
ar
X

iv
:1

90
2.

08
96

5v
1 

 [
m

at
h.

N
A

] 
 2

4 
Fe

b 
20

19

A conforming DG method for linear nonlocal models with

integrable kernels

Qiang Du∗ and Xiaobo Yin†

Abstract. Numerical solution of nonlocal constrained value problems with integrable

kernels are considered. These nonlocal problems arise in nonlocal mechanics and

nonlocal diffusion. The structure of the true solution to the problem is analyzed first.

The analysis leads naturally to a new kind of discontinuous Galerkin method that

efficiently solve the problem numerically. This method is shown to be asymptotically

compatible. Moreover, it has optimal convergence rate for one dimensional case under

very weak assumptions, and almost optimal convergence rate for two dimensional case

under mild assumptions.
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1 Introduction

Nonlocal models have generated much interests in recent years [14]. For example, the

peridynamic (PD) model proposed by Silling [26] is an integral-type nonlocal theory of

continuum mechanics which provides an alternative setup to classical continuum mechan-

ics based on PDEs. Since PD avoids the explicit use of spatial derivatives, it is especially

effective for modeling problems involving discontinuities or other singularities in the de-

formation [6, 19, 22, 24, 28, 29]. The nonlocal diffusion (ND) model, described in [16] is

another example of integro-differential equations. More recently, mathematical analysis of

nonlocal models is also paid more attention, which could be found in [2–4,9,15,17,20,21].

Meanwhile, to simulate nonlocal models, various numerical approximations have been pro-

posed and studied, including finite difference, finite element, meshfree method, quadrature

and particle-based methods [7, 10,18,22,23,25,27,31–33,37].
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Let Ω ⊂ R
d denote a bounded, open and convex domain with Lipschitz continuous

boundary. For u(x) : Ω → R, the nonlocal operator L on u(x) is defined as

Lu(x) =

∫

Rd

(
u(y)− u(x)

)
γ(x,y)dy ∀x ∈ Ω, (1.1)

where the nonnegative symmetric mapping γ(x,y) : Rd × R
d → R is called a kernel. The

operator L is regarded nonlocal since the value of Lu at a point x involves information

about u at points y 6= x. In this article, we consider the following nonlocal Dirichlet

volume-constrained diffusion problem
{

−Lu(x) = b(x) on Ω,

u(x) = g(x) on ΩI ,
(1.2)

where ΩI = {y ∈ R
d \ Ω : dist(y, ∂Ω) < δ} with δ a constant called horizon parameter,

b(x) ∈ L2(Ω) and g(x) ∈ L2(ΩI) are given functions. Volume constraints are natural

extensions, to the nonlocal case, of boundary conditions for differential equations. Nonlocal

versions of Neumann and Robin boundary conditions are also naturally defined [16].

We assume that the nonnegative symmetric kernel γ(x,y) satisfies, there exists a posi-

tive constant γ0, for all x ∈ Ω ∪ ΩI ,

γ(x,y) ≥ γ0 ∀y ∈ Bδ/2(x), γ(x,y) = 0 ∀y ∈ (Ω ∪ ΩI) \Bδ(x), (1.3)

where Bδ(x) := {y ∈ Ω ∪ ΩI : |y − x| ≤ δ}. Obviously, (1.3) implies that although

interactions are nonlocal, they are limited to a ball of radius δ. A few important classes

of kernels are considered in [16]. Of particular interests here is a special choice of γ being

a radial function of x−y (which also makes the kernel translation invariant). Such a case

has also been studied earlier in [4] where

γ(x,y) = γ̃(|y − x|) ≥ 0,

∫

Rd

γ̃(|z|)dz = 1. (1.4)

This condition on γ implies that L is a bounded mapping from L2(Rd) to L2(Rd). As we

will discuss here, even though for smooth enough b(x) in Ω, unlike the classical local PDE

boundary value problems, the solution u(x) is possibly discontinuous across ∂Ω which

makes the numerical solution to the corresponding nonlocal problem challenging.

An intuitive idea to overcome the possible loss of continuity is to use discontinuous

Galerkin (DG) methods. The latter are in fact conforming, which is in stark contrast to

DG methods for the discretization of second order elliptic partial differential equations for

which they are nonconforming [5]. While nonconforming DG has also been studied recently

for nonlocal models [12], if the structure of the solution could be studied carefully, a well

designed conforming DG method could be a more competitive option as it could lessen

the cost of computation. In this work, we propose a new kind of conforming DG method

to approximate the nonlocal problem (1.2) with kernels satisfying (1.3) and (1.4) where

the key is to adopt a hybrid version of continuous elements with DG at the boundary.
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The paper is organized as follows. In Section 2, the structure of the solution for the given

problem is analyzed, which is a generalization of the results in [30]. We also convert the

original inhomogeneous problem (1.2) into the homogeneous problem (2.3) whose solution

is smoother, so we just need to discuss a smoother homogeneous problem (2.4). Based

on the structure of the solution, in Section 3 we propose a new DG method which solves

the problem (2.4) efficiently. Convergence analysis and condition number estimates along

with asymptotic compatibility for the method are given in Section 4. Results of numerical

experiments are reported in Section 5.

2 The structure of the solution

To design more efficient numerical discretization, we first present some regularity studies

on the nonlocal constrained value problem. We recall first some one dimensional results

presented in [30]: when using peridynamic theory to model the elasticity on R = (−∞,∞),

the displacement field u has the same smoothness as the body force field b. In addition,

any discontinuity in the kernel γ (or in one of its derivatives) has some additional effect on

the smoothness of u. For a peridynamic bar, suppose that b has a discontinuity in its Nth

derivative at some x = xb, and γ has a discontinuity in its Lth derivative at some x = xc,

then u has a discontinuity in its (N + nL+ n)th derivative at x = xb + nxc, n = 1, 2, · · · .

This propagation of discontinuities is illustrated schematically in [30, Figure 3]. Roughly

speaking, the smoothness of u increases as one moves away from the location where the

solution is discontinuous due to the discontinuity of the body force field b. These types of

step-wise improved regularity associated with a finite horizon parameter have also been

observed for nonlocal initial value problems of nonlocal-in-time dynamic systems in [13].

2.1 The structure of the solution for general dimensional cases on bounded

domains

Recall for the 1D case in an unbounded domain, the regularity of the solution for a nonlocal

problem is affected by both the right hand side function and the kernel function, assuming

good behavior of the solution at infinities. In this subsection we consider the effect of these

two sources on the regularity of the solution for general multidimensional constrained value

problem on a bounded domain.

