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Abstract. The Swift–Hohenberg equation as a central nonlinear model in modern physics has a

gradient flow structure. Here we introduce fully discrete discontinuous Galerkin (DG) schemes for

a class of fourth order gradient flow problems, including the nonlinear Swift–Hohenberg equation,

to produce free-energy-decaying discrete solutions, irrespective of the time step and the mesh size.

We exploit and extend the mixed DG method introduced in [H. Liu and P. Yin, J. Sci. Com-

put., 77: 467–501, 2018] for the spatial discretization, and the “Invariant Energy Quadratization”

method for the time discretization. The resulting IEQ-DG algorithms are linear, thus they can be

efficiently solved without resorting to any iteration method. We actually prove that these schemes

are unconditionally energy stable. We present several numerical examples that support our theo-

retical results and illustrate the efficiency, accuracy and energy stability of our new algorithm. The

numerical results on two dimensional pattern formation problems indicate that the method is able

to deliver comparable patterns of high accuracy.

1. Introduction

Motivated by fluid mechanics, reaction-diffusion chemistry, and biological systems, pattern form-

ing nonequilibrium systems continue to attract significant research interest (see e.g. [15, 7]). They

form a broad class of dissipative nonlinear partial differential equations (PDEs) that describe im-

portant processes in nature. These PDEs, such as the Swift–Hohenberg (SH) equation [26] and

extended Fisher–Kolmogorov equations [8, 21], generally cannot be solved analytically. Therefore,

computer simulations play an essential role in understanding of the non-equalibrium processing

and how it leads to pattern formation.

We consider the following model equation

ut = −∆2u− a∆u−Ψ′(u), x ∈ Ω ⊂ Rd, t > 0, (1.1)

where u(x, t) is a scalar time-dependent unknown defined in Ω, a spatial domain of d dimension,

and Ψ is a given nonlinear function. Here the model parameter a is a constant. This falls into the

large class of relaxation models forming stable patterns studied in [11]. Throughout this work we

assume that

Φ(w) := Ψ(w)− a2

8
w2 is bounded from below, (1.2)
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2 H. LIU, P. YIN

and the domain boundary ∂Ω has a unit outward normal ν. We consider the initial/boundary value

problem for (1.1) with initial data u(x, 0) = u0(x), subject to either periodic boundary conditions,

or homogenous boundary conditions such as

(i) u = ∂νu = 0; (ii) u = ∆u = 0; (iii) ∂νu = ∂ν∆u = 0, x ∈ ∂Ω, t > 0. (1.3)

Thus equation (1.1) may be written as

ut = −δE
δu
,

where δE
δu

is the L2 variational derivative, and E is the free energy functional (or Lyapunov func-

tional)

E(u) =

∫
Ω

1

2

(
∆u+

a

2
u
)2

+ Φ(u)dx.

One can show that at least for classical solutions,

d

dt
E(u) = −

∫
Ω

|ut|2dx ≤ 0. (1.4)

With assumption (1.2), the free energy E is bounded from below, hence convergence to steady

states is expected as t→ +∞. The expression (1.4) as a fundamental property of (1.1) is naturally

desired for high order numerical approximations. The objective of this paper is to develop high

order discontinuous Galerkin (DG) schemes which inherit this property for arbitrary meshes and

time step sizes. We note that assumption (1.2) will be essentially used in our time discretization.

This study is motivated by the Swift–Hohenberg equation in the theory of pattern formation,

ut = εu− (∆ + 1)2u+ gu2 − u3, (1.5)

where ε and g are physical parameters. Such model was derived by J. Swift and P. C. Hohenberg

[26] to describe Rayleigh-Bénard convection [10, 29]. Related applications can be found in complex

pattern formation [17], complex fluids and biological tissues [16]. The Swift–Hohenberg equation

is also known to have many qualitatively different equilibrium solutions such as two-dimensional

quasipatterns [3], and the pattern selection can depend on parameters ε, g and the size of the

domain; see e.g. [4, 20].

The Swift–Hohenberg equation is a gradient flow and requires very long time simulations to reach

steady states. From the numerical perspective, an ideal scheme to solve a gradient flow would (i)

preserve the energy dissipation, (ii) be more accurate, (iii) be efficient, and, (iv) perhaps above

all, be simple to implement. Among these the first aspect is particularly important, and is crucial

to eliminating numerical results that are not physical (see e.g. [6, 5] ). For the Swift–Hohenberg

equation, an explicit time discretization is known to require a time step extremely small to preserve

the energy dissipation (see e.g. [30]). Several numerical methods have been developed to alleviate

the time step restriction while still keeping the energy dissipation, related contributions include the

fully implicit operator splitting finite difference method [6, 5], the semi-analytical Fourier spectral

method [18], the unconditionally energy stable method [12] derived from an integration quadrature

formula, the large time-stepping method [32] based on the use of an extra artificial stabilized term,

and the energy stable generalized-α method [24]. However, these methods generally require the

use of an iteration in solving the fully discrete nonlinear systems. We report here on a new method
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which seems to be promising. Our numerical results will be on one and two-dimensional cases. The

relevant application is indeed mostly in two dimensional space, although some three dimensional

versions of the model also describe interesting patterns, see e.g. [28].

For the spatial discretization, we exploit and further extend the mixed discontinuous Galerkin

method introduced in [19]. The method involves three ingredients: (a) rewriting the scalar equation

into a symmetric system called mixed formulation; (b) applying the DG discretization to the

mixed formulation using only central fluxes on interior cell interfaces; and (c) weakly enforcement

of boundary conditions of types as listed in (1.3) through both u and the auxiliary variable q =

−
(
∆ + a

2

)
u. For periodic boundary conditions and quadratic Ψ, both L2 stability and optimal L2

error estimates of the resulting semi-discrete DG method have been established in [19] for both one

dimensional and two dimensional cases using tensor-product polynomials on rectangular meshes.

In this work, we show that the mixed DG discretization can be refined into a unified form that

works for all homogeneous boundary conditions, and further show it satisfies the energy dissipation

law (1.4) with a discrete energy of form E(uh, qh) =
∫

Ω
(1

2
|qh|2 + Φ(uh))dx. Note that due to the

weakly enforcement of boundary condition (i) in (1.3), the corresponding discrete energy requires

a correction term (vanishing when mesh is refined) so that a discrete energy dissipation law is

ensured.

Our mixed DG method has the usual advantages of a DG method (see e.g. [14, 23, 25]) over the

continuous Galerkin methods, such as high order accuracy, flexibility in hp-adaptation, capacity to

handle domains with complex geometry, its distinctive feature lies in numerical flux choices without

using any interior penalty. For more references to earlier results on DG numerical approximations

of some fourth order PDEs, we refer to [19].

