial growth model without slope selection. Using the super-convergence theory in a regular rectangular mesh, the authors of Li et al. (2018) proved an optimal \(O(h^{q+1}+\tau ^2)\) convergence. However, in a quasi-uniform triangulation mesh setting, only a sub-optimal convergence rate \(O(h^q+\tau ^2)\) is proved, while numerical results indicated an optimal \(O(h^{q+1}+\tau ^2)\) convergence when the exact solution has \(H^{q+1}\) regularity in space. Here h and \(\tau \) are the discretization sizes in space and time, respectively, and \(q\ge 1\) is the degree of the polynomial in the spatial discretization. In this paper, we provide a theoretical proof of the optimal convergence rate. The main difficulty lies in how to treat a nonlinear term \(\frac{\nabla u}{1+|\nabla u|^2}\). We solve this by using a discrete Laplacian operator \(-\varDelta _h\) and some uncommon techniques in the analysis. Numerical results are also presented to demonstrate the \((q+1)\)-order convergence of the spatial approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Singapore (2003)

    MATH  Google Scholar 

  2. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York, NY (2007)

    Google Scholar 

  3. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Wang, Y.: A mixed finite element method for thin film epitaxy. Numer. Math. 122, 771–793 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.05.039 (forthcoming)

  8. Cheng, K., Wang, C., Wise, S.M.: An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. (2019). http://www.math.umassd.edu/~cwang/Cheng19a.pdf (accepted)

  9. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  10. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34(6), 1975–2007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  12. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78, 90–93 (1997)

    Article  Google Scholar 

  13. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hunt, A.W., Orme, C., Williams, D.R.M., Orr, B.G., Sander, L.M.: Instabilities in MBE growth. EPL 27(8), 611–616 (1994)

    Article  Google Scholar 

  15. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohn, R.V.: Energy-driven pattern formation. Int. Congr. Math. 1, 359–383 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Kohn, R.V., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, B.: High-order surface relaxation versus the Ehrlich–Schwoebel effect. Nonlinearity 19(11), 2581–2603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B., Liu, J.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, B., Liu, J.G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54, 1653–1681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J.: Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J. Math. Anal. Appl. 230, 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Qiao, Z., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Politi, P., Torcini, A.: Coarsening in surface growth models without slope selection. J. Phys. A Math. Theor. 33(8), 77–82 (2000)

    MATH  Google Scholar 

  26. Qiao, Z., Sun, Z., Zhang, Z.: The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differ. Equ. 28, 1893–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiao, Z., Sun, Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84, 653–674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiao, Z., Wang, C., Wise, S., Zhang, Z.: Error analysis of a finite difference scheme for the epitaxial thin film growth model with slope selection with an improved convergence constant. Int. J. Numer. Anal. Model. 14, 283–305 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rost, M., Krug, J.: Coarsening of surface structures in unstable epitaxial growth. Phys. Rev. E 55, 3952–3957 (1997)

    Article  Google Scholar 

  31. Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Siegert, M., Plischke, M.: Slope selection and coarsening in molecular beam epitaxy. Phys. Rev. Lett. 73, 1517–1520 (1994)

    Article  Google Scholar 

  33. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)

    MATH  Google Scholar 

  34. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  37. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  38. Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)

    Article  MathSciNet  Google Scholar 

  39. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Grants NSFC 11671098, 11331004, 91630309, a 111 Project B08018 (W. Chen), the Grants NSFC 11671210, 91630201 (Y. Wang), and the Grant 2017110715 (Y. Yan). Y. Yan also thanks the support by Institute of Scientific Computation and Financial Data Analysis, Shanghai University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, Y., Li, W. et al. Optimal Convergence Analysis of a Second Order Scheme for a Thin Film Model Without Slope Selection. J Sci Comput 80, 1716–1730 (2019). https://doi.org/10.1007/s10915-019-00999-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00999-y

Keywords

Navigation