First, let us present a result to reduce the problem (1.2) which we are concerned with

to be a problem with a homogeneous nonlocal constraint. Denoted by

b(x) =

{
b(x), x ∈ Ω,

g(x), x ∈ ΩI ,
(2.1)

and

u(x) = u(x)− b(x). (2.2)

3



Then the nonlocal operator −L on u(x) is

−Lu(x) = f(x) =

∫

Bδ(x)∩Ω
b(y)γ(y − x)dy

=

∫

Bδ(x)∩Ω
b(y)γ(y − x)dy +

∫

Bδ(x)∩ΩI

g(y)γ(y − x)dy, ∀x ∈ Ω.

Thus, u(x) is the solution of the following homogeneous nonlocal problem

{
−Lu(x) = f(x), on Ω,

u(x) = 0, on ΩI .
(2.3)

Due to b(y) ∈ L2(Ω ∪ ΩI), γ(s) ∈ L2(Rd), and the fact that convolution of functions in

dual Lp(Rd)-spaces is continuous, we know that f(x) ∈ C(Ω).

The problem (1.2) is equivalent to the problem (2.3) which has a homogeneous nonlocal

constraint. That is, we just need to study the following homogeneous nonlocal problem:

{
−Lu(x) = b(x), on Ω,

u(x) = 0, on ΩI ,
(2.4)

with b(x) ∈ C(Ω), γ(x,y) satisfying (1.3) and (1.4). We will show that if γ(x,y) satisfies

some mild assumptions, the results recalled earlier for the one dimensional case can be

generalized to multidimensional case on a bounded domain.

2.2 Discontinuities due to the right hand side function

Theorem 2.1. If γ(x,y) satisfies (1.3) and (1.4), and b(x) ∈ C(Ω), the solution of (2.4)

is continuous in Ω, i.e., u(x) ∈ C(Ω).

Proof. Since γ(x,y) satisfies (1.3) and (1.4), we easily see that

u(x) ∈ L2(Ω ∪ ΩI).

From (2.4), we have

u(x) = b(x) +

∫

Bδ(x)
u(y)γ(y − x)dy, ∀x ∈ Ω. (2.5)

Since u(y) ∈ L2(Ω ∪ ΩI) and γ(s) ∈ L2(Rd), we have that

∫

Bδ(x)
u(y)γ(y − x)dy

is continuous for x in Ω. Together with the condition b(x) ∈ C(Ω), we complete the

proof.
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It is obvious from (2.5) that the discontinuity at a point x of the right hand side b

will lead to the discontinuity at the same point of the solution u. With an additional

assumption on the kernel, we can bootstrap a higher order regularity result as follows.

Theorem 2.2. Suppose that γ(x,y) satisfies (1.3) and (1.4). If γ̃(r) ∈ C1(0, δ), γ̃(δ) = 0

and b(x) ∈ C1(Ω), then u(x) ∈ C1(Ω).

Proof. From (2.5), we know

u(x) = b(x) +

∫

Bδ(0)
u(x+ s)γ(s)ds. (2.6)

For any unit vector t, we take the corresponding directional derivative for (2.6), so

∂u(x)

∂t
=

∂b(x)

∂t
+

∫

Bδ(0)

∂u(x+ s)

∂t
γ(s)ds.

Since γ̃(r) ∈ C1(0, δ) and γ̃(δ) = 0, we have

∫

Bδ(0)

∂u(x+ s)

∂t
γ(s)ds

=

∫

∂Bδ(0)
u(x+ s)γ(s)t · nsdSs −

∫

Bδ(0)
u(x+ s)t · ∇γ(s)ds

= γ̃(δ)

∫

∂Bδ(0)
u(x+ s)t · nsdSs −

∫

Bδ(0)
u(x+ s)γ̃′(|s|)t · nsds

= −

∫

Bδ(0)
u(x+ s)γ̃′(|s|)t · nsds.

Thus,

∂u(x)

∂t
=

∂b(x)

∂t
−

∫

Bδ(0)
u(x+ s)γ̃′(|s|)t · nsds. (2.7)

Since the convolution of functions in dual Lp(Rd)-spaces is continuous, the second term in

the right hand side of (2.7) is continuous with respect to x. Together with the condition

b(x) ∈ C1(Ω), we complete the proof.

From (2.7) we get that under the assumptions of Theorem 2.2, if the first derivative of

the right hand side b is discontinuous at some point x, the first derivative of the solution

u will be discontinuous at the same point. However, if we may have both the condition

γ̃(δ) > 0 and the condition b(x) /∈ C1(Ω), the conclusion u(x) ∈ C1(Ω) may still hold (see

Example 1, where in fact u(x) ∈ C∞(Ω)). This is not contradicting as the sum of two

discontinuous function could be continuous, and even infinitely differentiable.
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2.3 Propagation of discontinuities due to the kernel

For the convenience of discussion, let us denote by Ω1 = {x ∈ Ω : dist(x, ∂Ω) > δ} and

Ω2 = Ω \ Ω1. In fact, the significance of the result Theorem 2.1 is twofold. First, it

indicates the smoothness of u(x) is the same as b(x) for general multidimensional case on

a bounded domain. Second, it reveals the possible propagation of discontinuities due to

the kernel. Although b(x) ∈ C(Ω), it might be discontinuous across ∂Ω. So does u(x), and

this discontinuity will be propagated to those points on ∂Ω1, which are δ distance from ∂Ω

onto one order higher derivatives by Theorem 2.1, which is consistent with the conclusion

for 1D case on R with N = 0 and L = 0. Similar argument can be given for Theorem 2.2

which is consistent with the conclusion for 1D case on R with N = 0 and L = 1. This

bootstrap procedure could be repeated again and again, and the corresponding results for

general N and L then follow.

