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Abstract

The combination of polyharmonic splines (PHS) with high degree polynomials (PHS+poly)
has recently opened new opportunities for radial basis function generated finite difference (RBF-
FD) approximations. The PHS+poly formulation, which relies on a polynomial least squares
fitting to enforce the local polynomial reproduction property, resembles somehow the so-called
moving least squares (MLS) method. Although these two meshfree approaches are increasingly
used nowadays, no direct comparison has been done yet. The present study aims to fill this
gap, focusing on scattered data interpolation and derivative approximation. We first review
the MLS approach and show that under some mild assumptions PHS+poly can be formulated
analogously. Based on heuristic perspectives and numerical demonstrations, we then compare
their performances in 1-D and 2-D. One key result is that, as previously found for PHS+poly,
MLS can also overcome the edge oscillations (Runge’s phenomenon) by simply increasing the
stencil size for a fixed polynomial degree. This is, however, controlled by a weighted least squares
fitting which fails for high polynomial degrees. Overall, PHS+poly is found to perform superior
in terms of accuracy and robustness.

1 Introduction

The problem of finding a continuous function u(x) that approximates a discrete set of data (xi, fi),
i = 1, . . . , N , with xi ∈ Rd and fi ∈ R, is a basic and common issue in many scientific disciplines,
where knowing information about the processes also at locations different from the measurements
is needed. This approximation problem is usually solved by representing the approximant u(x) as
a linear combination of certain basis functions φk,

u(x) =
N∑
j=1

ck φk(x), x ∈ Rd, (1)

where φk(x) form a linearly independent set and the coefficients ck are unknown constants, which
are to be determined in such a way that u(x) represent a “good” fit to the given data. There are
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of course many ways to decide what “good” means, and the criterion is usually related with the
minimization of an error function.

One common approach is to enforce (1) to be exact on the data values, i.e. u(xi) = fi, i = 1, . . . , N .
This is known as interpolation, and leads to the system of linear equations

Ac = f ,

where the entries of the interpolation matrix A are given by Aij = φj(xi), i, j = 1 . . . , N , c =
[c1, . . . , cN ]T and f = [f1, . . . , fN ]T . This is well-posed (a solution exists and is unique) if and only
if A is non-singular.

The interpolation by univariate polynomials is a widespread approach. One can unique interpolate
arbitrary data at N distinct data sites using a polynomial of degree N − 1. However, interpolation
by polynomials of several variables is much more intricate. In the 1950s, the Mairhuber-Curtis
theorem [10, 31] stated that it is not possible to perform unique interpolation with multivariate
polynomials of degree N to data given at arbitrary locations for d ≥ 2. This essentially rules out the
use of multivariate polynomial basis for interpolation over scattered node sets (known as scattered
data interpolation), which is required in most of the applications. Tensor product interpolation
extends the univariate theory in this case, where the nodes are placed on structured grids. Such
approach restricts the geometric flexibility severely.

Multivariate meshfree approximation methods, considered nowadays as the early precursors of the
moving lest squares (MLS) and the radial basis function (RBF) methods, appeared in the late 60s
- early 70s from mapping problems in geodesy and geophysics. The key feature of these approaches
is that they are guaranteed to be non-singular, no matter how the nodes (assume distinct) are
scattered in any number of dimensions [16].

The general moving least squares method, as it is formulated nowadays, first appeared in 1981
by Lancaster and Salkauskas [27], who pointed out the connection with the weighted Shepard
method [38] and the works of McLain [32] and Lancaster [26] on surface approximation. Bos and
Salkauskas [8] noticed also the similarities with the Backus-Gilbert theory [2], and proved that
MLS approximations can be interpreted as a minimization problem. The approximation power
of MLS for functional approximations was investigated further by Levin in [28]. Since it first
appeared, the MLS method has been widely used in different application areas. Some of the most
relevant contributions have been in computer graphics, for surface representation [17, 22, 37]; in
particle methods, to enforce boundary conditions [7, 11, 12, 40]; and in engineering, for derivative
approximation [1, 29, 30].

The RBF method is a generalization of the multiquadric method (MQ), first introduced by Hardy
around 1970 [23] to solve a problem in cartography. Several milestones in the history of RBF
methods preceded this work, such as the pioneering works of Duchon [13, 14, 15] and Meinguet
[33, 34] on thin plate splines (TPS) and surface splines, which fall under what we refer nowadays
to as polyharmonic splines; the 1982 survey by Franke [21], who compared various scattered data
interpolation methods (including the weighted Shepard method) and concluded that MQs and TPSs
were the best (conjecturing also that the collocation matrix for MQs is invertible); and the proof
by Micchelli of this conjecture [35] in 1986. These all accelerated the early development of RBF
methods, which have been increasingly used in different areas of application since then. See the
monographs [16] and [20] for references.

The use of RBF methods for the numerical solution of partial differential equations (PDEs) was
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first proposed by Kansa [24, 25] in 1990. Since then, it has been successfully applied to a wide range
of problems (the monograph [20] includes a full list of references). Several issues (such as a high
computational cost or ill-conditioning) led a local formulation, the so-called RBF generated finite
differences (RBF-FD), to appear in the early 2000’s [39, 41, 42]. Essentially, it is a generalization
of the classical finite difference (FD) method to scattered node layouts, yielding highly sparse
differentiation matrices (better-conditioned than in the global approach) and high-order algebraic
convergence. More recently, it has been found the advantages of PHS+poly generated RBF-FD
weights over the standard approach based on infinitely smooth RBFs [3, 4, 5, 6, 18, 19]. Among
the key features, (i) high orders of accuracy can be achieved without the need of selecting a shape
parameter or the issues related to numerical ill-conditioning, and (ii) the harmful edge effects
associated to the use of high order polynomials (better known as Runge’s phenomenon) can be
overcome by simply increasing the stencil size for a fixed polynomial degree.

PHS+poly approximations, which relies on an underlying polynomial least-square fitting, resembles
the MLS method. This connection has not been investigated enough yet. In [19], where the use
of PHS+poly for the generation of RBF-FD approximations was first proposed, the performance
of PHS+poly approximations was compared against polynomial least squares. The main outcome
of this analysis is that PHS+poly outperforms polynomial least-squares approximations in terms
of accuracy. However, polynomial least squares is just the simplest choice within the moving least
squares approach and it can be highly improved through the inclusion of a weight function. With
that as motivation, the present work focuses on understanding their similarities and differences for
scattered data interpolation and derivative approximation.

