Skip to main content
Log in

Stokes Problem with Slip Boundary Conditions of Friction Type: Error Analysis of a Four-Field Mixed Variational Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, a finite element approximation of the Stokes problem under a slip boundary condition of friction type, known as the Tresca boundary condition, is considered. We treat the approximate problem of a four field mixed formulation using the \({\mathbb {P}}^{1}\)-bubble element for the velocity field, \({\mathbb {P}}^{1}\) element for the pressure field and the \({\mathbb {P}}^{1}\) element for the Lagrange multipliers \(\lambda _{n}\) and \(\lambda _{t}\) defined on the slip boundary. The multiplier \(\lambda _{t}\) is introduced to regularize the non-differentiable problem, whereas \(\lambda _{n}\) treats the impermeability condition. Existence and uniqueness results for both continuous and discrete problems are proven and an a priori error estimate is established. Numerical realization of such problem is discussed and some numerical tests are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ayadi, M., Baffico, L., Gdoura, M.K., Sassi, T.: Error estimates for Stokes problem with Tresca conditions. ESAIM Math. Model. Numer. Anal. 48(5), 1413–1429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baffico, L., Sassi, T.: Existence result for a fluid structure interaction problem with friction type slip boundary condition. ZAMM Z. Angew. Math. Mech. 95(8), 831–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Belgacem, F., Renard, Y.: Hybrid finite element method for the Signorini problem. Math. Comput. 72(243), 1117–1145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  6. Djoko, J.K., Mbehou, M.: Finite element analysis for Stokes and Navier–Stokes equations driven by threshold slip boundary condition. Int. J. Numer. Anal. Model. Ser. B 4(3), 235–255 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Djoko, J.K.: Discontinuous Galerkin finite element discretization for steady Stokes flows with threshold slip boundary condition. Quaest. Mathe. 36(4), 501–516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ern, A., Guermond, J.-L.: Éléments Finis: Théorie, Application, Mise en Oeuvre, Mathématiques et Applications 36, SMAI. Springer, Berlin (2001)

    Google Scholar 

  9. Fujita, H.: A Mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions. Math. Fluid Mech. Model. Sūrikaisekikenkyūsho Kōkyūroku 888, 199–216 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Fujita, H., Kawarada, H.: Variational inequalities for the Stokes equation with boundary conditions of friction type. Recent Dev. Domain Decompos. Methods Flow Probl. 11, 15–33 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Fujita, H.: Remarks on the Stokes flows under slip and leak boundary conditions of friction type. Top. Math. Fluid Mech. 10, 73–94 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149, 57–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gdoura, M.K.: Problème de Stokes avec des conditions aux limites non-linéaires: analyse numérique et algorithmes de résolution, Thèse en co-tutelle, Université Tunis El Manar et Université de Caen Basse Normandie (2011)

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  15. Haslinger, J., Stebel, J.: Stokes problem with a solution dependent slip bound: stability of solutions with respect to domains. ZAMM Z. Angew. Math. Mech. 96(9), 1049–1060 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hatzikiriakos, Savvas G.: Slip mechanisms in complex fluid flows. Soft Matter 11(40), 7851–7856 (2015)

    Article  Google Scholar 

  17. Howell, J.S., Walkington, N.J.: Inf-sup conditions for twofold saddle point problems. Numer. Math. 118(4), 663–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kashiwabara, T.: Finite element method for Stokes equations under leak boundary condition of friction type. SIAM J. Numer. Anal. 51(4), 2448–2469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kershaw, D.: The explicit inverses of two commonly occurring matrices. Math. Comput. 23, 189–191 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  21. Kucera, R.: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convexe constraints. SIAM J.Optim. 19(2), 846–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Roux, C., Tani, A.: Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions. Math. Meth. Appl. Sci. 30(5), 595–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., An, R.: Two-level pressure projection finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions. Appl. Numer. Math. 61(3), 285–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Li, K.: Locally stabilized finite element method for Stokes problem with nonlinear slip boundary condition. J. Comput. Math. 28(6), 826–836 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Li, K.: Pressure projection stabilized finite element method for Stokes problem with nonlinear slip boundary conditions, 461. J. Comput. Appl. Math. 235, 3673–682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications. Dunod, Paris (1968)

    MATH  Google Scholar 

  27. Saito, N.: On the Stokes equation with the leak and slip boundaryconditions of friction type: regularity of solutions (in English). Res. Inst. Math. Sci. 40(2), 345–383 (2004); errata Publ. Res.Inst. Math. Sci. 48(2), 475–476 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Baffico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Estimate of \(N^0\)

Appendix. Estimate of \(N^0\)

For simplicity we suppose that \(\varGamma =[0,1]\), that \(\varGamma _{ns} = [{\hat{x}},1]\) and we study the orthogonal projection of \(L^2(\varGamma )\) on \(\tilde{W_h}\) assuming that \({{{\mathscr {T}}}}_h|_\varGamma \) is a uniform mesh. Let \(N=\dim ({\tilde{W}}_h)\). Since \(\pi _h u_t = \sum _{i=1}^N \alpha _i \varphi _i\) with vector \(\alpha = (\alpha _1,\ldots , \alpha _N)\in {\mathbb {R}}^N\) solution of the linear system \( A \alpha = \ell , \) where \(A = (a_{ij})\) is the \(N\times N\) mass matrix with \(a_{ij} = \int _\varGamma \varphi _i \varphi _j \mathrm {d}\varGamma \), \(1\le i,j,\le N\) and \(\ell = (\ell _i)\) with \(\ell _i = \int _\varGamma u_t \varphi _i \mathrm {d}\varGamma \), \(1\le i \le N\).