Let us now emphasize on the importance and necessity for the smoothness of the kernel

function. For instance, in Theorem 2.2 γ̃(δ) = 0 is required such that γ̃ has a discontinuity

in its first (but not zeroth) derivative at x = δ. If γ̃(δ) > 0, then from the proof of the

Theorem 2.2, we see that u(x) ∈ C1(Ω) may not hold. In fact, for all x0 ∈ ∂Ω1 and any

unit vector t, since

∂u(x0)

∂t
=

∂b(x0)

∂t
+ γ̃(δ)

∫

∂Bδ(0)
u(x0 + s)t · nsdSs

−

∫

Bδ(0)
u(x0 + s)γ̃′(|s|)t · nsds,

if γ̃(δ) > 0 (that is γ̃ has a discontinuity in its zeroth derivative) and b (thus u) is

discontinuous across ∂Ω, then the term
∫

∂Bδ(0)
u(x+ s)t · nsdSs

is likely to be discontinuous across x0. If so, ∂u
∂t would be discontinuous at x0 (u has a

discontinuity in its first derivative). This situation might happen, as illustrated in Example

2. Using a similar argument we could prove the following theorem.

Theorem 2.3. Suppose that γ(x,y) satisfies (1.3) and (1.4). If the following two condi-

tions hold:

(i) b(x) ∈ C1(Ω), b ∈ C2(Ω1), b ∈ C2(Ω2),

(ii) γ̃(r) ∈ C1(0, δ) and γ̃(δ) = 0.

Then u ∈ C1(Ω), u ∈ C2(Ω1) and u ∈ C2(Ω2).

Proof. The conditions of Theorem 2.2 hold due to the conditions (i) and (ii), so u ∈ C1(Ω).

Furthermore, for any two unit vectors t1 and t2, take a directional derivative for (2.7),

∂2u(x)

∂t1∂t2
=

∂2b(x)

∂t1∂t2
−

∫

Bδ(0)

∂u(x+ s)

∂t2
γ̃′(|s|)t1 · nsds.
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Applying this equality in Ω1 and Ω2 will lead to the conclusion u ∈ C2(Ω1) and u ∈ C2(Ω2),

respectively.

To get the optimal convergence order, we always need the regularity u ∈ H2(Ω), the

following corollary give a sufficient condition to guarantee this property.

Corollary 2.1. Suppose that γ(x,y) satisfies (1.3) and (1.4). If the following two condi-

tions hold:

(i) b(x) ∈ C1(Ω), b ∈ H2(Ω1), b ∈ H2(Ω2),

(ii) γ̃(r) ∈ C1(0, δ) and γ̃(δ) = 0.

Then u ∈ H2(Ω).

Proof. Using the density of C2(Ωi) in H2(Ωi) (i = 1, 2) and Theorem 2.3 we could get the

result u ∈ H2(Ωi). Since u ∈ C1(Ω) is proven, the result u ∈ H2(Ω) holds.

3 A new DG method for nonlocal models with integrable

kernels

Here and after, for a function φ(x) we denote lim
h→0−

φ(x+hnx) by φ(x−) in the case of no

ambiguity. Under the condition of Theorem 2.1, we know that for given x ∈ ∂Ω,

lim
h→0+

u(x+ ht) = u(x−),∀t · nx < 0.

However u(x−) does not need to be zero, that is u(x) is possibly discontinuous across

∂Ω. Thus, it might be inefficient to use continuous FEM on the whole domain Ω ∪ ΩI .

Moreover, since we do not specify the value of the right hand side function on ΩI a priori,

we have no control on the amount of the jump across ∂Ω where the solution is likely to

be discontinuous. Thus, we propose a suitable DG method by adopting a hybrid version

of DG (across the domain boundary) and continuous elements (in the interior domain).

As in [16] the nonlocal energy inner product, the nonlocal energy norm, nonlocal energy

space, and nonlocal volume constrained energy space are defined by

(u, v)‖| :=
( ∫

Ω∪ΩI

∫

Ω∪ΩI

(
u(y)− u(x)

)(
v(y) − v(x)

)
γ(x,y)dydx

)
,

‖|u‖| := (u, u)
1/2
‖| ,

V (Ω ∪ ΩI) := {u ∈ L2(Ω ∪ΩI) : ‖|u‖| < ∞},

Vc,0(Ω ∪ΩI) := {u ∈ V (Ω ∪ ΩI) : u(x) = 0 on ΩI},

respectively. Similar to the definition Vc,0(Ω ∪ ΩI), the subspace of L2(Ω ∪ ΩI) is defined

as follows:

L2
c,0(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : u(x) = 0 on ΩI}.
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The authors in [16] prove that if the kernel function γ(x,y) satisfies (1.3) and (1.4), then

Vc,0(Ω ∪ ΩI) is equivalent to L2
c,0(Ω ∪ ΩI). Denote by

V pc
c,0(Ω ∪ΩI) = {u ∈ Vc,0(Ω ∪ ΩI) : u|Ω ∈ C(Ω)},

where the superscripts pc means partly continuous (continuous in Ω).

For a given triangulation Th of Ω∪ΩI that simultaneously triangulates Ω, let Ωh = Th∩Ω.

Next, let V pc,h
c,0 consist of those functions in V pc

c,0(Ω ∪ ΩI) that are piecewise linear. Since

Ω is convex, this conforming property is satisfied, that is,

V pc,h
c,0 ⊂ V pc

c,0(Ω ∪ ΩI). (3.1)

We assume that Th is shape-regular and quasi-uniform [8] as h → 0, where h denotes

the diameter of the largest element in Th. For a fixed Th, the set of inner nodes of Ωh, i.e.,

all nodes in Ωh \∂Ω, is denoted by NI = {xj : j = 1, 2, · · · ,m}, with piecewise linear basis

functions defined on Th being φj(x), j = 1, 2, · · · ,m. The set of all nodes in Ωh ∩ ∂Ω is

denoted by NB = {xm+j : j = 1, 2, · · · , n} with piecewise linear basis functions defined on

Th being φm+j(x), j = 1, 2, · · · , n. The basis functions for the space V pc,h
c,0 are as follows:

for j = 1, 2, · · · ,m+ n,

φ̂j(x) =

{
φj(x)|Ωh

, x ∈ Ωh,

0, x ∈ (Ω ∪ ΩI) \ Ωh.

Throughout the paper, the generic constant C is always independent of the finite element

mesh parameter h.

Since we know the structure of the true solution and the space it belongs to, we could

design a DG method for its approximation. First, variational form in V pc
c,0(Ω ∪ ΩI) finds

u(x) ∈ V pc
c,0(Ω ∪ ΩI), such that

−

∫

Ω
Lu(x)w(x)dx =

∫

Ω
b(x)w(x)dx, ∀w(x) ∈ V pc

c,0(Ω ∪ ΩI). (3.2)

The finite dimensional approximation for (3.2) finds uh(x) ∈ V pc,h
c,0 , such that

−

∫

Ωh

Luh(x)wh(x)dx =

∫

Ωh

b(x)wh(x)dx, ∀wh(x) ∈ V pc,h
c,0 . (3.3)

Set uh(x) =
m+n∑
j=1

ujφ̂j(x), u = (u1, u2, · · · , um+n)
T . Denote by

d = (d1, d2, · · · , dm+n)
T ,

and

AII = (ai,j)m×m, AIB = (ai,m+j)m×n, ABB = (am+i,m+j)n×n,
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with

di =

∫

Ωh

b(x)φ̂i(x)dx, ai,j = −

∫

Ωh

Lφ̂j(x)φ̂i(x)dx.