For the temporal discretization, instead of using the method studied in [19] which requires

iteratively solving a nonlinear system, we explore the method of Invariant Energy Quadratization

(IEQ), which was proposed very recently in [31, 33]. This method is a generalization of the method

of Lagrange multipliers or of auxiliary variables originally proposed in [1, 13]. With this method,

we introduce an auxiliary variable U =
√

Φ +B, where Φ(u) +B > 0 for some constant B > 0, so

that

Φ′(u) = H(u)U, Ut =
1

2
H(u)ut,

where H(u) := Φ′(u)/
√

Φ(u) +B. Such method when applied to the semi-discrete DG formulation

requires only replacing the nonlinear function Φ′(un+1
h ) by H(unh)Un+1, where unh is the approxi-

mation of uh in the previous time step. Un+1 is updated from Un in two steps: the piecewise L2

projection with Un
h = ΠUn, and the update step with

Un+1 − Un
h

∆t
=

1

2
H(unh)

un+1
h − unh

∆t
.

This treatment when coupled with the DG discretization described above leads to(
un+1
h − unh

∆t
, φ

)
=− A(φ, qn+1

h )−
(
H(unh)Un+1, φ

)
, (1.6a)

(qnh , ψ) =A(unh, ψ), (1.6b)
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for ∀φ, ψ in the space of piecewise polynomials, A(·, ·) is a bilinear operator corresponding to the

operator L = −
(
∆ + a

2

)
. To obtain a second order in time discretization, we replace qn+1

h and

Un+1 in (1.6a) by (qn+1
h + qnh)/2 and (Un+1 + Un

h )/2, respectively, and replace H(unh) by H(un,∗h ),

with un,∗h = 3
2
unh − 1

2
un−1
h . We prove that these schemes are unconditionally energy stable. In

addition, the resulting discrete systems are linear with scale comparable to that generated by the

same DG discretization to the linear problem. As a result, the methods are simple to implement

and computationally efficient to achieve high order of accuracy in space.

This paper is organized as follows: in Section 2, we formulate a unified semi-discrete DG method

for (1.1) subject to different boundary conditions. In Section 3, we present first order and second

order fully discrete DG schemes and show their energy dissipation properties. In Section 4, we first

present numerical results to demonstrate the high order of accuracy of the proposed schemes, and

their energy dissipating property, and we further simulate some two dimensional pattern formation

problems, including two particular patterns, rolls and hexagons, arising during the Rayleigh-Bénard

convection as simulated in [22, 9]. Finally in Section 5 some concluding remarks are given.

2. Symmetrization and spatial discretization

In this section we recall the mixed DG spatial discretization introduced in [19] and show it also

satisfies the energy dissipation law for the nonlinear problem (1.1) when subjected to homogeneous

boundary conditions.

2.1. Symmetrization. The idea in [19] is to apply the mixed DG discretization without interior

penalty to a symmetrized mixed formulation. For the fourth order PDE (1.1), we let L = −
(
∆ + a

2

)
so that the model admits the following form

ut = −L2u− Φ′(u).

Further set q = Lu, then {
ut = −Lq − Φ′(u),

q = Lu.
(2.1)

Let Vh denote the discontinuous Galerkin finite element space, then the DG method for (2.1) is to

find (uh(·, t), qh(·, t)) ∈ Vh × Vh such that

(uht, φ) = −A(qh, φ)− (Φ′(uh), φ), (2.2a)

(qh, ψ) = A(uh, ψ), (2.2b)

for all φ, ψ ∈ Vh. Here A(qh, φ) is the DG discretization of (Lq, φ) and A(uh, ψ) is the DG

discretization of (Lu, ψ). The precise form of A(·, ·) will be given in the next subsection depending

on the types of boundary conditions. The initial data for uh is taken as uh(x, 0) = Πu0(x), here Π

is the piecewise L2 projection, more precisely uh(x, 0) ∈ Vh satisfying∫
Ω

(u0(x)− uh(x, 0))φdx = 0, ∀φ ∈ Vh.
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We should point out that the advantages of symmetry in the scheme formulation lie at least in two

aspects: (i) unconditional energy stability of the semi-discrete scheme, and (ii) easy computation

since the resulting discrete system has a symmetric coefficient matrix.

2.2. DG discretization. The mixed semi-discrete DG scheme (2.2) was presented in [19] for one

and two dimensional rectangular meshes. Here we extend it to a unified form valid for more general

meshes and different boundary conditions, and further study its energy dissipation property.

To extend the results in [19] to general meshes we need to recall some conventions. Let the

domain Ω be a union of shape regular meshes Th = {K}, with the mesh size hK = diam{K} and

h = maxK hK . We denote the set of the interior interfaces by Γ0, and the set of all boundary faces

by Γ∂. Then the discontinuous Galerkin finite element space can be formulated as

Vh = {v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th},

where P k(K) denotes the set of polynomials of degree no more than k on element K. If the normal

vector on the element interface e ∈ ∂K1 ∩ ∂K2 is oriented from K1 to K2, then the average {·}
and the jump [·] operator are defined by

{v} =
1

2
(v|∂K1 + v|∂K2), [v] = v|∂K2 − v|∂K1 ,

for any function v ∈ Vh, where v|∂Ki
(i = 1, 2) is the trace of v on e evaluated from element Ki.

The direct DG discretization of (2.1), following [19], is of the form∫
K

uhtφdx =−
∫
K

∇qh · ∇φdx+

∫
∂K

∂̂νqhφ+ (qh − q̂h)∂νφds+

∫
K

(a
2
qh − Φ′(uh)

)
φdx, (2.3a)∫

K

qhψdx =

∫
K

∇uh · ∇ψdx−
∫
∂K

∂̂νuhψ + (uh − ûh)∂νψds−
∫
K

a

2
uhψdx, (2.3b)

for uh, qh ∈ Vh with test functions φ, ψ ∈ Vh. Here with a slight abuse of notation, we use ν to

also stand for the outward normal direction to ∂K for each K. On cell interfaces e ∈ ∂K
⋂

Γ0,

central numerical fluxes

∂̂νqh = {∂νqh}, q̂h = {qh}, ∂̂νuh = {∂νuh}, ûh = {uh} (2.4)

are adopted in [19]. Boundary fluxes on e ∈ ∂K
⋂

Γ∂ depend on boundary conditions pre-specified.

For periodic boundary conditions, the numerical fluxes can take the same formula as those in (2.4).

For non-homogeneous boundary conditions

(i) u = g1, ∂νu = g2; (ii) u = g1,∆u = g3; (iii) ∂νu = g2, ∂ν∆u = g4 on ∂Ω, t > 0, (2.5)

the boundary fluxes introduced in [19] are respectively defined by

ûh = g1, ∂̂νuh = g2, q̂h = qh, ∂̂νqh =
β1

h
(g1 − uh) + ∂νqh; (2.6)

ûh = g1, ∂̂νuh =
β0

h
(g1 − uh) + ∂νuh; q̂h = −g3 −

a

2
g1, ∂̂νqh =

β0

h
(−g3 −

a

2
g1 − qh) + ∂νqh; (2.7)

ûh = uh, ∂̂νuh = g2; q̂h = qh, ∂̂νqh = −g4 −
a

2
g2, (2.8)
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where the flux parameters β0, β1 are used to weakly enforce the specified boundary conditions.

Note that h in β0
h

or β1
h

needs to be carefully chosen when using unstructured meshes. In practice,

it has been selected as the distance from cell center to the domain boundary.