We first review the MLS approach in Section 2. Then, RBF approximations augmented with
polynomials (RBF+poly) are revisited in Section 3, showing that under some mild assumptions
they can also be formulated as either a minimization problem or as a weighted least-squares fitting.
Following the numerical tests from [4, 5, 6, 19], we then compare their performances for scattered
data interpolation and derivative approximation in Section 4. Heuristic perspectives and numerical
demonstrations are provided in 1-D and 2-D. The polynomial reproduction property ensures an
algebraic convergence order determined by the degree of polynomial terms in the two cases. The
key result is finding that MLS approximations can also overcome the harmful edge oscillations due
to the use of high order polynomials (Runge’s phenomenon) by simply increasing the stencil size
for a fixed polynomial degree. The underlying mechanism is then applied to the numerical solution
of the Poisson equation over the unit disk (as in [6]). Unlike PHS+poly approximations, which
become dominated by the spline nature of the interpolant, this mechanism is found to hold only
up to moderately high polynomial degrees. The main conclusions are summarized in Section 5.

2 Moving Least Squares approximation

In this section we review the moving least squares method, focusing on the formulations as best least
squares approximation and quadratic minimization problem (for a detailed description see [16]).
The role of the weight function in the approximation is then discussed, as well as the convergence
order. These results will be used later to compare MLS against RBF+poly approximations.

2.1 Weighted Least Squares approximation

Consider the following approximation problem. Assume we are given data values f(xi), i =
1, . . . , N , on some distinct data sites x1, . . . ,xN , where xi ∈ Rd, d ≥ 1, and f is some smooth
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function. We wish to find the best approximation u(x) to f from the space of multivariate poly-
nomials Πd

l of total degree l in d dimensions, which is formed by s =
(
l+d
l

)
< N elements.

In standard weighted least squares approximations, this is obtained by finding the coefficients cj in

u(x) =
s∑
j=1

cj pj(x), x ∈ Rd,

that minimizes the functional ||f − u||2. In this case, the inner product is defined as

〈f, g〉w =

N∑
i=1

f(xi)g(xi)wi, (2)

where the weights wi = w(xi), i = 1, . . . , N , are positive discrete coefficients. The induced norm
leads to the functional

N∑
i=1

[f(xi)− s(xi)]2wi.

Minimizing it with respect to the coefficients cj yields the normal equations

s∑
j=1

cj〈pj , pk〉w = 〈f, pk〉w, k = 1 . . . , s, (3)

where 〈pj , pk〉w is the Gram matrix and 〈f, pk〉w is the projection of the function f onto the space
of multivariate polynomials Πd

l . Alternatively, this system of equations can be obtained by making
the residual of the approximation f − u orthogonal to the approximation space Πd

l with respect to
the inner product (2).

In matrix notation, equation (3) becomes

P TWP c = P TW f ,

where the N × s matrix P has entries Pij = pj(xi), W is a diagonal matrix of weights W =
diag(w1, . . . , wN ), and the vectors c and f are c = [c1, . . . , cs]

T and f = [f(x1), . . . , f(xN )]T ,
respectively. Since the weights are positive and the polynomial basis is unisolvent on the data sites,
the Gram matrix is positive definite. Therefore, the coefficients cj are given by

c = (P TWP )−1 P TWf ,

and the weighted least squares approximation at x is equal to

u(x) = fTWP (P TWP )−1p(x), (4)

where p = [p1(x), . . . , ps(x)]T contains a basis for the multivariate polynomial space Πd
l . In general,

(4) does not interpolate the data but represent some sort of approximation. Note that polynomial
least squares is recovered if W is equal to the identity matrix.
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2.2 Standard Moving Least Squares approximation

Moving Least Squares can be interpreted as a local alternative to the global approach described
above. Given data (xi, f(xi)), i = 1, . . . , N , where xi ∈ Rd, d ≥ 1, and f is some smooth function,
we wish to find the best approximation u(x) to f at a point xc from the space of multivariate
polynomials Πd

l ,

u(xc) =

s∑
j=1

cj pj(x)|xc
, (5)

with respect to the norm induced by the inner product

〈f, g〉w(xc) =

n∑
i=1

f(xi)g(xi)wi(xc). (6)

The key difference is that (6) sums over the n-th closest data sites xi to the stencil center xc, with
s =

(
l+d
l

)
< n � N . The weights wi(xc) = w(xi,xc), i = 1, . . . , n, are also positive continuous

functions centered at the stencil nodes xi and evaluated at xc. As we will show in Section 2.4, the
approximant will interpolate the data when the weight function is appropriately selected, having
an important role in the interpolatory properties of MLS.

This approach leads to the functional

n∑
i=1

[f(xi)− s(xi)]2wi(xc),

which is minimum for the coefficients determined by the normal equations

(P TW (xc)P ) c = P TW (xc)f , (7)

where the same matrix notation as in Section 2.1 is used here, withW (xc) = diag(w1(xc), . . . , wn(xc))
and f = [f(x1), . . . , f(xn)]T . The positiveness of the weight function and the unisolvency of the
polynomials guarantee that (P TW (xc)P ) is positive-definite. Thus, the coefficients cj are uniquely
determined and the MLS approximation (5) is equal to

u(xc) = fTW (xc)P (P TW (xc)P )−1p(x)
∣∣
xc
. (8)

The main difference with respect to the global approach described in Section 2.1 is that one needs
to solve the small linear system of equations (7) for each evaluation point xc.

2.3 Moving Least Squares formulation as a quadratic minimization problem

Moving least squares can be formulated as a quadratic minimization problem. The connection
between this formulation (also known as Backus-Gilbert approach [2]) and moving least squares
was pointed out by Bos and Salkauskas [9]. Consider the same approximation problem as before.
In the Backus-Gilbert approach, one does attempt to find an approximant of the form

u(x) =

n∑
i=1

f(xi)ψi(x), (9)
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by determining the generating functions ψi(x) that minimize the quadratic functional

1

2

n∑
i=1

1

wi(xc)
ψ2
i (x) (10)

subject to the polynomial reproduction constraints

n∑
i=1

pk(xi)ψi(x) = pk(x), k = 1, . . . , s, (11)

where pk(x) are elements of the space of d-variate polynomials Πd
l of total degree at most l.