Set wh = φ̂i, i = 1, 2, · · · ,m+ n, the algebraic system of (3.3) is

Au = d,

with

A =

(
AII AIB

AT
IB ABB

)
. (3.4)

In the process to solve for uh(x) we use the finite element space V pc,h
c,0 which is continuous

in Ωh, however, discontinuous across ∂Ωh, thus we regard it a conforming but hybrid

version of DG and continuous FEM. This method possesses some advantages as follows:

(i) The method leads to a linear algebraic system with the coefficient matrix A in (3.4)

that is symmetric and positive definite, just as in the case using either the conforming DG

or continuous FEM, thus many efficient solvers suitable to such linear systems could still

be used.

(ii) The method is asymptotically compatible: as shown in [32], as long as the finite

element space contains continuous piecewise linear functions (which is the case for our

hybrid algorithm), the Galerkin finite element approximation is always asymptotically

compatible, and thus offers robust numerical discretizations to problems involving nonlocal

interactions.

(iii) The method has optimal convergence rate provided that the solution is smooth

on Ω, that is O(h2) (O(h)) for error in L2 (H1) norm provided that the true solution

u ∈ H2(Ω). This result is in sharp contrast to the assumption given that in [16] where

to insure the optimal convergence rate the true solution is required to be in H2(Ω ∪ ΩI)

which generally not holds for the problem (2.4). Furthermore, it has optimal convergence

rate for 1D case under very weak assumptions, and nearly optimal convergence rate for

two dimensional (2D) case under some mild assumptions, as shown in the next section.

(iv) The method, in comparison with the direct use of DG in all discrete elements, uses

a smaller degree of freedoms. For example, the degree of freedoms is n + 1 versus 2n for

a mesh with n+ 1 nodes in 1D case, and (n + 1)2 versus 6n2 for a uniform triangulation

with n2 nodes in 2D case.

4 Theoretical Analysis

We now provide further theoretical analysis on the new DG approximations. Given what

has already been discussed in (ii) of the above section, the asymptotic compatibility is

assured and we thus focus on the case where the problems remain strictly nonlocal.
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4.1 Convergence

The following convergence result describes the best approximation property of the finite-

dimensional Ritz-Galerkin solution.

Theorem 4.1. If γ(x,y) satisfies (1.3) and (1.4), b(x) ∈ C(Ω), u(x) is the solution of

(2.4), uh(x) is the solution of (3.3). We define

ũ(x,Ωh) =

{
u(x), x ∈ Ωh,

0, x ∈ (Ω ∪ ΩI) \ Ωh.

Then we have

‖|ũ− uh‖| ≤ inf
wh∈V

pc,h
c,0

‖|ũ− wh‖| . (4.1)

Consequently,

‖u− uh‖Ωh
≤ C min

wh∈V
pc,h
c,0

‖u− wh‖Ωh
→ 0 as h → 0. (4.2)

Proof. Since V pc,h
c,0 ⊂ V pc

c,0(Ω ∪ ΩI) as in (3.1), then for all wh ∈ V pc,h
c,0 ,

−

∫

Ωh

Lũ(x,Ωh)wh(x)dx =

∫

Ωh

b(x)wh(x)dx,

together with (3.3), we have

−

∫

Ωh

L
(
ũ(x,Ωh)− uh(x)

)
wh(x)dx = 0, ∀wh ∈ V pc,h

c,0 .

Using the nonlocal Green’s first identity [17], we have

(ũ− uh, wh)‖| = 0, ∀wh ∈ V pc,h
c,0 .

Then we get the following estimate

‖|ũ− uh‖|
2 = (ũ− uh, ũ− uh)‖| = (ũ− uh, ũ− wh)‖|

≤ ‖|ũ− uh‖|‖|ũ − wh‖|, ∀wh(x) ∈ V pc,h
c,0 ,

and then

‖|ũ− uh‖| ≤ ‖|ũ− wh‖|, ∀wh(x) ∈ V pc,h
c,0 .

By the equivalence between Vc,0(Ω ∪ ΩI) and L2
c,0(Ω ∪ ΩI), we complete the proof.

Let us note that due to the use of norm equivalence in the above proof, generally

speaking, the constant C in the lemma could depend on the nonlocal space and thus the

nonlocal kernel. One may not infer that this constant remains uniformly bounded when
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we consider the local limit of the nonlocal problem. Fortunately, as alluded to earlier,

with the asymptotic compatibility already established in [32], we hereby only focus on the

strict nonlocal case.

We now combine the theory of the interpolation error estimate and (4.2) to give the

convergence rate estimate.

Theorem 4.2. If γ(x,y) satisfies (1.3) and (1.4), b(x) ∈ C(Ω), u(x) is the solution of

(2.4), uh(x) is the solution of (3.3). Suppose that u ∈ Ht(Ω) holds, there exists a constant

C such that, for sufficiently small h,

‖u− uh‖Ωh
≤ Chs‖u‖s,Ω, (4.3)

with s = min(t, 2) > d/2. If s > 1

‖∇(u− uh)‖Ωh
≤ Chs−1‖u‖s,Ω. (4.4)

Moreover, if the following two conditions hold:

(i) b(x) ∈ C1(Ω), b ∈ H2(Ω1), b ∈ H2(Ω2);

(ii) γ(x,y) is a radial function such that γ̃(r) ∈ C1(0, δ) and γ̃(δ) = 0.

Then u ∈ H2(Ω), thus s = 2.

Proof. Denote by Ihu the Lagrange interpolant from C(Ωh) to V pc,h
c,0 |Ωh

wh(x) =

{
Ihu(x), x ∈ Ωh,

0, x ∈ (Ω ∪ ΩI) \ Ωh,

then wh ∈ V pc,h
c,0 , and

‖u− wh‖Ωh
= ‖u− Ihu‖Ωh

≤ Chs‖u‖s,Ω, (4.5)

with s = min(t, 2). Combination of (4.2) and (4.5) leads to (4.3).