Summation of (2.3) over all elements K ∈ Th leads to a unified DG formulation

(uht, φ) + αh−1(uh, φ)Γ∂ =− A(φ, qh)− (Φ′(uh), φ) , (2.9a)

(qh, ψ) =A(uh, ψ), (2.9b)

for periodic and homogeneous boundary conditions, i.e. gi = 0. Here the bilinear functional

A(w, v) = A0(w, v) + Ab(w, v)

with

A0(w, v) =
∑
K∈Th

∫
K

(
∇w · ∇v − a

2
wv
)
dx+

∑
e∈Γ0

∫
e

({∂νw}[v] + [w]{∂νv}) ds. (2.10)

Both the method parameter α and Ab(·, ·) are given below for each respective type of boundary

conditions:

for periodic case α = 0, Ab(w, v) =
1

2

∫
Γ∂

({∂νw}[v] + [w]{∂νv}) ds, (2.11a)

for (i) α = β1, A
b(w, v) = −

∫
Γ∂

w∂νvds, (2.11b)

for (ii) α = 0, Ab(w, v) =

∫
Γ∂

β0

h
wv − w∂νv − ∂νwvds, (2.11c)

for (iii) α = 0, Ab(w, v) = 0. (2.11d)

Note that for periodic case in (2.11a) the left boundary and the right boundary are considered as

same boundaries, for which we use the factor 1/2 to avoid the recounting.

Remark 2.1. For case (i), α 6= 0 and Ab(·, ·) is non-symmetric; our numerical results indicate that,

the optimal order of accuracy may not be obtained if α = 0 in such case. For other types of

boundary conditions, α = 0 and Ab(·, ·) is symmetric, hence (2.9) reduces to (2.2).

2.3. Energy stability of the DG scheme. For the semi-discrete DG scheme (2.9), we have the

following energy dissipation property.

Theorem 2.1. The semi-discrete DG scheme (2.9) with α ≥ 0 satisfies a discrete energy dissipation

law
d

dt
E(uh, qh) = −

∫
Ω

|uht|2dx ≤ 0,

where

E(uh, qh) =

∫
Ω

1

2
|qh|2 + Φ(uh)dx+

α

2h

∫
Γ∂

u2
hds. (2.12)

Proof. Taking φ = uht in (2.9a), and ψ = qh in

(qht, ψ) = A(uht, ψ),

which is a resulting equation from differentiation of (2.9b) in t, upon summation, we obtain the

desired result. �
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Remark 2.2. For case (i) with α 6= 0, the discrete energy E(uh, qh) is still consistent with the

free energy at the continuous level. To see this, we can informally argue by assuming that ‖uh −
g‖L∞(∂Ω) ∼ hk+1, which is the order of accuracy when using polynomials of degree k, then with

uniform meshes and note that g = 0, we have

α

2h

∣∣∣∣∫
∂Ω

u2
hdx

∣∣∣∣ ∼ 1

2
α|∂Ω|h2k+1,

which tends to vanish as h→ 0.

2.4. Non-homogeneous boundary conditions. For non-homogeneous boundary conditions (i)-

(iii) in (2.5), the unified DG scheme (2.9) becomes

(uht, φ) + αh−1(uh, φ)Γ∂ =− A(φ, qh)− (Φ′(uh), φ) + L1(t;φ), (2.13a)

(qh, ψ) =A(uh, ψ) + L2(t;ψ), (2.13b)

where Li(t; ·), i = 1, 2 are given below for each respective type of boundary conditions:

for (i) L1(t; v) =

∫
Γ∂

β1

h
g1vds, (2.14a)

L2(t; v) =

∫
Γ∂

(g1∂νv − g2v) ds; (2.14b)

for (ii) L1(t; v) =

∫
Γ∂

(
(g3 + ag1/2)∂νv −

β0

h
(g3 + ag1/2)v

)
ds, (2.14c)

L2(t; v) =

∫
Γ∂

(
−g1∂νv −

β0

h
g1v

)
ds; (2.14d)

for (iii) L1(t; v) = −
∫

Γ∂

(g4 + ag2/2)vds, (2.14e)

L2(t; v) = −
∫

Γ∂

g2vds. (2.14f)

The dependence of Li(t; ·) on t comes from the fact that gi(i = 1, · · · , 4) are functions of x and

t. The choices for parameters β0 and β1 have been discussed by L2 stability analysis in [19]: the

scheme is L2 stable for β1 ≥ 0 and any β0 ∈ R. Furthermore, numerical convergence tests in [19] for

linear problems indicate that the following choices are sufficient for achieving optimal convergence,

for (i) β1 = δ(k ≥ 1); (2.15a)

for (ii) |β0| ≥ C (k = 1), β0 = 0 (k ≥ 2), (2.15b)

where k is the degree of underlying tensor polynomials, δ > 0 in (2.15a) can be a quite small

number. For P 1 polynomials in one dimension, the optimal order of convergence is ensured even

when β1 = 0, as shown in [19]. The choice of C in (2.15b) is some constant. For example, C = 3

was used in one-dimensional tests in [19, Example 5.5]. For (iii), optimal order of convergence has

been observed in all related numerical tests in [19] and the present work.
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3. Time discretization

An appropriate time discretization should be adopted in order to preserve the energy dissipation

law at each time step. One such discretization of (2.2) studied in [19] is to obtain (unh, q
n
h) ∈ Vh×Vh

following the marching scheme,(
un+1
h − unh

∆t
, φ

)
=− A(q

n+1/2
h , φ)−

(
Φ(un+1

h )− Φ(un)

un+1
h − unh

, φ

)
, (3.1a)

(qnh , ψ) =A(unh, ψ), (3.1b)

for all φ, ψ ∈ Vh, to approximate uh(·, tn), qh(·, tn), where tn = n∆t with ∆t being the time step.

This scheme is shown in [19] to preserve the energy dissipation law in the sense that

En+1
h − Enh = −‖u

n+1
h − unh‖2

∆t
, (3.2)

where

Enh =

∫
Ω

Φ(unh) +
1

2
|qnh |2dx.

However, implementation of (3.1) must involve some iteration, see a particular iteration for simu-

lating the Swift–Hohenberg equation in [19].

Here following the idea of the IEQ method (cf. [31]), we propose both first and second order

time discretization to the semi-discrete DG scheme (2.9) so that the schemes obtained are energy

stable independent of time steps, and without resorting to any iteration method. Because of (1.2),

we can choose a constant B so that Φ(w) +B > 0, ∀w ∈ R, and U =
√

Φ(uh) +B is well-defined.