To determine the generating functions ψ(x), we use the Lagrange multipliers and construct the
Lagrangian

L (ψ,λ) =
1

2
ψT W−1(xc)ψ + λT [P Tψ − p],

where ψ = [ψ1(x), . . . , ψn(x)]T , W−1(xc) = diag
(

1
w1(xc) , . . . ,

1
wn(xc)

)
, λ = [λ1(x), . . . , λs(x)]T are

the Lagrange multipliers, P has entries Pij = pj(xi − xc), and p = [p1(x − xc), . . . , ps(x − xc)]T
contains a basis for the multivariate polynomial space Πd

l .

Since W−1(xc) is positive definite by definition, the Lagrangian is convex and has a unique mini-
mum. Enforcing ∇ψ,λ L = 0 yields the system of equations[

W−1(xc) P

P T 0

][
ψ
λ

]
=

[
0
p

]
, (12)

whose solution is

λ(x) = (P TW (xc)P )−1 p(x),

ψ(x) = W (xc)P λ(x).

Therefore, the MLS approximation (9) at xc is given by

u(xc) =
n∑
i=1

f(xi)ψi(x)|xc
= fTW (xc)P (P TW (xc)P )−1p(x)

∣∣
xc
,

which is equivalent to (8). Moreover, the generating functions are given by

ψ(x) = W (x)P (P TW (x)P )−1 p(x). (13)

This result will be used in the following section to analyze the role of the weight function.

2.4 Interpolatory moving least squares: the role of the weight function

The generating functions ψ(x) determine the behavior of the MLS approximants. It is well-known
that the point-wise error is minimized if the generating functions satisfy the cardinal conditions
ψi(xj) = δij , i, j = 1, . . . , n (interpolation conditions). The closeness of ψ(x) to the point-wise delta
functions is controlled by the weight functions. As long as they are positive definite (such as radial
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basis functions), the MLS approach is well-posed and will represent some sort of approximation
(not necessarily interpolating the data) enforced by the polynomial reproduction constraint (11).

The work by Lancaster and Salkauskas [27], inspired by previous ideas from Shepard [38], MacLain
[32] and Lancaster [26], was actually the first to formally introduce the interpolating moving least
squares method based on the notion of inner-product spaces with appropriate singularities in the
weights. As they showed, the weight functions must be singular at the data locations for the MLS
approximant to interpolate the data.

To proof this, consider for simplicity the moving least squares method in the case s = 1 with l = 0,
which is a moving average originally attributed to Shepard [38] (known as Shepard’s interpolant).
In this case, the polynomial space is formed by the element p1(x) = 1 and the generating functions
(13) are

ψi(x) =
wi(x)∑n
j=1wj(x)

, i = 1, . . . , n. (14)

The idea is to consider as weights the functions

wi(x) = ||x− xi||−α, α ∈ N, (15)

which are infinite at the data locations xi, and decrease towards zero with distance from the origin.
In this case, it is easy to proof analytically that (14) satisfies the following properties:

(i) ψi(xj) = δij , i, j = 1, . . . , n,

(ii) 0 ≤ ψi(x) ≤ 1, ∀x,

(iii) ψi(x) = 0 if and only if x = xj , j 6= i,

(iv)
∑n

i=1 ψi(x) = 1, ∀x,

(v) ψi(x)→ 1/n as ||x|| → ∞.

In particular, (i) ensures the interpolation of the data by the MLS approximant.

For the general case s > 1, it is not possible to find a simple closed-form expression as (14).
Instead, Levin [28] realized that for singular weight functions as (15), the only solution of the
quadratic minimization problem at the data locations x = xj , j = 1, . . . , n, is

ψi(xj) = δij , i, j = 1, . . . , n, (16)

since it solves the polynomial reproduction constraint

n∑
i=1

pk(xi)ψi(xj) = pk(xj), k = 1, . . . , s,

minimizing the functional (10), which is actually

1

2

n∑
i=1

1

wi(xj)
ψ2
i (xj) = 0.

Therefore, as long as the weight functions are singular at the data locations, MLS approximations
will interpolate the data. Moreover, the resulting MLS approximation (and so, the generating
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(a) w(r) = 1 (b) w(r) = 1/r (c) w(r) = 1/r12

Figure 1: Generating functions over the equispaced stencil x = 1, . . . , 10 using polynomials of degree
l = 5, for the weight function (15) with α = 0, 1 and 12. Observe that for α = 0, MLS is equivalent
to the polynomial least squares case and the generating functions do not interpolate the data. For
w(r) = 1/r and w(r) = 1/r12, the generating functions are actually interpolatory, increasing the
smoothness with the degree α.

functions) will be infinitely smooth as proven by Levin in [28]. In the following we use (15), but
other choices are possible. For instance, he suggested the use of wi(x) = 1/

(
exp (||x− xi||2)− 1

)
,

which is also infinitely smooth with a singularity at the origin. In this case, he also proof the
non-singularity of the collocation system (12) if P is unisolvent and 1 ∈ Πd

l .

To illustrate the role of the weight function, we have displayed in Figure 1 the generating functions
computed over the equispaced stencil x = 1, . . . , 10 using polynomials of degree l = 5 and the weight
function (15) with α = 0, 1 and 12. Observe that for (a) w(r) = 1, the generating functions do
not satisfy the cardinal conditions. This case corresponds with pure polynomial least squares. For
singular weight functions, such as (b) w(r) = 1/r and (c) w(r) = 1/r12, the generating functions
fulfill this property and the smoothness of the cardinal functions increases with the degree α.

2.5 Approximation error

MLS reproduces exactly any element from the polynomial space Πd
l of degree at most l in d vari-

ables. This is clear from the polynomial reproduction constraint (11). Moreover, it determines the
convergence order of the approximation under refinement. To show this, consider the numerical
approximation of a smooth function f at a point x0 using MLS. It can be expanded in a Taylor
series over the stencil as

f =
∞∑
k=1

Lk[f(x0)] pk, (17)

where the operator Lk is equal to

L(β) =
1

β1! · · · βd!
∂β

∂xβ11 · · · ∂x
βd
d

, (18)

and the vector

pk = [pk(x1 − x0), pk(x2 − x0), . . . , pk(xn − x0)]T

contains the element p(β)(x) = xβ11 · · · x
βd
d of total degree β = β1 + · · ·+βd evaluated on the stencil

nodes. In our notation the subscript k just numbers the elements. When (17) is substituted in (9),
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the polynomial reproduction constraint (11) leads to

u(x) =
s∑

k=1

Lk[f(x0)] pk(x− x0) +
∞∑

k=s+1

Lk[f(x0)] pTk ·ψ(x),

where all the Taylor terms up through degree l are treated exactly by the generating functions (13).
As a result, the approximation error is given by

f(x)− u(x) =
∞∑

k=s+1

Lk[f(x0)]
[
pk(x− x0) − pTk ·ψ(x)

]
,

which can be bounded as

‖f(x)− u(x)‖∞ ≤ Ch
l+1 max

x∈Ω
|L(l+1)[f(x)]|.

