Skip to main content
Log in

An Efficient Adaptive Central-Upwind WENO-CU6 Numerical Scheme with a New Sensor

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a novel efficient adaptive central-upwind WENO-CU6 scheme (named as EWENO-CU6) to maximize the order of accuracy, minimize dissipation and improve numerical robustness. Unlike WENO-CU6 scheme, the present paper introduces a switch formula based on our new shock sensor to adaptively diminish numerical dissipation in a rational manner when departing from discontinuities. Based on the above improvements, the performances of several schemes are characterized in scalar equations, which indicate new scheme’s high order of accuracy, robustness with a reasonable computational efficiency in wavenumber space. A variety of benchmark cases of Euler equations are tested to further verify the new scheme’s performance. From multi-dimensional tests, EWENO-CU6 scheme shows a greater resolving power in practical flow cases involving both shocks and complex features. We emphasize that this method can be applied more broadly for any algorithm which contains the similar reference smoothness indicator in WENO-CU class schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  2. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  3. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  Google Scholar 

  4. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  Google Scholar 

  5. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32, 363–389 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: 14th Fluid and Plasma Dynamics Conference (1981)

  7. Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  Google Scholar 

  8. Hill, D.J., Pullin, D.I.: Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435–450 (2004)

    Article  Google Scholar 

  9. Visbal, M., Gaitonde, D.: Shock capturing using compact-differencing-based methods. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005)

  10. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. J. Comput. Phys. 239, 166–186 (2013)

    Article  MathSciNet  Google Scholar 

  11. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  12. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  13. Taylor, E.M., Wu, M., Martin, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223, 384–397 (2007)

    Article  Google Scholar 

  14. MartIn, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  Google Scholar 

  15. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hu, X.Y., Adams, N.A.: Scale separation for implicit large eddy simulation. J. Comput. Phys. 230, 7240–7249 (2011)

    Article  MathSciNet  Google Scholar 

  17. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  18. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  19. Aràndiga, F., Martí, M.C., Mulet, P.: Weights design for maximal order WENO schemes. J. Sci. Comput. 60, 641–659 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhao, G.-Y, Sun, M.-B., Pirozzoli, S.: On shock sensors for hybrid compact/WENO schemes. J. Comput. Phys. (2019, under review)

  21. Yee, H.C., Sjögreen, B.: Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems. Comput. Fluids 37, 593–619 (2008)

    Article  MathSciNet  Google Scholar 

  22. Baeza, A., Mulet, P., Zorío, D.: High order weighted extrapolation for boundary conditions for finite difference methods on complex domains with Cartesian meshes. J. Sci. Comput. 69, 170–200 (2016)

    Article  MathSciNet  Google Scholar 

  23. Casper, J., Carpenter, M.H.: Computational considerations for the simulation of shock-induced sound. SIAM J. Sci. Comput. 19, 813–828 (1998)

    Article  MathSciNet  Google Scholar 

  24. Zhao, G.-Y., Sun, M.-B., Memmolo, A., Pirozzoli, S.: A general framework for the evaluation of shock-capturing schemes. J. Comput. Phys. 376, 924–936 (2019)

    Article  MathSciNet  Google Scholar 

  25. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006)

    Article  Google Scholar 

  26. Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)

    Article  Google Scholar 

  27. Pirozzoli, S.: Performance analysis and optimization of finite-difference schemes for wave propagation problems. J. Comput. Phys. 222, 809–831 (2007)

    Article  MathSciNet  Google Scholar 

  28. Lax, P.D.: Weak solution of non-linear hyperbolic equations and their numerical computations. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  Google Scholar 

  29. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. Upwind and high-resolution schemes, pp. 328–374. Springer, Berlin (1989)

    Google Scholar 

  30. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MathSciNet  Google Scholar 

  31. Woodward, P., Colella, P.: Numerical simulations of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  32. Young, Y.N., Tufo, H., Dubey, A., Rosner, R.: On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377–408 (2001)

    Article  Google Scholar 

  33. Li, X.L., Fu, D.X., Ma, Y.W.: Direct numerical simulation of compressible isotropic turbulence. Sci. China (Series A) 45, 1452–1460 (2002)

    Article  Google Scholar 

  34. Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)

    Article  Google Scholar 

  35. Jeong, J., Hussain, F.: On the identification of a vortex. J. Math. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China Grant Nos. 11522222 and 11472305. Innovative Sustentation Fund for Excellent Ph.D. Students in Hunan province (No. CX2016B003). We would also like to thanks Prof. S. Pirozzoli for offering indispensable scalar equation code. Special thanks are due to Prof. N. D. Sandham and Z. W. Hu of University of Southampton for precious help and discussion on the numerical scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Yan Zhao or Ming-Bo Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, GY., Sun, MB., Mei, Y. et al. An Efficient Adaptive Central-Upwind WENO-CU6 Numerical Scheme with a New Sensor. J Sci Comput 81, 649–670 (2019). https://doi.org/10.1007/s10915-019-01035-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01035-9

Keywords

Navigation