The corresponding energy now reads as

E(uh, qh, U) =

∫
Ω

(
1

2
|qh|2 + U2

)
dx+

α

2h

∫
Γ∂

u2
hds = E(uh, qh) +B|Ω|. (3.3)

With this notation we have Φ′(uh) = H(uh)U with

H(w) =
Φ′(w)√

Φ(w) +B
. (3.4)

Instead of using the formula U =
√

Φ(uh) +B, we update U by following its differentiation Ut =
1
2
Huht. More precisely, we consider the following enlarged system: find (uh(·, t), qh(·, t)) ∈ Vh× Vh

such that

Ut =
1

2
H(uh)uht, (3.5a)

(uht, φ) + αh−1(uh, φ)Γ∂ =− A(φ, qh)− (H(uh)U, φ) , (3.5b)

(qh, ψ) =A(uh, ψ), (3.5c)

for all φ, ψ ∈ Vh. The initial data for the above scheme is chosen as

uh(x, 0) = Πu0(x), U(x, 0) =
√

Φ(u0(x)) +B,

where Π denotes the piecewise L2 projection into Vh.
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By taking φ = uht in (3.5b) and ψ = qh in (3.5c)t, which is a resulting equation from differenti-

ation of (3.5c) in t, upon further summation one can verify that

d

dt
E(uh, qh, U) = −

∫
Ω

|uht|2dx ≤ 0,

where E(uh, qh, U) is the discrete energy for the enlarged system (3.5).

We are now ready to discretize (3.5) in time.

3.1. First order fully discrete DG scheme. Find (unh, q
n
h) ∈ Vh × Vh and Un = Un(x) such

that

Un
h =ΠUn, (3.6a)

Un+1 − Un
h

∆t
=

1

2
H(unh)

un+1
h − unh

∆t
, (3.6b)(

un+1
h − unh

∆t
, φ

)
+ αh−1(un+1

h , φ)Γ∂ =− A(φ, qn+1
h )−

(
H(unh)Un+1, φ

)
, (3.6c)

(qnh , ψ) =A(unh, ψ), (3.6d)

for ∀φ, ψ ∈ Vh, with initial data

u0
h = uh(x, 0), U0 = U(x, 0).

Note that Un is not necessary in Vh, but Un
h ∈ Vh.

Set

En := E(unh, q
n
h , U

n
h ).

For fully discrete DG scheme (3.6), we have the following.

Theorem 3.1. The fully discrete DG scheme (3.6) admits a unique solution (unh, q
n
h) for any ∆t > 0.

Moreover,

En+1 ≤ En − ‖u
n+1
h − unh‖2

∆t
− 1

2
‖qn+1

h − qnh‖2 − ‖Un+1 − Un
h ‖2 − α

2h
‖un+1

h − unh‖2
L2(Γ∂), (3.7)

independent of the size of ∆t.

Proof. We first show the existence and uniqueness of (3.6) at each time step. Substitution of (3.6b)

into (3.6c) with (3.6d) gives the following linear system((
1

∆t
+
H(unh)2

2

)
un+1
h , φ

)
+ αh−1(un+1

h , φ)Γ∂ + A(φ, qn+1
h ) = (fn, φ) , (3.8a)

A(un+1
h , ψ)− (qn+1

h , ψ) =0, (3.8b)

where fn = unh/∆t + 1/2H(unh)2unh − H(unh)Un
h depends on solutions at t = tn. Taking φ = un+1

h

and ψ = qn+1
h in (3.8), upon subtraction and using (fn, φ) ≤ 1

2∆t
‖φ‖2 + ∆t

2
‖fn‖2 we obtain

‖un+1
h ‖2 + 2∆t‖qn+1

h ‖2 + 2∆tαh−1‖uh‖2
L2(Γ∂) ≤ ‖∆tf

n‖2.

This stability estimate implies the uniqueness of the linear system (3.8), hence its existence since

for a linear system in finite dimensional space, existence is equivalent to its uniqueness.
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We next prove (3.7). To this end, we define a notation Dtu
n
h =

un+1
h −unh

∆t
, also for qnh . From (3.6d),

it follows

(Dtq
n
h , ψ) = A(Dtu

n
h, ψ). (3.9)

Taking ψ = qn+1
h and φ = Dtu

n
h in (3.6c), when combined and using (3.6b) we have

−‖Dtu
n
h‖2 =αh−1(un+1

h , Dtu
n
h)Γ∂ + (Dtq

n
h , q

n+1
h ) + (H(unh)Un+1, Dtu

n
h)

=
α

2h

(
Dt‖unh‖2

L2(Γ∂) + ∆t‖Dtu
n
h‖2

L2(Γ∂)

)
+

1

2
Dt‖qnh‖2 +

∆t

2
‖Dtq

n
h‖2

+
2

∆t

(
Un+1, Un+1 − Un

h

)
=
α

2h

(
Dt‖unh‖2

L2(Γ∂) + ∆t‖Dtu
n
h‖2

L2(Γ∂)

)
+

1

2
Dt‖qnh‖2 +

∆t

2
‖Dtq

n
h‖2

+
1

∆t

(
‖Un+1‖2 − ‖Un

h ‖2 + ‖Un+1 − Un
h ‖2
)
.

This is nothing but the following identity

E(un+1
h , qn+1

h , Un+1) =E(unh, q
n
h , U

n
h )− ‖u

n+1
h − unh‖2

∆t
− α

2h
‖un+1

h − unh‖2
L2(Γ∂)

− 1

2
‖qn+1

h − qnh‖2 − ‖Un+1 − Un
h ‖2.

(3.10)

Implied by the fact that Π is a contraction mapping in L2, we have

E(un+1
h , qn+1

h , Un+1
h ) ≤ E(un+1

h , qn+1
h , Un+1), (3.11)

hence (3.7) as desired.

�

3.2. Second order fully discrete DG scheme. Here the time discretization is done in a sym-

metric fashion around the point tn+1/2 = (n+ 1/2)∆t, which will produce a second order accurate

method in time. Denote by vn+1/2 = (vn + vn+1)/2 for v = uh, qh, we find (unh, q
n
h) ∈ Vh × Vh such

that for ∀φ, ψ ∈ Vh,

Un
h =ΠUn, (3.12a)

Un+1 − Un
h

∆t
=

1

2
H(un,∗h )

un+1
h − unh

∆t
, (3.12b)(

un+1
h − unh

∆t
, φ

)
+ αh−1(u

n+1/2
h , φ)Γ∂ =− A(φ, q

n+1/2
h )− 1

2

(
H(un,∗h )(Un+1 + Un

h ), φ
)
, (3.12c)

(qnh , ψ) =A(unh, ψ), (3.12d)

where un,∗h is obtained using un−1
h and unh by

un,∗h =
3

2
unh −

1

2
un−1
h . (3.13)

Here instead of u
n+1/2
h we use un,∗h to avoid the use of iteration steps in updating the numerical

solution, while still maintaining second order accuracy in time. When n = 0 in (3.13), we simply

take u−1
h = u0

h.
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For the obtained discrete DG scheme (3.12), we have

Theorem 3.2. The fully discrete DG scheme (3.12) admits a unique solution for any ∆t > 0.

Moreover, such scheme satisfies the following discrete energy dissipation law,

En+1 ≤ E(un+1
h , qn+1

h , Un+1) = En − ‖u
n+1
h − unh‖2

∆t
, (3.14)

independent of the size of ∆t.