We consider the elements \(e_k\) of \({{\mathscr {T}}}_h|_\varGamma \) such that \(e_k\cap \varGamma _{ns} \ne \emptyset \), that is \(\varGamma _{ns,h}=\cup _{k=k_0}^{N-1} e_k (\supset \varGamma _{ns})\) with \({\hat{x}} \in e_{k_0}\) (we have supposed here that the elements \(e_k\) are numbered from left to right). Then the vector \({\tilde{\alpha }}=(\alpha _{k_0+1},\ldots \alpha _N)\) is solution of \( {\tilde{A}} {\tilde{\alpha }} = {\tilde{\ell }}, \) where \({\tilde{A}}\) and \({\tilde{\ell }}\) are, respectively, the tridiagonal matrix and the right-hand side vector defined by

$$\begin{aligned} \frac{h}{6} \left( \begin{array}{cccccc} 4 &{}\quad 1 &{}\quad 0 &{}\quad \ldots &{}\quad \ldots &{}\quad 0 \\ 1 &{}\quad 4 &{}\quad 1 &{}\quad 0 &{}\quad \ldots &{}\quad 0 \\ &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots \\ &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots \\ 0 &{}\quad \ldots &{}\quad 0 &{}\quad 1 &{}\quad 4 &{}\quad 1 \\ 0 &{}\quad \ldots &{}\quad \ldots &{}\quad 0 &{}\quad 1 &{}\quad 2 \end{array} \right) , \quad \text{ and }\quad \left( \begin{array}{c} \ell _{k_0+1} - \frac{h}{6}\alpha _{k_0} \\ 0 \\ \vdots \\ \vdots \\ 0\\ 0 \end{array} \right) . \end{aligned}$$

The solution of this system can be calculated explicitly using the properties of Chebyshev’s polynomials of the first and second kind \(T_k\) and \(U_k\), respectively (see [19]). In fact, renumbering from \(k=1\) to \(n=N-k_0\) and using the recurrence relations \(T_{k+1}(\lambda ) = 2\lambda T_k(\lambda ) - T_{k-1}(\lambda )\) and \(U_{k+1}(\lambda ) = 2\lambda U_k(\lambda ) - U_{k-1}(\lambda )\), we have that \(\tilde{\alpha _k} = CT_k(-2) + DU_{k-1}(-2)\), with \(C,D\in {\mathbb {R}}\), satisfies the \(k-\)th homogeneous equation of the linear system \({\tilde{A}} {\tilde{\alpha }} = {\tilde{\ell }}\), for \(2 \le k \le n\). With the first, second and n-th equations of the linear system we can write a \(3\times 3\) linear system for \(\tilde{\alpha _1}\), C and D. The resolution of this system leads to

$$\begin{aligned} \tilde{\alpha _k} = \frac{6}{h}{\tilde{\ell }}_1 (a T_k(\lambda ) + b U_{k-1}(\lambda )),\quad k=2,\ldots , n, \end{aligned}$$

where \(\lambda = -2\), \(a=-1\) and

$$\begin{aligned} b = \frac{T_{n-1}(\lambda ) + 2 T_n(\lambda )}{U_{n-2}(\lambda ) + 2 U_{n-1}(\lambda )}. \end{aligned}$$

Using the explicit expression of the Chebyshev’s polynomials and denoting \(r_{1,2} = -2 \pm \sqrt{3}\) (the roots of the characteristic equation \(r^2 -2\lambda r + 1 = 0\)) we have that

$$\begin{aligned} a T_k(\lambda ) + b U_{k-1}(\lambda ) = r_1 ^k \frac{1}{\frac{r_1^{n-1}(1 + 2r_1)}{r_2^{n-1}(1 + 2r_2)} -1} + r_2^k \frac{1}{\frac{r_2^{n-1}(1 + 2r_2)}{r_1^{n-1}(1 + 2r_1)} -1}. \end{aligned}$$

The oscillating behaviour of the solution is due to the fact that \(r_1\) and \(r_2\) are negative numbers. The decreasing behaviour is explained by the fact that \(|r_1| < 1\), \(|r_2| >1\) and \(n>>1\). In fact, we have that

$$\begin{aligned} \frac{1}{\frac{r_1^{n-1}(1 + 2r_1)}{r_2^{n-1}(1 + 2r_2)} -1} \rightarrow -1,\quad n\rightarrow \infty , \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\frac{r_2^{n-1}(1 + 2r_2)}{r_1^{n-1}(1 + 2r_1)} -1} \rightarrow 0, \quad n\rightarrow \infty ,\quad \text{ like }\quad \frac{r_1^n}{r_2^{n}}. \end{aligned}$$

That is, for n large enough (i.e. for h small enough), \(a T_k(\lambda ) + b U_{k-1}(\lambda )\) behaves like \(r_1^k\).

Next, the coefficient \({\tilde{\ell }}_1= \ell _{k_0+1} - \frac{h}{6}\alpha _{k_0} \) can be approximated with a first order quadrature rule by \(-\frac{3}{24}h u_t(x_{k_0}) + \frac{h}{6}\delta \), where \(\delta = u_t(x_{k_0}) - \alpha _{k_0}\). Hence, \(\tilde{\alpha _k}\) behaves also like \({r_1^k}\). Therefore we have that \(|\tilde{\alpha _k}| \le h^2\) for

$$\begin{aligned} k \ge 2 \frac{\log (h)}{\log (|r_1|)}. \end{aligned}$$

So that \(N^0 \approx 2 \frac{|\log (h)|}{|\log (|r_1|)|}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, M., Ayed, H., Baffico, L. et al. Stokes Problem with Slip Boundary Conditions of Friction Type: Error Analysis of a Four-Field Mixed Variational Formulation. J Sci Comput 81, 312–341 (2019). https://doi.org/10.1007/s10915-019-01017-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01017-x

Keywords

Mathematics Subject Classification

Navigation