Hence, the convergence order of the approximation is determined by the polynomial degree. The
role of the weight function is to make the approach interpolatory, affecting only the residual as a
multiplying constant C.

3 Local RBF approximations augmented with polynomials

In this section, we briefly revisit RBF approximations augmented with polynomials (RBF+poly).
Under the assumption that the collocation matrix A is positive definite, we show that RBF+poly
can also be formulated as either a best least squares fitting (after defining an appropriate norm),
or as a quadratic minimization problem. Finally, the cardinal functions and approximation error
are considered.

3.1 Standard formulation

Consider the following interpolation problem. Given the data fi = f(xi) at location xi ∈ Rd,
i = 1, 2, . . . , N and d ≥ 1, we wish to find the local multivariate interpolant at a point x of the
form

s(x) =

n∑
j=1

λj φ (‖x− xj‖) +

s∑
k=1

βk pk(x), (19)

such that s(xi) = fi, i = 1, . . . , n is verified. Here, the sum is over the n-th closest data sites xi to
the stencil center x (n � N), φ (‖x− xj‖) are radial basis functions (RBF) centered at the data
locations xj and pk(x) is an element of the multivariate polynomial space Πd

l of total degree l in d

dimensions formed by s =
(
l+d
l

)
< n elements.

In order to have an unisolvent linear system of equations, it is required to additionally enforce the
matching conditions

n∑
j=1

λjpk (xj) = 0, k = 1, . . . , s.

This approach leads to the linear system of equations determining the λ and β coefficients,[
A P

P T 0

] [
λ
β

]
=

[
f
0

]
, (20)
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where A is the square matrix with elements

Ai,j = φ (‖xi − xj‖) , i, j = 1, . . . , n, (21)

Pij = pj(xi), i = 1, . . . , n, j = 1, . . . , s, is unisolvent on the stencil nodes, and f = [f(x1), . . . , f(xn)]T .
Depending on the RBF considered, the inclusion of polynomials up to a certain degree l may be
necessary to guarantee a well-posed interpolation problem (for a rigorous discussion on unisolvency
conditions see [16]).

Therefore, the RBF+poly interpolant (19) can be equivalently written as

s(x) =
[
φT (x) pT (x)

] [ A P

P T 0

]−1 [
f
0

]
, (22)

where the vectors

φ(x) = [φ (‖x− x1‖) , φ (‖(x− x2‖) , . . . , φ (‖(x− xn‖)]T

and

p((x) = [p1(x), p2(x), . . . , ps(x)]T ,

contain a basis for the RBF space and polynomial space Πd
l , respectively. It follows from (22) that

the RBF+poly cardinal functions ψ(x) are determined by the system of equations

[
ψ(x)
γ(x)

]
=

[
A P

P T 0

]−1 [
φ(x)
p(x)

]
, (23)

where γ(x) correspond with the Lagrange multipliers of a certain minimization problem, as we will
show later.

If the node distribution is such that A and P are both full rank matrices, it was proven in [4] that
the exact expressions for the λ and β coefficients can be obtained via block decomposition as

β =
(
P TA−1P

)−1
P T A−1 f ,

λ = A−1 f −A−1P β,

leading to the closed-form expression for the RBF+poly interpolant,

s(x) = fT
[
I −WP T

]
ψ̂(x) + fT W p (x) , (24)

and to the RBF+poly cardinal functions

ψ(x) = ψ̂(x)−Wτ (x), (25)

where ψ̂(x) = A−1φ(x), τ (x) =
[
P T ψ̂(x)− p (x)

]
and W = A−1 P

(
P TA−1P

)−1
is the n × s

matrix containing as columns the differentiation weights w(m) approximating the operator (18)
exactly on Πd

l .
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3.2 Formulation as best least squares approximation

Following the same approach as in Section 2.2 for MLS approximations, we show in this section that
RBF+poly approximations can be formulated as the best approximation to f in a least squares
sense with respect to an appropriately defined inner product. To do so, assume that the node
distribution is such that P is unisolvent and matrix A is positive definite. In this case, we can
define the inner product as the bilinear form

〈f, g〉A−1 = fTA−1g =

n∑
i,j=1

f(xi)g(xj)a
−1
ij , (26)

where a−1
ij are the elements of the inverse of matrix A defined in (21). With the norm induced by

(26), the RBF approximation (24) minimizes the functional

J = ||f − s||2 =
n∑

i,j=1

[f(xi)− s(xi)] [f(xj)− s(xj)] a−1
ij .

To proof this, enforce ∇λ,β J = 0, from which follows the system of equations

Aλ + P Tβ = f . (27)

Since P Tλ = 0 by definition, multiplication by P TA−1 leads to the normal equations

(P TA−1P )β = P TA−1f , (28)

determining the β coefficients. This can be written as a function of the inner product (26) as

l∑
j=1

βj〈pj , pk〉A−1 = 〈f, pk〉A−1 , k = 1 . . . , s.

Equations (27) and (28) uniquely determine the λ and β coefficients, from which follows the RBF
interpolant (24).

3.3 Formulation as quadratic minimization problem

RBF approximations with polynomial augmentation can also be interpreted as the solution of
an equally-constrained minimization problem. Writing the interpolant (19) as a function of the
cardinal functions,

s(x) =
n∑
i=1

f(xi)ψi(x),

it can be shown that the functions ψi(x) minimizing the functional

1

2
ψT (x)Aψ(x) − ψT (x)φ(x)

subject to the polynomial reproduction constraints

P Tψ(x) = p(x),

are given by system of equations (23).
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This can be proven as follows. By constructing the Lagrangian

L (ψ,γ) =
1

2
ψT Aψ − ψT φ + γT

[
P T ψ − p

]
,

where γ are the Lagrange multipliers, one realizes that is convex and has a unique minimum (see [19]
for details). Enforcing the condition ∇ψ,γ L = 0, leads to the system of equations (23). Moreover,
if the node distribution is such that A and P are both full rank, the solution is

γ(x) = (P TA−1P )−1
[
P TA−1φ(x)− p(x)

]
,

ψ(x) = A−1φ(x)−A−1P γ(x),

from which follows the closed-form expression for the RBF+poly cardinal functions (25).