Proof. We first prove (3.14). We continue to use the notation Dtv
n = vn+1−vn

∆t
. From (3.12), it

follows

(Dtq
n
h , ψ) = A(Dtu

n
h, ψ). (3.15)

Taking ψ = q
n+1/2
h and φ = Dtu

n
h in (3.12c), when combined with (3.12b) we have

−‖Dtu
n
h‖2 = αh−1(u

n+1/2
h , Dtu

n
h)Γ∂ + (Dtq

n
h , q

n+1/2
h ) +

1

2
(H(un,∗h )(Un+1 + Un

h ), Dtu
n
h)

=
α

2h
Dt‖unh‖2

L2(Γ∂) +
1

2
Dt‖qnh‖2 +

1

∆t

(
‖Un+1‖2 − ‖Un

h ‖2
)
.

Multiplying by ∆t on both sides of this equality, we have

E(un+1
h , qn+1

h , Un+1) = E(unh, q
n
h , U

n
h )− ‖u

n+1
h − unh‖2

∆t
, (3.16)

which combining with (3.11) leads to (3.14).

For the uniqueness, we let (ũ, q̃, Ũ) be the difference of two possible solutions at t = tn+1, then

a similar analysis to the above yields

E(ũ, q̃, Ũ) +
‖ũ‖2

∆t
= 0,

hence we must have (ũ, q̃, Ũ) = (0, 0, 0), leading to the uniqueness of the full system (3.12). �

3.3. Algorithm. The detail related to the scheme implementation is summarized in the following

algorithm (for second order scheme (3.12) only, that for first order scheme (3.6) is simpler).

• Step 1 (Initialization), from the given initial data u0(x)

(1) generate u0
h = Πu0(x) ∈ Vh, set u−1

h = u0
h,

(2) solve for q0
h from (3.12d) based on u0

h, and

(3) generate U0 =
√

Φ(u0(x)) +B, where B is a priori chosen so that inf Φ(w) +B > 0.

• Step 2 (Evolution)

(1) Project Un back into Vh, U
n
h = ΠUn;

(2) Solve the following linear system((
1

∆t
+
H(un,∗h )2

4

)
un+1
h , φ

)
+

1

2
A(φ, qn+1

h ) +
α

2h
(un+1

h , φ)Γ∂ =RHS, (3.17a)

1

2
A(un+1

h , ψ)− 1

2
(qn+1
h , ψ) =0, (3.17b)

where un,∗h = 3
2
unh − 1

2
un−1
h , and

RHS = (fn, φ)− 1

2
A(φ, qnh)− α

2h
(unh, φ)Γ∂ ,
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with fn = unh/∆t+ 1/4H(un,∗h )2unh −H(un,∗h )Un
h .

(3) Update Un+1 using (3.12), then return to (1) in Step 2.

Note that (3.17) is a linear system with sparse coefficient matrix which is changing at each time

step, we solve it by the open source deal.II finite element library as documented in [2], using an

incomplete LU factorization as a preconditioner and preconditioned flexible GMRES as a solver.

Remark 3.1. Recently the SAV method has been introduced in [27] with certain advantages over the

IEQ. The basic idea when applied to the present setting is to introduce a scalar auxiliary variable

r =
√∫

Ω
Φ(uh)dx+B, and update r by rt = 1

2r

∫
Ω

Φ′(uh)uhtdx. A replacement of (Φ′(un+1
h ), φ)

by (Φ′(unh), φ) r
n+1

rn
yields a linearized scheme which can be shown unconditional energy stable. It

appears more involved to solve the resulting system efficiently within the DG framework.

3.4. Fully discrete DG scheme for non-homogeneous boundary conditions. For non-

homogeneous boundary conditions (i)-(iii) given in (2.5), the fully discrete DG schemes for (2.9)

need to be modified.

For the first order fully discrete DG scheme (3.6), equations (3.6c) and (3.6d) need to be modified

as (
un+1
h − unh

∆t
, φ

)
+ αh−1(un+1

h , φ)Γ∂ =− A(φ, qn+1
h )−

(
H(unh)Un+1, φ

)
+ L1(tn+1;φ),

(qnh , ψ) =A(unh, ψ) + L2(tn;ψ).

For the second order fully discrete DG scheme (3.12), equations (3.12c) and (3.12d) need to be

modified as(
un+1
h − unh

∆t
, φ

)
+ αh−1(u

n+1/2
h , φ)Γ∂ =− A(φ, q

n+1/2
h )− 1

2

(
H(un,∗h )(Un+1 + Un

h ), φ
)

+
1

2
L1(tn+1;φ) +

1

2
L1(tn;φ),

(qnh , ψ) =A(unh, ψ) + L2(tn;ψ).

It is known that for non-homogeneous boundary conditions given in (2.5), the energy dissipation

law (1.4) needs to be replaced by

d

dt
E(u) = −

∫
Ω

|ut|2dx+ J, (3.18)

where the boundary contribution J =
∫
∂Ω

(ut∂νq − ∂νutq)ds with q = −(∆ + a/2) depends on

the available boundary data and the involved solution traces. For the above two schemes, energy

variation in time can be derived in entirely similar manner to that leading to (3.7) and (3.14),

respectively, with attention necessary only on boundary contributions.

4. Numerical examples

In this section we numerically test the orders of convergence in both spatial and temporal

discretization, and the unconditional energy stability; further apply scheme (3.12) to recover some

known patterns governed by the 2D Swift–Hohenberg equation. The errors between the numerical
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solution unh(x, y) and the exact solution or a reference solution u(tn, x, y) are evaluated in the

following manner. The 2D L∞ error is given by

enh = max
i

max
0≤l≤G

max
0≤s≤G

|unh(x̂il, ŷ
i
s)− u(tn, x̂il, ŷ

i
s)|,

and the L2 error is given by

enh =

(∑
i

hixh
i
y

4

G∑
l=1

G∑
s=1

ωl,s|unh(x̂il, ŷ
i
s)− u(tn, x̂il, ŷ

i
s)|2
)1/2

,

where ωl,s > 0 are the weights, and (x̂il, ŷ
i
s) are the corresponding quadrature points for G ≥ k+ 1.

The experimental orders of convergence (EOC) at T = n∆t = 2n(∆t/2) in terms of h and ∆t are

then determined respectively by

EOC = log2

(
enh
enh/2

)
, EOC = log2

(
enh
e2n
h

)
.

Different choices for B, as numerically verified in most cases, can work equally well, so we take B =

1 for all examples except in Example 4.6. In our numerical examples we output E(unh, q
n
h , U

n
h )−B|Ω|

instead of E(unh, q
n
h , U

n
h ) to better observe the evolution of the original free energy Enh .

Note that our numerical scheme is established for the model equation (1.1), which includes the

Swift–Hohenberg equation (1.5) as a special case with a = 2 and

Ψ(u) =
1− ε

2
u2 − g

3
u3 +

u4

4
,

modulo an additive constant. For any g, such Ψ satisfies (1.2), which is necessary for the use of

the IEQ approach. In the following numerical examples we focus mainly on the Swift–Hohenberg

equation with different choices of ε and/or g.