Using the inverse estimate for finite element space, we have

‖∇(u− uh)‖Ωh
≤ ‖∇(Ihu− uh)‖Ωh

+ ‖∇(u− Ihu)‖Ωh

≤ Ch−1‖Ihu− uh‖Ωh
+ Chs−1‖u‖s,Ω ≤ Chs−1‖u‖s,Ω

This is the desired result (4.4).

The conditions (i) and (ii) lead to u ∈ H2(Ω) due to Corollary 2.1.

We recall by Theorem 6.2 in [16] that, when continuous FEM is used to approximate

the nonlocal problem (2.4), the approximation un has an error estimate of the form

‖u − un‖Ω∪ΩI
≤ Chs‖u‖s,Ω∪ΩI

. Since the solution of nonlocal problem (2.4) could be

discontinuous across ∂Ω, we see that u ∈ Hs(Ω ∪ΩI) does not hold for s ≥ 1/2, let alone

for s = 2. For 1D case, the best to expect is s = 1/2 − ǫ for arbitrary small positive ǫ
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if continuous FEM is used. Theorem 4.2 improves the convergence rate from 1/2 − ǫ to

3/2−ǫ for this case since we have the regularity of H3/2−ǫ(Ω). This convergence rate is still

not optimal. If the points on ∂Ω1 are selected as the mesh grids, the optimal convergence

rate could be obtained.

Theorem 4.3. For the 1D case, assume u ∈ C(0, 1), u ∈ H2(0, δ), u ∈ H2(δ, 1 − δ),

u ∈ H2(1 − δ, 1). If δ and 1 − δ are all selected as the mesh grids, then there exists a

constant C such that, for sufficiently small h,

‖u− uh‖(0,1) + h‖u′ − u′h‖(0,1) ≤ Ch2
(
‖u‖2,(0,δ) + ‖u‖2,(δ,1−δ) + ‖u‖2,(1−δ,1)

)
. (4.6)

Proof. Using the interpolation error estimate in three intervals (0, δ), (δ, 1−δ) and (1−δ, 1),

respectively and add them together, we get

‖u− Ihu‖(0,1) ≤ Ch2
(
‖u‖2,(0,δ) + ‖u‖2,(δ,1−δ) + ‖u‖2,(1−δ,1)

)
.

Together with (4.2) and the inverse estimate we get (4.6).

For 2D case, under mild assumptions on the smoothness of the boundary, the regularity

of the solution, and the conformity between the mesh and the boundary, we have the

almost optimal convergence rate, that is optimal up to a factor | log h|1/2.

Theorem 4.4. For 2D case, assume u ∈ C(Ω), u ∈ H2(Ω1), u ∈ H2(Ω2). If ∂Ω is of

class C2, and NB ⊂ ∂Ω1, then there exists a constant C such that, for sufficiently small

h,

‖u− uh‖Ωh
+ h‖∇(u− uh)‖Ωh

≤ Ch2| log h|1/2
(
‖u‖2,Ω1

+ ‖u‖2,Ω2

)
.

Proof. We cite from [11] the results for the linear interpolation error estimate for the

interface problem, that is

‖u− Ihu‖Ωh
≤ Ch2| log h|1/2

(
‖u‖2,Ω1

+ ‖u‖2,Ω2

)
.

Together with (4.2) and the inverse estimate we complete the proof.

Remark 4.1. Due to the structure of the solution for the problem (2.4) we have discussed,

the solution u is often discontinuous across ∂Ω. It may cause the discontinuity of the first

derivative across ∂Ω1 if γ̃(r) has a discontinuity at r = δ (that is γ̃(δ) > 0), or the

discontinuity of the second derivative across ∂Ω1 if γ̃(r) is continuous at r = δ (that is

γ̃(δ) = 0) but γ̃′(r) has a discontinuity at r = δ (that is γ̃′(δ−) 6= 0). In the next section,

we will discuss two kinds of kernels representing the above two cases, respectively.
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4.2 Condition number estimate

The condition number of the stiffness matrix is an indicator of the sensitivity of the

discrete solution with respect to the data and the performance of iterative solvers such as

the conjugate-gradient method. For the DG method we propose in Section 3, consider the

(m + n) × (m + n) stiffness matrix A defined in (3.4). We have the following condition

number estimate whose proof is standard and is given for completeness. Similar discussions

can be found in earlier studies [1, 36].

Theorem 4.5. For the stiffness matrix A defined in (3.4) associated with the kernel

γ(x,y) that satisfies (1.3) and (1.4), there exists a constant C such that

cond2(A) ≤ C.

Proof. For the given finite element nodal basis, there exist two generic constants c2 ≥ c1 >

0 such that

c1h
d|w|2 ≤ ‖wh‖

2 ≤ c2h
d|w|2 , ∀wh =

m+n∑

j=1

wj φ̂j ∈ V pc,h
c,0 ,

where {wj}, j = 1, 2, · · · ,m+n, are components of the vector w. Since the space Vc,0(Ω∪

ΩI) is equivalent to the space L2
c,0(Ω ∪ ΩI), we get the theorem immediately.

Remark 4.2. We note again that the constant C may depend on the kernel, as demon-

strated in [36], hence the result is only meaningful for nonlocal problems with a fixed kernel

that satisfies the assumptions (1.3) and (1.4).

5 Numerical results

We now report results of numerical experiments which substantiate the theoretical analysis

in Section 4. For 1D case, the problem (2.4) becomes the following form

{
−
∫ δ
−δ

(
u(x+ s)− u(x)

)
γ(s)ds = b(x) on (0, 1),

u(x) = 0 on (−δ, 0] ∪ [1, 1 + δ).
(5.1)

We solve the nonlocal problem first on uniform meshes and take δ to be a constant multiple

of h and reduce h to check convergence and condition number properties of the proposed

DG method, and then solve the problem on non-uniform meshes which are obtained by

random disturbance to uniform meshes. Here we choose two popular examples of kernel

functions representing two cases as discussed in Remark 4.1.
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Figure 1: Example 1: The right hand side function and the exact solution.

5.1 Constant kernel function

We first consider the following kernel function

γ(s) =

{
(2δ)−1, |s| ≤ δ,

0, |s| > δ.
(5.2)

Obviously γ defined as (5.2) is discontinuous at points ±δ, if b is discontinuous at x = 0

or x = 1, the solution of (5.1) will probably be (however, not necessarily) discontinuous in

its first derivative at x = δ or x = 1− δ. In fact, in Example 1 the smoothness pick-up is

beyond first order, that is, although b is discontinuous at x = 1, u is infinitely continuously

differentiable at x = 1− δ. While in Example 2 the smoothness pick-up is only first order

and could not be improved, that is, since b is discontinuous at x = 0 and x = 1, the first

derivative of u is is discontinuous at x = δ and x = 1− δ.