3.4 RBF+poly cardinal functions

Unlike MLS, RBF+poly approximations are always interpolatory. Consider the case in which A
and P are full rank matrices. The corresponding interpolant is equal to

s(x) = fT ψ̂(x)− fTWτ (x). (29)

As pointed out in [4, 5], the pure RBF part of the approximation fT ψ̂(x) interpolates the data,
while the term −fTWτ (x), which is zero at all data points, acts as a correction term. It accounts for
the polynomial reproduction of the combined RBF+poly interpolant, maintaining the convergence
order (in the sense of being exact for polynomials up to specified degree). Remarkably, this approach
overcomes the harmful edge oscillations related with the use of high polynomial degrees as found
in [6] and analyzed further in [4, 5].

The left column in Figure 2 displays the 1-D cardinal functions using cubic PHS augmented with
7th degree polynomials over the stencil x = −1, 0, 1, 2, . . . , n−2, for n = 8, 10 and 16 (rows). They
are split according to equation (25) into pure PHS cardinal function ψ̂(x) (middle column) and
correction term −Wτ (x) (right column). For n = 8, the approximation is totally polynomial (as
the degree satisfy l = n − 1) and the cardinal function features large edge oscillations (equivalent
to Lagrange’s interpolant). Increasing the stencil size for a fixed polynomial degree l makes the
magnitude of the correction term to decrease. The RBF+poly approximation becomes then dom-
inated by the RBF part. If the RBFs display a non-oscillatory behavior near the boundary (as it
is the case here for cubic PHS), the Runge phenomenon is removed and high order of accuracy is
maintained (in the sense of being exact for polynomials up to the specified degree l).

3.5 Approximation error

RBF+poly approximations reproduce any polynomial up to degree l in d variables exactly. This
can be obtained following the same approach as in [4], where it is used the fact that matrix W =
A−1P (P TA−1P )−1 in the RBF interpolant (24) exactly differentiates the augmented polynomial
terms from Πd

l .

Alternatively, here we use the same approach as in Section 2.5 for MLS approximations. Based on
the polynomial reproduction properties of the cardinal functions, the approximation error becomes

f(x)− s(x) =

∞∑
k=s+1

Lk[f(x0)]
[
pk(x− x0) − pTk ·ψ(x)

]
.

12
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Figure 2: PHS+poly cardinal functions (left column) when using PHS r3 augmented with polyno-
mial terms up to 7th degree over the 1-D stencil x = −1, 0, 1, 2, 3, . . . , n−2, for n = 8, 10, 16 (rows).
According to equation (25), they are split into the contribution of pure PHS cardinal functions
ψ̂(x) (middle column) and the correction term −Wτ (x) (right column) as displayed in [4, 5].
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Substitution of the cardinal functions (25) yields

f(x)− s(x) =

∞∑
k=s+1

Lk[f(x0)]
[(
pk(x− x0)− pTk ψ̂(x)

)
+ pTk Wτ (x)

]
,

which can be bounded as

‖f(x)− u(x)‖∞ ≤ Ch
l+1 max

x∈Ω
|L(l+1)[f(x)]|.

All Taylor terms of f up through degree l are treated exactly by the supplementary polynomials.
Therefore, the convergence order is O(hl+1). The RBFs have here a similar role as the weight
function in MLS approximations, acting on the remainder terms of the expansion.

4 Numerical comparison: MLS vs PHS+poly

The previous analysis has revealed several similarities between MLS and RBF+poly approxima-
tions. For instance, MLS approximations, which can be written as

u(x) = fTpG
−1
w p(x), (30)

where

fTp = fTW (x)P =
[
〈f, p1〉w(x), . . . , 〈f, ps〉w(x)

]
,

is the projection of the data f onto the polynomial space Πd
l , and

Gw = (P TW (x)P ) = 〈pj , pk〉w(x), j, k = 1, . . . , N,

is the Gram matrix, are purely polynomial. The convergence order is determined by the polynomial
degree l, and the role of the weight function is to make the approximant to interpolate the data.

RBF+poly approximations (29) combine RBFs and polynomials. The RBF part in the approxima-
tion ensures the interpolation of the data, while the remainder acts as a correction term enforcing
the approximation to be exact up to the augmented polynomial degree l. Under refinement, the
polynomial part takes over and treats exactly all Taylor terms of the target function f [4]. In this
sense, we can also say that RBF+poly approximations are polynomial up to the augmented degree
l. With the same notation as in (30), RBF+poly approximations can be written as

s(x) = fTpG
−1
φ p(x) + fφ(x)− fTpG−1

φ pφ(x)︸ ︷︷ ︸
⊥Πd

l

, (31)

where

fφ(x) = fTA−1φ(x) = 〈f, φ(x)〉A−1 ,

fTp = fTA−1P = [〈f, p1〉A−1 , . . . , 〈f, ps〉A−1 ] ,

pφ(x) = P TA−1φ(x) = [〈p1, φ(x)〉A−1 , . . . , 〈ps, φ(x)〉A−1 ]T ,

are projections into different subspaces and G = (P TA−1P ) = 〈pj , pk〉A−1 , j, k = 1, . . . , N denotes
the Gram matrix. Observe that the RBFs span the subspace orthogonal to the polynomial space
Πd
l . This is the key to understanding the differences between the two methods observed numerically

in the following tests.
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Figure 3: (a) Stencil used for n = 56 nodes (small circles) and set of evaluation points to asses
accuracy (dots). (b) Test function (32) displayed over x2 + y2 ≤ 1 for R = 0.5.

4.1 Function approximation and accuracy

The aim of this section is to explore how the accuracy of MLS approximations compares to
PHS+poly. We have considered a numerical experiment similar to the one used in [19], where
the test function

f(x, y) = 1 + sin(4Rx) + cos(3Rx) + sin(2Ry) (32)

is approximated over a scattered stencil formed by n minimum energy-like nodes. The left panel of
Figure 3 displays the stencil used for n = 56 (small circles), and the points where the interpolant
is evaluated near the stencil center (dots). The right panel shows the test function (32) over the
stencil for R = 0.5.