Example 4.1. (Spatial Accuracy Test)

Consider the Swift–Hohenberg equation (1.5) by adding a source term f(x, y, t) = −εv−gv2 +v3

with v = e−t/4 sin(x/2) sin(y/2) for some parameters ε, g, and the initial data

u0(x, y) = sin(x/2) sin(y/2), (x, y) ∈ Ω. (4.1)

Its exact solution is given by

u(x, y, t) = e−t/4 sin(x/2) sin(y/2), (x, y) ∈ Ω. (4.2)

This example is to test the spatial accuracy on 2D rectangular meshes, subject to different types

of boundary conditions, we use the second-order fully discrete DG scheme (3.12) with

1

2

(
f(·, tn+1, φ) + f(·, tn, φ)

)
,

added to the right hand side of (3.12c) using polynomials of degree k with k = 1, 2, 3.

Test case 1. (Periodic boundary conditions) For parameters ε = 0.025, g = 0 and domain

Ω = [−2π, 2π]2 with periodic boundary conditions. Both errors and orders of convergence at

T = 0.1 are reported in Table 1. These results confirm the (k + 1)th orders of accuracy in L2, L∞

norms.
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Table 1. L2, L∞ errors and EOC at T = 0.1 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 3.96917e-01 9.53330e-02 2.06 2.34412e-02 2.02 5.86903e-03 2.00

‖u− uh‖L∞ 1.46432e-01 3.75773e-02 1.96 9.40110e-03 2.00 2.35038e-03 2.00

2 1e-4
‖u− uh‖L2 1.00063e-01 1.48191e-02 2.76 1.98345e-03 2.90 2.60819e-04 2.93

‖u− uh‖L∞ 2.57951e-02 3.16978e-03 3.02 4.30633e-04 2.88 5.61561e-05 2.94

3 1e-5
‖u− uh‖L2 1.34590e-02 1.10668e-03 3.60 7.55223e-05 3.87 4.83308e-06 3.97

‖u− uh‖L∞ 4.07154e-03 3.60524e-04 3.50 2.38081e-05 3.92 1.51432e-06 3.97

Test case 2. For parameters ε = 0.025, g = 0 and domain Ω = [0, 2π]2 with boundary condition

u = ∆u = 0, (x, y) ∈ ∂Ω, we use scheme (3.12) with α = 0 and β0 = 0 in (2.14c). Both errors and

orders of convergence at T = 0.1 are reported in Table 2. These results also show that (k + 1)th

orders of accuracy in L2, L∞ norms are obtained.

Table 2. L2, L∞ errors and EOC at T = 0.1 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 4.76650e-02 1.17160e-02 2.02 2.91618e-03 2.01 7.28242e-04 2.00

‖u− uh‖L∞ 3.75725e-02 9.39988e-03 2.00 2.35007e-03 2.00 5.87520e-04 2.00

2 1e-4
‖u− uh‖L2 7.40928e-03 9.91089e-04 2.90 1.26183e-04 2.97 1.58469e-05 2.99

‖u− uh‖L∞ 3.22366e-03 4.35251e-04 2.89 5.55145e-05 2.97 6.97483e-06 2.99

3 5e-5
‖u− uh‖L2 5.53341e-04 3.77612e-05 3.87 2.41654e-06 3.97 1.51952e-07 3.99

‖u− uh‖L∞ 3.60523e-04 2.38081e-05 3.92 1.51433e-06 3.97 9.51458e-08 3.99

Test case 3. For parameters ε = 0.025, g = 0.05 and domain Ω = [−π, π]2 with boundary

condition ∂νu = ∂ν∆u = 0, (x, y) ∈ ∂Ω. Both errors and orders of convergence at T = 0.1 are

reported in Table 3. These results also show that (k + 1)th orders of accuracy in both L2 and L∞

norms are obtained.

Table 3. L2, L∞ errors and EOC at T = 0.1 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 4.76652e-02 1.17160e-02 2.02 2.91618e-03 2.01 7.28242e-04 2.00

‖u− uh‖L∞ 3.75721e-02 9.39988e-03 2.00 2.35007e-03 2.00 5.87520e-04 2.00

2 1e-4
‖u− uh‖L2 7.40926e-03 9.91089e-04 2.90 1.26183e-04 2.97 1.58469e-05 2.99

‖u− uh‖L∞ 3.22365e-03 4.35251e-04 2.89 5.55145e-05 2.97 6.97483e-06 2.99

3 5e-5
‖u− uh‖L2 5.53341e-04 3.77611e-05 3.87 2.41654e-06 3.97 1.51951e-07 3.99

‖u− uh‖L∞ 3.60523e-04 2.38081e-05 3.92 1.51405e-06 3.97 9.53835e-08 3.99
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Example 4.2. In this example, we consider the problem with both a source and non-homogeneous

boundary conditions of type (i) in (2.5):

ut = −(∆ + 1)2u+ 0.025u− u3 + f(x, y, t) (x, y, t) ∈ [0, 2π]× [0, 2π]× (0, T ],

u(x, y, 0) = sin(x/2) sin(y/2),

u(0, y, t) = u(2π, y, t) = u(x, 0, t) = u(x, 2π, t) = 0,

∂xu(0, y, t) = 1/2e−t/4 sin(y/2), ∂xu(2π, y, t) = −1/2e−t/4 sin(y/2),

∂yu(x, 0, t) = 1/2e−t/4 sin(x/2), ∂yu(x, 2π, t) = −1/2e−t/4 sin(x/2),

where f(x, y, t) = −0.025v + v3 with v = e−t/4 sin(x/2) sin(y/2). Its exact solution is given by

(4.2). We test the second order fully discrete DG scheme (3.12) with

1

2
(L1(tn+1;φ) + L1(tn;φ)) +

1

2
(f(·, tn+1, φ) + f(·, tn, φ))

added to (3.12c) and L2(tn;ψ) added to (3.12d), based on P k polynomials with k = 1, 2, 3. The

flux parameter β1 = 1. Both the errors and orders of convergence at T = 0.1 are reported in Table

4. These results show that (k + 1)th orders of accuracy in both L2 and L∞ are obtained.

Table 4. L2, L∞ errors and EOC at T = 0.1 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 5.12416e-02 1.26151e-02 2.02 3.33581e-03 1.92 9.37490e-04 1.83

‖u− uh‖L∞ 4.53223e-02 1.29022e-02 1.81 3.56895e-03 1.85 1.07682e-03 1.73

2 1e-4
‖u− uh‖L2 6.90060e-03 1.10206e-03 2.65 1.34465e-04 3.03 1.63762e-05 3.04

‖u− uh‖L∞ 2.82321e-03 5.84377e-04 2.27 7.6956e-05 2.92 9.66781e-06 2.99

3 1e-5
‖u− uh‖L2 5.98414e-04 4.09284e-05 3.87 2.52723e-06 4.02 1.59071e-07 3.99

‖u− uh‖L∞ 5.14633e-04 5.04236e-05 3.35 3.18953e-06 3.98 1.91613e-07 4.06

Example 4.3. (Temporal Accuracy Test) Consider the Swift–Hohenberg equation (1.5) on the

domain Ω = [−2π, 2π]2 with the parameters ε = 0.025 and g = 0, the initial data

u0(x, y) = sin(x/4) sin(y/4). (4.3)

and generalized Neumann boundary conditions ∂νu = ∂ν∆u = 0, (x, y) ∈ ∂Ω.