Example 1. In order to get simpler benchmark solutions, we calculate the right-hand

side of (5.1) based on an exact solution u(x) = x2, x ∈ Ω = (0, 1) and u(x) = 0, x ∈

ΩI = (−δ, 0)∪ (1, 1+ δ), with kernel function (5.2). This naturally leads to a δ-dependent

right-hand side b(x) = bδ(x), see Figure 1 for the plots of u(x) and b(x). The DG method

we proposed in Section 3 is used to discretize it with δ = 0.4.

We first use the proposed DG method on uniform meshes and conclude from Table

1 that convergence rates for errors in L2 and H1 norms are all optimal. The spectral

condition number of the stiffness matrix is almost constant when the mesh size decreases,

indicating the insensitivity of the discrete solution regardless how small h is. We then use

a kind of non-uniform meshes obtained by random disturbance to uniform meshes. To be

specific, for a fixed m, let h = δ/m, the non-uniform mesh is obtained by adding a random

vector ε ∈ R
m−1 (which obeys the uniform distribution on [−0.1h, 0.1h]) to xi to reach

xi + εi, i = 1, 2, · · · ,m− 1. Together with x0 and xm we get the new mesh grids

xni = xi + εi, i = 1, 2, · · · ,m− 1, xn0 = x0, x
n
m = xm. (5.3)
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Table 1: Example 1: Errors in L2 and H1 norms, corresponding convergence rates and

spectral condition numbers on uniform meshes, Cond is abbreviation for the spectral

condition number

δ/h 4 8 16 32 64 128

‖u− uh‖ 7.45e-4 1.86e-4 4.66e-5 1.16e-5 2.91e-6 7.28e-7

Rate – 2.0000 2.0000 2.0000 2.0000 2.0000

‖u′ − u′h‖ 5.77e-2 2.89e-2 1.44e-2 7.22e-3 3.61e-3 1.80e-3

Rate – 1.0000 1.0000 1.0000 1.0000 1.0000

Cond 5.8875 6.7743 6.9926 7.0294 7.0282 7.0225

Table 2: Example 1: Errors in L2 and H1 norms, corresponding convergence rates and

spectral condition numbers on non-uniform meshes (5.3)

δ/h 4 8 16 32 64

‖u− uh‖ 8.04e-4 2.50e-4 6.00e-5 1.24e-5 3.14e-6

Rate – 1.6827 2.0629 2.2710 1.9846

‖u′ − u′h‖ 5.84e-2 2.95e-2 1.48e-2 7.30e-3 3.65e-3

Rate – 0.9848 0.9965 1.0179 0.9983

Cond 5.9830 6.7507 7.0829 7.0786 7.0646

We have done over twenty tests, and the convergence rates and the spectral condition

numbers are all similar. Thus, instead of listing all of them, we just select one test to

verify our theoretical analysis. Similar actions and presentations are made also in later

examples. It is seen from Table 2 that the errors in L2 andH1 norms and convergence rates

are comparable with that in uniform meshes case. This is consistent with the theoretical

result in Theorem 4.2 since u ∈ C∞(Ω), thus s = 2. The spectral condition numbers of

the stiffness matrices behave similar as in the uniform meshes case, too.

Example 2. We consider (5.1) with kernel function (5.2) and b(x) = ex. The DG method

we proposed in Section 3 is used to discretize it with δ = 0.4. Since the exact solution

u(x) is not known for this problem we compute errors using the solution on finer meshes

as approximation of the true solution. We first use the proposed DG method on uniform

meshes. The right hand side function b(x) and the approximation uh with h = 0.00625 are

plotted in Figure 2. Although b(x) is in C∞(0, 1), it has two discontinuous points x = 0

and x = 1, which causes the discontinuity in the first derivative of u at x = δ = 0.4 and

x = 1 − δ = 0.6. From Table 3 it is seen that the method has optimal convergence rates

for errors in L2 and H1 norms. The spectral condition numbers of the stiffness matrices

for the method behave similarly as Example 1. Since the results for the spectral condition

numbers of the stiffness matrices are all similar in the rest of the numerical tests, we

no longer list them to avoid repetitions. Next, we use the non-uniform meshes (5.3) to
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Figure 2: Example 2: The right hand side function and the approximation solution.

Table 3: Example 2: Errors in L2 and H1 norms, corresponding convergence rates and

spectral condition numbers on uniform meshes

δ/h 4 8 16 32 64

‖u− uh‖ 7.54e-3 1.79e-3 4.38e-4 1.08e-4 2.69e-5

Rate – 2.0717 2.0349 2.0170 2.0084

‖u′ − u′h‖ 4.90e-1 2.41e-1 1.19e-1 5.94e-2 2.97e-2

Rate – 1.0259 1.0114 1.0053 1.0026

Cond 5.8875 6.7743 6.9926 7.0294 7.0282
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Table 4: Example 2: Errors in L2 and H1 norms, and convergence rates on non-uniform

meshes (5.3)

δ/h 4 8 16 32 64

‖u− uh‖ 9.34e-3 3.41e-3 1.24e-3 4.26e-4 1.59e-4

Rate – 1.4519 1.4611 1.5411 1.4222

‖u′ − u′h‖ 3.95e-1 2.66e-1 2.13e-1 1.42e-1 1.21e-1

Rate – 0.5712 0.3204 0.5815 0.3432

Table 5: Example 2: Errors in L2 and H1 norms, and convergence rates on non-uniform

meshes (5.3) with δ and 1− δ as grids

δ/h 4 8 16 32 64

‖u− uh‖ 6.98e-3 1.72e-3 4.10e-4 1.01e-4 2.49e-5

Rate – 2.0229 2.0661 2.0243 2.0180

‖u′ − u′h‖ 4.17e-1 2.14e-1 1.01e-1 4.74e-2 2.42e-2

Rate – 0.9646 1.0781 1.0941 0.9671

solve the problem. In this example the true solution u(x) ∈ H1.5−ǫ(Ω) for arbitrary small

positive ǫ. So for general non-uniform meshes, we expect the convergence rates for errors

in L2 (H1) norm to be at most 1.5 (0.5). This fact is verified in Table 4. However, since

we know the two discontinuous points of u′(x), if they are selected as mesh grids, optimal

convergence rates could be recovered. To be specific, random disturbances are added to

the original mesh grids except δ and 1− δ. The corresponding results are shown in Table

5. That is the convergence rates for errors in L2 and H1 norms are 2 and 1, respectively,

which is consistent with the theoretical result (4.6). We then re-examine the computation

on the meshes used in Table 4. The convergence rates, however, are not necessarily similar,

which is different with Example 1. To be specific, if the perturbation for the points δ and

1−δ is large in absolute value, such as 0.1h, the convergence rates remain similar to Table

4. On the other hand, if the perturbation for the two points is small or close to zero, the

convergence rates of the test are similar to Table 5.