As first experiment, we have computed the approximation error over this stencil when using PHS
rm + poly, m = 1, 7, and MLS, α = 0, 1, 12, for different polynomial degrees as the parameter R
goes to zero and the test function behaves more as a tilted plane. The worst error encountered is
displayed in Figure 4 as a function of R.

In agreement with our analysis, the convergence order is determined by the degree l of polynomial
terms. The PHS degree m does not affect the convergence order, but shifts the error vertically, as
shown when going from φ(r) = r1 to φ(r) = r7. The weight function has a similar effect in MLS.
There is little gain when making the approximant interpolatory, increasing α from 0 to 1. The
difference becomes much more significant for w(r) = 1/r12, acting in the residual as a multiplying
constant (see Section 2.5).

In this second part of the experiment, we want to analyze the dependence of the stencil size n and
the weight function degree α (MLS) or PHS degree m (PHS+poly) on the accuracy and conditioning
of the methods. To do so, we have fixed the parameter R = 0.5, and computed the worst error
encountered, as well as the condition number of the corresponding systems (12) and (20), for the
stencil sizes n =

(
l+d
l

)
, . . . , 150 and coefficients α = 0, 1, . . . , 20 (MLS) or m = 1, 3, . . . , 11 (PHS).

The results obtained are displayed in Figure 5 for different polynomial degrees l (rows). Several
observations can be made:

(i) The accuracy of PHS+poly approximations improves significantly as both n and/or the PHS

15



` ∞
er

ro
r

10
-3

10
-2

10
-1

10
0

10
-16

10
-12

10
-8

10
-4

10
0

10
-3

10
-2

10
-1

10
0

10
-16

10
-12

10
-8

10
-4

10
0

R R

(a) PHS augmented with polynomials

φ(r) = r1 φ(r) = r7

` ∞
er

ro
r

10
-3

10
-2

10
-1

10
0

10
-16

10
-12

10
-8

10
-4

10
0

10
-3

10
-2

10
-1

10
0

10
-16

10
-12

10
-8

10
-4

10
0

10
-3

10
-2

10
-1

10
0

10
-16

10
-12

10
-8

10
-4

10
0

R R R

(b) Moving Least Squares

w(r) = 1 w(r) = 1/r w(r) = 1/r12

Figure 4: The worst error encountered under refinement when approximating function (32) over
the stencil shown in Figure 3, using (a) PHS rm augmented with polynomials and (b) Moving
Least Squares, for different polynomial degrees l. To compute the convergence under refinement,
the parameter R in the test function (32) is decreased towards 0.
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degree m increase. By contrast, the effect of the stencil size n or degree α on the accuracy in
MLS approximations is less significant.

(ii) For low polynomial degrees (in this case, l ≤ 4), PHS+poly is significantly more accurate than
MLS. Such a difference, however, vanishes for higher polynomial degrees. This behavior can
be explained from our previous observation. While MLS approximations (30) only span the
polynomial space Πd

l , PHS+poly (31) combines two functional spaces, RBFs and polynomials.
The approximation is performed by the RBFs (interpolation), but is corrected to exactly
reproduce polynomials of degree l (correction term). For low l, RBF+poly has mainly RBF
nature. While MLS can barely approximate the function in this case, the RBFs do span the
functional space and the accuracy improves as a function of n and m. For higher polynomial
degrees, the polynomials take over and the differences are not so relevant.

(iii) The dependence of the stencil size n and weight function degree α or PHS degree m on the
conditioning of the collocation systems (12) and (20) is similar in the two cases.
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(a) MLS, w(r) = 1/rα (b) PHS+poly, φ(r) = rm
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Figure 5: (a) Moving Least Squares, and (b) PHS augmented with polynomials. In each case, it
is shown the accuracy (log10 error) and the conditioning (log10 of the condition number) for the
systems (12) or (20), as a function of the stencil size n (y-axis) and MLS degree α / PHS degree m
(x-axis), for different polynomial degrees l (rows). Plotting the level curves utilizes interpolation
as the stencil sizes n and MLS degrees α can only take on integer values, and the PHS degrees m
odd integers.
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MLS, w(r) = 1/rα PHS+poly, φ(r) = rm

Figure 6: Lebesgue functions for MLS, w(r) = 1/rα, α = 0, 1, 12, (left) and PHS+poly, φ(r) = rm,
m = 1, 7, (right) when using polynomials of degree l = 7 and increasingly large stencil sizes,
n = l + 1, 10 and 16 (y-axis) over the stencil x = −1, 0, 1, 2, . . . , n − 2. Dotted line represents
optimal value equals one.

4.2 Lebesgue functions and differentiation weights in 1D

It was found in [6] that PHS+poly approximations can be augmented with high degree polynomials
l (becoming O(hl+1) accurate) without the adverse Runge Phenomena effects by simply increasing
the stencil size for a fixed polynomial degree. The mechanism underlying this feature, which was
briefly described in Section 3.4, was found in [4] and analyzed further in [5]. The goal of this section
is to analyze the performance of MLS approximations near domain boundaries, with a special focus
on the comparison against PHS+poly.

We consider the same 1-D interpolation problem proposed in [6], which requires us to compute
the cardinal functions over a 1-D stencil x = −1, 0, 1, 2, . . . , n − 2, for n = 8, 10 and 16, using
MLS and cubic PHS for a fixed polynomial degree l. The MLS cardinal functions with 5th degree
polynomials, n = 10 and α = 0, 1 and 12 were displayed previously in Figure 1, and the cardinal
functions for cubic PHS+7th degree polynomials were shown in Figure 2. Typically, the stability
of an interpolation method can be visualized through the Lebesgue function,

Λn(x) =

n∑
i=1

|ψi(x)| ,

which will feature low amplitude oscillations if the method is free of edge anomalies. Following the
same approach as in [5], Figure 6 shows the Lebesgue functions for MLS, w(r) = 1/rα, α = 0, 1, 12,
(left), and PHS+poly, φ(r) = rm, m = 1, 7, (right), when using polynomials of degree l = 7 and
increasingly large stencil sizes, n = l+1, 10 and 16 (y-axis) over the stencil x = −1, 0, 1, 2, . . . , n−2.