We compute a reference solution at T = 2 using DG schemes (3.6) and (3.12) based on P 2

polynomials with time step ∆t = 2−8 and appropriate meshes. Numerical solutions are produced

using larger time steps ∆t = 2−m with 3 ≤ m ≤ 6. The L2, L∞ errors and orders of convergence

are shown in Table 5, and these results confirm that DG schemes (3.6) and (3.12) are first order

and second order in time, respectively.
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Table 5. L2, L∞ errors and EOC at T = 2 with time step ∆t.

Scheme Mesh
∆t = 2−3 ∆t = 2−4 ∆t = 2−5 ∆t = 2−6

error error order error order error order

(3.6) 32× 32
‖u− uh‖L2 8.19277e-02 4.11370e-02 0.99 1.96177e-02 1.07 8.50327e-03 1.21

‖u− uh‖L∞ 1.07659e-02 5.43477e-03 0.99 2.59422e-03 1.07 1.12483e-03 1.21

(3.12) 64× 64
‖u− uh‖L2 7.31631e-03 1.40500e-03 2.38 3.09235e-04 2.18 6.97759e-05 2.15

‖u− uh‖L∞ 1.74374e-03 2.64806e-04 2.72 5.34755e-05 2.31 1.17938e-05 2.18
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Figure 1. Energy evolution for several time steps using the DG scheme (3.12),

(a) normal view, (b) normal view, (c) zoomed view.

Example 4.4. (2D energy evolution) Consider the Swift–Hohenberg equation (1.5) on rectangular

domain Ω = [0, 40]2 with parameters ε = 2, g = 0, initial data

u(x, y, 0) =

{
1, x1 < x < x2,

−1, otherwise,
(4.4)

where x1 = sin
(

2π
10
y
)

+ 15 and x2 = cos
(

2π
10
y
)

+ 25 form a curvy vertical strip, and the boundary

conditions ∂νu = ∂ν∆u = 0, (x, y) ∈ ∂Ω. This example is taken from [12], using the equations of

the curvy vertical strip described therein. We solve this problem by scheme (3.12) based on P 2

polynomials on 64 × 64 meshes. The energy evolution in time with t ∈ [0, 10] for varying time

steps are shown in Figure 1, from which we see that scheme (3.12) is always energy dissipating

for any ∆t as tested, however the size of ∆t appears to affect the decay rate of the energy. These

numerical results suggest that time step should be chosen with case. One possibility is to set up

an energy threshold in such a way that if the energy is about such threshold, ∆t should be small,

and after energy falls below the threshold, one can simply adjust to a larger time step.

Furthermore, the numerical solutions with ∆t = 0.001 are shown in Figure 2, which reveals a

series of evolved patterns in time. The energy evolution over a larger time interval is also given in

Figure 3, which again shows the energy dissipation property of numerical solutions.

Example 4.5. (Rolls and Hexagons) In this example, we test the formation and evolution of

patterns that arise in the Rayleigh-Bénard convection by simulating with the Swift–Hohenberg

equation (1.5) on rectangular domain Ω = [0, 100]2, subject to random initial data and periodic



MIXED DG WITHOUT INTERIOR PENALTY 17

t=0

-1

-0.5

0

0.5

1

t=5

-1.5

-1

-0.5

0

0.5

1

1.5
t=10

-1.5

-1

-0.5

0

0.5

1

1.5

t=20

-1.5

-1

-0.5

0

0.5

1

1.5

t=40

-1.5

-1

-0.5

0

0.5

1

1.5

t=60

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. Evolution of patterns.
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Figure 3. Energy evolution dissipation.

boundary conditions. We apply scheme (3.12) based on P 2 polynomials using mesh 128× 128 and

time step size ∆t = 0.01. Model parameters will be specified below for different cases, and these

choices of parameters have been used in [22, 9].

Test case 1. (Rolls) The numerical solutions with parameters ε = 0.3, g = 0 are shown in

Figure 4, from which we see periodic rolls for different times. We observe that the pattern evolves

approaching the steady-state after t > 60, as also evidenced by the energy evolution plot in Figure

5.
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Figure 4. Evolution of periodic rolls.
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Figure 5. Energy evolution dissipation.

Test case 2. (Hexagons) The numerical solutions with ε = 0.1, g = 1.0 are reported in Figure

6, while the snapshots from t = 0 to t = 198 reveal vividly the formation and evolution of the

hexagonal pattern. The pattern evolution looks slow in the beginning, similar to that of rolls as

shown in Figure 4. However, we observe that at a certain point, before t = 20 in this case, lines

break up giving way to single droplets that take hexagonal symmetry, as also observed in [22, 9].

A stable hexagonal pattern is taking its shape after t ≥ 40, and the steady state is approached.

The energy evolution in Figure 7 clearly confirms this.
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Figure 6. Evolution of hexagonal patterns.
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Figure 7. Energy evolution dissipation.

Example 4.6. This example is to compare the numerical performance of three different time

discretization techniques when applied to our mixed DG method (see also [19] for details in its

semi-discrete formulation), including

(i) the second order IEQ-DG scheme (3.12);

(ii) the DG scheme (3.1), which was introduced in [19]; and
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(iii) the second order time discretization in [12], for which one finds (unh, q
n
h) ∈ Vh × Vh such that(

un+1
h − unh

∆t
, φ

)
=− A(q

n+1/2
h , φ)−

(
1

2

(
Φ′(un+1

h ) + Φ′(unh)
)
− (un+1

h − unh)2

12
Φ′′′(unh), φ

)
(4.5a)

(qnh , ψ) =A(unh, ψ), (4.5b)

for all φ, ψ ∈ Vh.
Though all three satisfy certain energy dissipation law, (ii) and (iii) have to be solved by appro-

priate iterative techniques. We recall that for the SH equation (1.5),

Φ(u) = − ε
2
u2 − g

3
u3 +

u4

4
.

The iterative scheme used in [19] for (3.1) is the following(
un+1,l+1
h − unh

∆t
, φ

)
+

1

2
A(qn+1,l+1

h , φ) = −1

2
A(qnh , φ)

−
(
G1(un+1,l

h , unh)un+1,l+1
h +G2(un+1,l

h , unh), φ
)
,

1

2
A(un+1,l+1

h , ψ)− 1

2
(qn+1,l+1
h , ψ) = 0,

(4.6)

where G1(un+1,0
h , unh) = G1(unh, u

n
h), the iteration stops as ‖un+1,l

h − un+1,l−1
h ‖ < η for certain l =

L (L ≥ 1) and some tolerance η > 0. Then we update by setting un+1
h = un+1,L

h . Here

G1(w, v) =− ε

2
− g

3
(w + v) +

1

4
(w2 + wv + v2),

G2(w, v) =− ε

2
v − g

3
v2 +

1

4
v3.

The scheme (4.5) can still be solved iteratively by (4.6) if one can decompose the nonlinear term

in (4.5a) as

1

2

(
Φ′(un+1

h ) + Φ′(unh)
)
− (un+1

h − unh)2

12
Φ′′′(unh) = G1(un+1

h , unh)un+1
h +G2(un+1

h , unh).