5.2 Non-constant kernel function

We then consider the kernel function

γ(s) =

{
(1− |s|/δ)/δ, |s| ≤ δ,

0, |s| > δ.
(5.4)

Obviously the first derivative of γ is discontinuous at points ±δ, if b is discontinuous at

x = 0 or x = 1, thus u will likely be discontinuous in its second derivative at x = δ or
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Figure 3: Example 3: The approximation solution and its derivative.

Table 6: Example 3: Errors in L2 andH1 norms, and convergence rates on uniform meshes

δ/h 4 8 16 32 64

‖u− uh‖ 1.18e-2 2.74e-3 6.61e-4 1.62e-4 4.03e-5

Rate – 2.1019 2.0525 2.0246 2.0116

‖u′ − u′h‖ 7.20e-1 3.60e-1 1.79e-1 8.90e-2 4.44e-2

Rate – 1.0018 1.0089 1.0056 1.0030

x = 1− δ. This is the case in Example 3 where the regularity pick-up is only second order

and could not be further improved. That is, since b is discontinuous at x = 0 and x = 1,

the second derivative of u is is discontinuous at x = δ and x = 1− δ.

Example 3. We consider (5.1) with kernel function (5.4) and b(x) = 0.01e6x. The

proposed DG method in Section 3 is used to discretize it with δ = 0.4. As in Example 2,

since we do not know the exact solution u(x), errors are computed using the solution on

finer meshes as approximation of the true solution. We first implement the proposed DG

method on uniform meshes. The approximation uh(x) with h = 0.00625 are plotted in

Figure 3. To see the discontinuity of the second derivative, the first derivative of uh(x) is

also plotted in Figure 3. Although b(x) ∈ C∞(0, 1), however, b(x) has two discontinuous

points x = 0 and x = 1, which causes the discontinuity for the second derivative of u at

x = δ = 0.4 and x = 1 − δ = 0.6. From Table 6 it is seen that optimal convergence rates

for errors in L2 and H1 norms are achieved.

Next, we use non-uniform meshes (5.3) to solve the problem. In this example the true

solution satisfies u(x) ∈ H2.5−ǫ(Ω) for arbitrary small positive ǫ. So for general non-

uniform meshes the theoretical convergence rates for errors in L2 and H1 norms are all

optimal. This is indeed verified in Table 7.

Remark 5.1. We have considered the homogeneous problem (2.4) with a right hand side

function b(x) ∈ C(Ω). The inhomogeneous problem (1.2) could be converted to a homoge-
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Table 7: Example 3: Errors in L2 and H1 norms, and convergence rates on nonuniform

meshes (5.3)

δ/h 4 8 16 32 64

‖u− uh‖ 1.11e-2 2.61e-3 6.08e-4 1.51e-4 3.76e-5

Rate – 2.0891 2.0993 2.0143 1.9985

‖u′ − u′h‖ 6.70e-1 3.32e-1 1.51e-1 7.47e-2 3.67e-2

Rate – 1.0128 1.1331 1.0189 1.0261

neous one like (2.4) via the transforms (2.1) and (2.2).

6 Conclusion

We propose a new kind of DG method in this paper to numerically solve the nonlocal

models with integrable kernels. The existed references tell us that if the right hand side

function and the volume constraint function are in L2(Ω) and L2(ΩI), respectively, then

the true solution of that nonlocal model also belongs to L2(Ω ∪ ΩI). Such a general

result makes the numerical approximation difficult to operate, or easy to operate but

not so efficiently. To make the approximation easier and more efficient simultaneously,

we first convert the original nonhomogeneous problem with right hand side function in

L2(Ω) to a homogeneous problem with right hand side function continuous in Ω. Then

we analyze the structure of true solution of the homogeneous problem, especially for

higher dimensional cases. The main result is, this kind of problem often encounters the

discontinuity across the boundary ∂Ω, thus possibly causes the discontinuity of first or

second derivative (perhaps higher order derivatives, depending on the smoothness of the

kernels) across ∂Ω1. Based on this observation, an appropriate DG method is proposed

which has some good properties, such as, the matrix of the algebraic system is symmetrical

positive definite and has almost constant spectral condition number independent of the

mesh size, the method is asymptotically compatible and uses less degrees of freedom

compared with direct use of DG method. Moreover, it has optimal convergence rate for

1D case under very weak assumption, and the almost optimal convergence rate for 2D

case under mild assumption. This is the essential improvement over the existed theory for

standard approximation like continuous FEM.

The error and condition number estimates for the method are proven in Section 4 for

any dimensional case. However, the numerical experiments are implemented just for 1D

case in Section 5. This is because the implementation of a FEM for a nonlocal problem

involves calculation of double integral which is rather complicated for higher dimensional

cases. To be more specific, since the kernels we discussed are supported on a ball of radius

δ, when the inner integral of the double integral is written by a sum of some components
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(also integrals) over the elements which overlap with the support of the kernel, the integral

region for some components is strictly contained within the support of the kernel. For such

special integrals, some specifically designed quadrature rule should be used to obtain good

accuracy. Authors in [34, 35] discuss this issue in details and use the quadrature rule for

multiscale implementation for PD models. Interested readers are referred to them and

references cited therein.
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[4] Fuensanta Andreu-Vaillo, José M Mazón, Julio D Rossi, and J Julián Toledo-Melero.

Nonlocal diffusion problems. Number 165. American Mathematical Soc., 2010.

[5] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. Uni-

fied analysis of discontinuous galerkin methods for elliptic problems. SIAM Journal

on Numerical Analysis, 39(5):1749–1779, 2002.

[6] E Askari, F Bobaru, RB Lehoucq, ML Parks, SA Silling, and O Weckner. Peridy-

namics for multiscale materials modeling. In Journal of Physics: Conference Series,

volume 125, page 012078. IOP Publishing, 2008.

[7] Florin Bobaru, Mijia Yang, Leonardo Frota Alves, Stewart A Silling, Ebrahim Askari,

and Jifeng Xu. Convergence, adaptive refinement, and scaling in 1d peridynamics.