For n = 8, they are purely polynomial (the degree satisfies l = n − 1), featuring equivalently
large edge oscillations as the Lagrange cardinal functions. Increasing the stencil size for PHS+poly
approximations reduces the magnitude of the correction term (see Section 3.4). As a result, the
approximation recovers the PHS dominated edge behavior. It is well-know that low degree PHS
rm do not suffer from edge oscillations (as it minimizes a functional over all possible interpolants
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MLS, w(r) = 1/r3 PHS r3 + poly

Figure 7: Magnitude of the differentiation weights approximating the second derivative centered
at x0 = 0 for MLS w(r) = 1/r3 (left) and RBF+poly φ(r) = r3 (right) over the stencil x =
−1, 0, 1, 2, . . . , n − 2, for increasingly large stencil sizes n and fixed polynomial degree l = 7. Blue
corresponds to negative differentiation weights and yellow to positive. In each case, the pattern
[1 − 2 1] is recovered as the stencil size increases.

[36]). Therefore, PHS+poly bypasses the Runge Phenomena effects while maintaining high order
of accuracy (in the sense of being exact for polynomials up to the specified degree l). This is
observed in the figure for φ(r) = r. The case φ(r) = r7 presents the same underlying mechanism
as n increases, but with larger edge oscillations.

By contrast, MLS is purely a polynomial method. The approximation of the data is enforced
through a weighted least squares, where the weight functions defining the inner product plays a
crucial role in the interpolatory properties of the approximant (as discussed in Section 2). Observe
in Figure 1 that for α = 0, the generating functions are equivalent to classical polynomial least
squares and do not interpolate the data (the corresponding Lebesgue functions in Figure 6 are
different to 1 at all data sites). However, and this is the key feature, the edge oscillations decrease
its amplitude for increasingly large stencil sizes n, going from pure polynomial edge oscillations to
be almost free of edge anomalies. Increasing the value α maintains this feature, while making the
approximant to also interpolate the data. This is shown in Figure 6 when using w(r) = 1/r and
w(r) = 1/r12, which displays a similar behavior as r1 and r7 for PHS+poly interpolants.

Figure 7 shows the differentiation weights approximating the second derivative at x = 0, i.e.
wi = ψ′′i (0), i = 1, . . . , n, for MLS w(r) = 1/r3 (left) and cubic PHS+poly (right), for l = 7 and
increasingly large stencil sizes n (y-axis). As found in [4, 5, 6] for PHS+poly, the weights recover
the pattern [1 − 2 1] centered at x = 0 (as expected for second order standard FD) with an
accuracy O(hl−1). Remarkably, the underlying least squares fitting in MLS approximations has a
similar effect on the pattern of weights. As the stencil size increases, the edge oscillations in the
Lebesgue functions decrease and the differentiation weights recover the largest values around the
stencil center, analogously to the PHS+poly case.

Figure 8 shows the effect of the weight function degree α (MLS) or the PHS degree m (PHS+poly)
on the differentiation weights approximating the second derivative at x = 0 for n = 16 and l = 7.
The red line highlights the values of α or m for which the method recovers the pattern [1 − 2 1]
centered at the evaluation point x = 0. Observe that the PHS degree m has a stronger effect
than the MLS degree α. For n = 16, only m = 3 and 5 display such pattern of weights. In MLS,
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MLS, w(r) = 1/rα PHS+poly, φ(r) = rm

Figure 8: Magnitude of the differentiation weights approximating the second derivative centered at
x0 = 0 over the stencil x = −1, 0, 1, 2, . . . , 14 (n = 16) and polynomial degree l = 7, as a function
of the MLS degree α = 0, 1, . . . , 10 (left) and PHS degree m = 3, . . . , 11 (right). Blue corresponds
to negative differentiation weights and yellow to positive. The red line shows the values for α or m
for which the method recovers the pattern [1 − 2 1] centered at x = 0.

any value α = 1, 2, 3 and 4 is found to work. Also, the magnitude of the weights is smaller and
increasing the value of α for a fixed stencil size n has a weaker effect.

4.3 Lebesgue functions and differentiation weights in 2D

It was shown numerically in [5] that this mechanism holds in any space dimension for PHS+poly.
In order to compare the performance against MLS, we have computed the Lebesgue functions and
differentiation weights approximating the Laplacian over a near one-sided stencil in 2-D. Figure 9
shows the corresponding results when using MLS (top) and cubic PHS (bottom) with 4th degree
polynomials and stencil sizes n = 16 and n = 31.

Observe that the case n = 16 is very close to the pure polynomial case n =
(

4+2
4

)
= 15. As a

consequence, the Lebesgue functions feature strong edge oscillations for both MLS and PHS+poly.
For n = 31 (roughly twice number of polynomial terms), the Lebesgue functions are free of edge
anomalies not only for PHS+poly (as reported in [5]), but also for MLS. The corresponding dif-
ferentiation weights inherit this behavior. For n = 16, the pattern of weights (computed as the
Laplacian of the cardinal functions) is far from being positive definite. By increasing the stencil
size, it recovers a structure where the central weight has the largest magnitude at the evaluation
point, surrounded by oscillatory weights whose magnitude decays with the distance. The accuracy
of these stencils is also tested under refinement by approximating the Laplacian of function (32)
as a function of R for n = 16, 31 and 61. In all of them, the convergence rate is O(Rl−1), being
determined by the augmented polynomial degree l = 4. The stencil size has a negligible effect on
the accuracy of the approximation.

Traditionally, the negative boundary effects are overcome by clustering the nodes towards the
boundaries. However, following this approach over irregular domains might not be trivial. One key
result here is finding that these two mesh-free approaches have intrinsic mechanisms to overcome
the edge oscillations, which are independent on the node distributions. In the following section, we
analyze them further through an elliptic PDE problem.
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Figure 9: Left panel: Lebesgue functions for a near-one sided stencil close to a domain boundary
in 2-D, when using MLS w(r) = 1/r4 (top) and cubic PHS (bottom) with 4th degree polynomials
for n = 16 and 31 (columns). Note the vertical scale is the same in all subplots, and the factor
5 difference in n = 16. Right panel: corresponding differentiation weights approximating the
Laplacian at (x, y) = (0, 0). The red dashed line marks the location of the weight at the stencil
center. Blue corresponds to negative differentiation weights and yellow to positive.
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Figure 10: Relative absolute error approximating the Laplacian of function (32) over the stencil in
Figure 9 as a function of R. The thin dashed lines represent the convergence order O(R3) and the
dotted line marks the round-off limit 10−16/R2.
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4.4 A PDE problem to compare performances

The use of PHS+poly for the numerical solution of elliptic PDEs was tested in [6]. This was
the first work to point out the advantageous behavior of PHS+poly approximations near domain
boundaries. In particular, it was found the mechanism discussed in the previous section (controlling
the recovery of the pattern of weights as a function of the stencil size n), and how it improves the
diagonal dominance of the differentiation matrices without the use of any boundary treatment such
as ghost nodes.