We consider two decompositions:

G1(w, v) =
1

2
(−ε− gw − w2)− 1

12
(w − 2v)(6v − 2g),

G2(w, v) =
1

2
Φ′(v)− 1

12
v2(6v − 2g),

(4.7)

and

G1(w, v) =
1

2
(−ε− gw − 3w2)− 1

12
(w − 2v)(6v − 2g),

G2(w, v) =
1

2
Φ′(v)− 1

12
v2(6v − 2g)− w3,

(4.8)

Test case 1. We consider the SH equation (1.5) with a source

f(x, y, t) = −εv − gv2 + v3,
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where v = e−49t/64 sin(x/2) sin(y/2), and parameters ε = 0.025, g = 0.05. For initial data (4.3),

and boundary condition ∂νu = ∂ν∆u = 0, (x, y) ∈ ∂Ω, where domain is Ω = [−2π, 2π]2, we have

an exact solution given by

u(x, y, t) = e−49t/64 sin(x/4) sin(y/4), (x, y) ∈ Ω.

We test schemes (i)-(iii) based on P 2 polynomials with

1

2

(
f(·, tn+1, φ) + f(·, tn, φ)

)
,

added to the right hand side of (3.12c), (3.1a) and (4.5a), respectively. For (ii) and (iii), we take

the tolerance η = 10−12.

We compute the numerical solution at T = 2 with mesh size 32× 32 and time steps ∆t = 2−m

for 2 ≤ m ≤ 5, the L2, L∞ errors and orders of convergence in time are shown in Table 6, and

these results show that schemes (i)-(iii) are all of second order accuracy in time.

Table 6. L2, L∞ errors and EOC at T = 2 with time step ∆t.

Method
∆t = 2−2 ∆t = 2−3 ∆t = 2−4 ∆t = 2−5

error error order error order error order

(i)
‖u− uh‖L2 1.58904e-02 3.28568e-03 2.27 7.79139e-04 2.08 1.88606e-04 2.05

‖u− uh‖L∞ 2.86144e-03 6.04098e-04 2.24 1.59953e-04 1.92 4.25000e-05 1.91

(ii)
‖u− uh‖L2 1.21293e-02 3.01853e-03 2.01 7.62040e-04 1.99 1.89204e-04 2.01

‖u− uh‖L∞ 2.75613e-03 6.82343e-04 2.01 1.72912e-04 1.98 4.27627e-05 2.02

(iii)
‖u− uh‖L2 1.15070e-02 2.94199e-03 1.97 7.52614e-04 1.97 1.88020e-04 2.00

‖u− uh‖L∞ 2.57787e-03 6.60569e-04 1.96 1.70270e-04 1.96 4.24274e-05 2.00

Test case 2. We attempt to recover the pattern observed in Example 4.4 at T = 10 by using

schemes (i)-(iii) with meshes 64 × 64 and time steps ∆t = 2−m for 2 ≤ m ≤ 7. For scheme (i),

we take B = 104 since we observe that larger B can give better approximation, such effect seems

visible only for larger ∆t. For both (ii) and (iii), we take the tolerance η = 10−10, and use the

same preconditioner and solver as for (i).

For schemes (i)-(iii) both the maximum number of iterations at each time step and the total

CPU time from t = 0 to t = T are presented in Table 7; the CPU time is highlighted when the

expected pattern is observed. The results show that scheme (i) uses the least number of iterations

and the least CPU time to obtain the expected pattern, and hence the most efficient one among

three schemes.

5. Concluding remarks

The Swift–Hohenberg equation is a higher-order nonlinear partial differential equation endowed

with a gradient flow structure. We proposed fully discrete discontinuous Galerkin (DG) schemes

that inherit the nonlinear stability relationship of the continuous equation irrespectively of the

mesh and time step sizes. The spatial discretization is based on the mixed DG method introduced

by us in [19], and the temporal discretization is based on Invariant Energy Quadratization (IEQ)



22 H. LIU, P. YIN

Table 7. Iterations and CPU time in seconds at T = 10 with meshes 64× 64.

Method ∆t 2−2 2−3 2−4 2−5 2−6 2−7

(i)
Iterations 1 1 1 1 1 1

CPU time 842 1128 1557 2320 3717 6042

(ii)
Iterations 20 13 10 8 7 6

CPU time 7874 7024 7774 9818 13652 20542

(iii)-(4.7)
Iterations 18 12 9 8 7 6

CPU time 6478 6229 7296 9587 13497 20383

(iii)-(4.8)
Iterations 13 11 9 7 7 6

CPU time 5748 6223 7595 9673 13526 20483

approach introduced in [31] for the nonlinear potential. Coupled with a proper projection, the

resulting IEQ-DG algorithm is explicit without resorting to any iteration method, and proven to

be unconditionally energy stable. We present several numerical examples to assess the performance

of the schemes in terms of accuracy and energy stability. The numerical results on two dimensional

pattern formation problems indicate that the method is able to deliver comparable patterns of high

accuracy.

Pattern formation is the result of self-organization systems and there are many examples of

this phenomenon, in spite of the different mechanisms that trigger and amplify the instability.

The present method should be applicable to a wide variety of processes and can be variationally

improved if necessary.
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[22] S. S. Pérez-Moreno, S. R. Chavarŕıa and G. R. Chavarŕıa. Numerical solution of the Swift–Hohenberg equation.

In: J. Klapp, A. Medina (eds). Experimental and Computational Fluid Mechanics. Environmental Science and

Engineering. Springer, Cham., 409–416, 2014.

[23] Bèatrice Riviére. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for

Industrial and Applied Mathematics, 2008.

[24] A. F. Sarmiento, L. F. R. Espath, P. Vignal, L. Dalcin, M. Parsani and V. M. Calo. An energy-stable generalized-

α method for the Swift–Hohenberg equation. J. Comput. Appl. Math., 344:836–851, 2018.

[25] Chi-Wang Shu. Discontinuous Galerkin methods: General approach and stability. Numerical Solutions of Par-

tial Differential Equations, S. Bertoluzza, S. Falletta, G. Russo and C.-W. Shu, Advanced Courses in Mathe-

matics CRM Barcelona, pages 149–201, 2009. Birkhauser, Basel.

[26] J. Swift and P. C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Physical Review A,

15:319–328, 1977.

[27] J. Shen, J. Xu and X. Yang. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys.,

353:407–416, 2018.

[28] U. Thiele, A. J. Archer, M. J. Robbins, H. Gomez, and E. Knobloch. Localized states in the conserved Swift–

Hohenberg equation with cubic nonlinearity. Physical Review E, 87:042915, 2013.



24 H. LIU, P. YIN

[29] B. Wen, N. Dianati, E. Lunasin, G. P. Chini and C. R. Doering. New upper bounds and reduced dynamical

modeling for Rayleigh-Bénard convection in a fluid saturated porous layer. Commun. Nonlinear Sci. Numer.

Simulat., 17(5):2191–2199, 2012.
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