International Journal for Numerical Methods in Engineering, 77(6):852–877, 2009.

[8] Susanne Brenner and Ridgway Scott. The mathematical theory of finite element

methods, volume 15. Springer Science & Business Media, 2007.

[9] Nathanial Burch and Richard Lehoucq. Classical, nonlocal, and fractional diffusion

equations on bounded domains. International Journal for Multiscale Computational

Engineering, 9(6):661–674, 2011.

[10] Xi Chen and Max Gunzburger. Continuous and discontinuous finite element methods

for a peridynamics model of mechanics. Computer Methods in Applied Mechanics and

Engineering, 200(9):1237–1250, 2011.

20



[11] Zhiming Chen and Jun Zou. Finite element methods and their convergence for elliptic

and parabolic interface problems. Numerische Mathematik, 79(2):175–202, 1998.

[12] Q. Du, L. Ju, and J. Lu. A discontinuous Galerkin method for one-dimensional time-

dependent nonlocal diffusion problems. Mathematics of Computation, 88:123–147,

2019.

[13] Q. Du, J. Yang, and Z. Zhou. Analysis of a nonlocal-in-time parabolic equation.

Discrete & Continuous Dynamical Systems-B, 22(2):339–368, 2017.

[14] Qiang Du. An invitation to nonlocal modeling, analysis and computation. In Proceed-

ings International Congress of Mathematicians, volume 3, pages 3523–3552, 2018.

[15] Qiang Du. Nonlocal modeling, analysis and computation. SIAM, 2019.

[16] Qiang Du, Max Gunzburger, Richard B Lehoucq, and Kun Zhou. Analysis and

approximation of nonlocal diffusion problems with volume constraints. SIAM review,

54(4):667–696, 2012.

[17] Qiang Du, Max Gunzburger, Richard B Lehoucq, and Kun Zhou. A nonlocal vector

calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathe-

matical Models and Methods in Applied Sciences, 23(03):493–540, 2013.

[18] Qiang Du, Lili Ju, Li Tian, and Kun Zhou. A posteriori error analysis of finite

element method for linear nonlocal diffusion and peridynamic models. Mathematics

of Computation, 82(284):1889–1922, 2013.

[19] Qiang Du, Yunzhe Tao, and Xiaochuan Tian. A peridynamic model of fracture

mechanics with bond-breaking. Journal of Elasticity, pages 1–22, 2017.

[20] Qiang Du and Kun Zhou. Mathematical analysis for the peridynamic nonlocal contin-

uum theory. ESAIM: Mathematical Modelling and Numerical Analysis, 45(2):217–234,

2011.

[21] Etienne Emmrich, Olaf Weckner, et al. On the well-posedness of the linear peri-

dynamic model and its convergence towards the navier equation of linear elasticity.

Communications in Mathematical Sciences, 5(4):851–864, 2007.

[22] Bahattin Kilic and Erdogan Madenci. Coupling of peridynamic theory and the finite

element method. Journal of Mechanics of Materials and Structures, 5(5):707–733,

2010.

[23] Richard W Macek and Stewart A Silling. Peridynamics via finite element analysis.

Finite Elements in Analysis and Design, 43(15):1169–1178, 2007.

[24] Erkan Oterkus and Erdogan Madenci. Peridynamic analysis of fiber-reinforced com-

posite materials. Journal of Mechanics of Materials and Structures, 7(1):45–84, 2012.

21



[25] Pablo Seleson, Michael L Parks, Max Gunzburger, and Richard B Lehoucq. Peridy-

namics as an upscaling of molecular dynamics. Multiscale Modeling & Simulation,

8(1):204–227, 2009.

[26] Stewart A Silling. Reformulation of elasticity theory for discontinuities and long-range

forces. Journal of the Mechanics and Physics of Solids, 48(1):175–209, 2000.

[27] Stewart A Silling and Ebrahim Askari. A meshfree method based on the peridynamic

model of solid mechanics. Computers & structures, 83(17-18):1526–1535, 2005.

[28] Stewart A Silling and RB Lehoucq. Peridynamic theory of solid mechanics. Advances

in Applied Mechanics, 44:73–168, 2010.

[29] Stewart A Silling, O Weckner, E Askari, and Florin Bobaru. Crack nucleation in a

peridynamic solid. International Journal of Fracture, 162(1-2):219–227, 2010.

[30] STEWART A Silling, Markus Zimmermann, and Rohan Abeyaratne. Deformation of

a peridynamic bar. Journal of Elasticity, 73(1-3):173–190, 2003.

[31] Xiaochuan Tian and Qiand Du. Analysis and comparison of different approximations

to nonlocal diffusion and linear peridynamic equations. SIAM Journal on Numerical

Analysis, 51(6):3458–3482, 2013.

[32] Xiaochuan Tian and Qiang Du. Asymptotically compatible schemes and applications

to robust discretization of nonlocal models. SIAM Journal on Numerical Analysis,

52(4):1641–1665, 2014.

[33] Hong Wang and Hao Tian. A fast galerkin method with efficient matrix assembly and

storage for a peridynamic model. Journal of Computational Physics, 231(23):7730–

7738, 2012.

[34] Feifei Xu. A multiscale implementation of finite element methods for nonlocal models

of mechanics and diffusion. PhD thesis, The Florida State University, 2015.

[35] Feifei Xu, Max Gunzburger, and John Burkardt. A multiscale method for nonlo-

cal mechanics and diffusion and for the approximation of discontinuous functions.

Computer Methods in Applied Mechanics and Engineering, 307:117–143, 2016.

[36] K. Zhou and Q. Du. Mathematical and numerical analysis of linear peridynamic

models with nonlocal boundary conditions. SIAM Journal on Numerical Analysis,

48(5):1759–1780, 2010.

[37] Kun Zhou and Qiang Du. Mathematical and numerical analysis of linear peridynamic

models with nonlocal boundary conditions. SIAM Journal on Numerical Analysis,

48(5):1759–1780, 2010.

22


	1 Introduction
	2 The structure of the solution
	2.1 The structure of the solution for general dimensional cases on bounded domains
	2.2 Discontinuities due to the right hand side function
	2.3 Propagation of discontinuities due to the kernel

	3 A new DG method for nonlocal models with integrable kernels
	4 Theoretical Analysis
	4.1 Convergence
	4.2 Condition number estimate

	5 Numerical results
	5.1 Constant kernel function
	5.2 Non-constant kernel function

	6 Conclusion