The aim of this section is to compare its performance against the analogous feature found for MLS.
To do so, we have considered the same PDE problem as in [6], i.e.{

∆u = f(x, y), in Ω
u = g(x, y), on ∂Ω

(33)

on the unit disc Ω = {(x, y), x2 + y2 ≤ 1}, where f(x, y) and g(x, y) are computed from the
test function u(x, y) = sin[10(x + y)]. The same scattered nodes over the unit disc are employed
here. The discretized equations are solved using BiCGSTAB with incomplete LU factorization as
preconditioner (with 0 level of fill in) and reverse Cuthill-McKee ordering.

Figure 11 shows the relative `∞ norm error as a function of the stencil size and polynomial degree,
when solving (33) using MLS w(r) = 1/r4 (left) and cubic PHS+poly (right) for h ≈ 0.05, 0.025 and
0.01 (rows). The dashed curves n =

(
l+2
l

)
represent the case where the stencil size n is equal to the

number of polynomial terms s, while the dash-dotted line shows twice the number of polynomial
terms 2n. Plotting the level curves utilizes interpolation as the stencil sizes n and polynomial
degrees can only take on integer values. The vertical dotted lines are displayed here as a reference
to visualize the integer polynomial degrees on which the solution of (33) is computed.

Regarding accuracy, observe in Figure 11 a similar behavior as in Figures 4 and 5 from Section
4.1. MLS is less accurate than PHS+poly for low degree polynomials (up to l = 4). For l = 4,
the two methods perform similarly when n . 70. Increasing the stencil size further reduces the
MLS accuracy. For l = 5 and 6, the accuracy is similar. The key difference is found for higher
polynomial degrees (l > 6), for which MLS appears to stop working. To understand this issue,
Figure 12 displays the eigenvalue spectra of the Laplacian differentiation matrices for h ≈ 0.025.
Observe that:

• For l = 6 and stencil size n = 30, which is very close to the pure polynomial case n =
(
l+d
l

)
,

both MLS and cubic PHS+poly eigenvalues are widely scattered over the complex plane (some
of them with positive real part). By increasing the stencil size to n = 60, which corresponds
to almost twice as many nodes as polynomials, the eigenvalues move all to the left half of the
complex plane, lying very close to the real axis (specially for PHS+poly) as expected for the
Laplacian.

• For the case l = 8 and n = 50 (which is also very close to the pure polynomial case), the
eigenvalue spectra is spread over the complex plane. The key difference here is that increasing
the stencil size to n = 95 only recovers the stable eigenvalue spectra for cubic PHS+poly.
MLS displays a ’bad’ eigenvalue distribution, with some of them still in the right half of the
complex plane.
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Figure 11: Accuracy (log10 relative `∞-norm error) when using MLS (left) and cubic PHS+poly
(right) to solve (33) as a function of the stencil size n and degree of polynomial terms l. The rows
show different resolutions. The dashed line shows the stencil size where n =

(
l+2
l

)
which would be

equivalent to using polynomials only. The dotted line shows twice the number of polynomial terms
2n. Plotting the level curves utilizes interpolation as the stencil sizes n and polynomial degrees
can only take on integer values. The vertical dotted lines are displayed to visualize the polynomial
degrees along which the accuracy is assessed.
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To understand this behavior, we may look at the patterns of weights discretizing the Laplacian
(which determine the differentiation matrix). Figure 13 displays the pattern of weights over a
(near-one sided) stencil next to the domain boundary for both MLS and cubic PHS+poly with
n = 50 and 95. Unlike cubic PHS+poly, MLS cannot recover the ‘near-positive definite’ pattern
centered at the evaluation point (x, y) = (0, 0) for n = 95. This issue, acting arbitrarily on the
stencils near the domain boundary, makes the MLS differentiation matrix (assembled with all the
weights over the whole domain) to miss some properties (such as diagonal dominance). As a result,
the eigenvalue spectra spreads over the complex plane, and the iterative solver fails to converge
(see Figure 11 for polynomial degrees l > 6).

PHS+poly approximations seems oblivious to this adverse effect due to the inclusion of PHS-type
RBFs in the process of generating RBF-FD weights. As found in [4] and investigated further in
[5], PHS+poly cardinal functions (25) can be decomposed into pure PHS cardinal functions plus
a correction term (ensuring the order of accuracy). As the stencil size increases, the correction
term decreases in size. The RBF+poly approximations become then dominated by the PHS part
(which is specially well behaved at boundaries due to its spline nature), and has thus removed the
Runge phenomenon (while having maintained high order of accuracy, in the sense of being exact
for polynomials up to specified degree). The RBF-FD weights inherit this behavior, guaranteeing
the differentiation matrix to preserve some properties and making the eigenvalue spectra to recover
the observed stable pattern, even for high degree polynomials.

5 Conclusions

We have investigated the use of RBF+poly and MLS approximations for scattered data interpo-
lation and derivative approximation. After revisiting the MLS and RBF+poly formulations, we
found that under some mild assumptions both can be formulated analogously, either as a equality
constrained optimization problem or as a best least squares fitting. In the two cases, the local poly-
nomial reproduction constraint enforces an algebraic convergence order. More striking is the fact
that, as previously observed for PHS+poly, MLS can also overcome the edge oscillations (Runge’s
phenomenon) by simply increasing the stencil size for a fixed polynomial degree. The underlying
mechanism is, however, controlled by a weighted least squares fitting which is found to fail for high
polynomial degrees. Overall, PHS+poly approximations perform superior. The inclusion of PHS-
type RBFs not only lead to more accurate approximations (specially for low degree polynomials),
but can also bypass the edge oscillations more robustly for any polynomial degree. This study
potentially opens new opportunities for PHS+poly in areas of application where MLS is currently
the preferred choice.
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Figure 12: Eigenvalue distribution of the differentiation matrices approximating the Laplacian over
the unit disc x2 +y2 ≤ 1 for h ≈ 0.025, using MLS and cubic PHS with (a) 6th degree polynomials,
n = 30 and 60; and (b) 8th degree polynomials, n = 50 and 95. Note a factor 10 difference in the
horizontal and vertical scales when increasing the stencil size.
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