Skip to main content
Log in

Second-Order Asymptotic Analysis and Computations of Axially and Spherically Symmetric Piezoelectric Problems for Composite Structures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The second-order coupled piezoelectric models based on the multi-scale asymptotic expansion method are developed for the axially and spherically symmetric composites. The governing piezoelectric equations are compactly formulated in cylindrical and spherical coordinates, and the composite domains are assumed to be periodically occupied by the representative cells. The multi-scale asymptotic expansions for the displacement and the electric potential are formally defined and the effective elastic, piezoelectric, and dielectric coefficients are expressed in terms of the microscopic functions defined on the cell domain. Particularly, the cell solutions and the homogenized solutions for the plane axisymmetric and spherically symmetric problem are derived analytically. The corresponding finite element procedure is proposed, in which the Newmark algorithm is applied to construct the computational scheme in the temporal domain. Numerical experiments are carried out to simulate both the static and dynamic asymptotic behavior of the space axisymmetric and the one-dimensional plane axisymmetric structures. It is validated from the numerical examples that the asymptotic models proposed in the current work are effective to capture the macroscopic performance of the piezoelectric structures and the second-order expansions of the solutions is essential for obtaining the correct distributions of the stress and electric displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)

    Google Scholar 

  2. Vives, A.A.: Piezoelectric Transducers and Applications. Springer, Berlin (2008)

    Google Scholar 

  3. Yang, J.Z.: An Introduction to the Theory of Piezoelectricity. Springer, Berlin (2015)

    Google Scholar 

  4. Li, Y.D., Lee, K.Y.: Three dimensional axisymmetric problems in piezoelectric media: revisited by a real fundamental solutions based new method. Appl. Math. Model. 36, 6100–6113 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)

    Google Scholar 

  6. Adeff, S.E.: Simulation of axisymmetric piezoelectric devices. Appl. Math. Comput. 65, 355–369 (1994)

    MATH  Google Scholar 

  7. Dong, H.J., Wang, H.M., Hou, P.F.: The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain problem. Int. J. Solids Struct. 40, 105–123 (2003)

    MATH  Google Scholar 

  8. Filoux, E., Calle, S., Lou-Moeller, R., Lethiecq, M., Levassort, F.: 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers. IEEE. T. Ultrason. Ferr. 57, 1188–1198 (2010)

    Google Scholar 

  9. Yong, Y.K., Cho, Y.: Numerical algorithms for solutions of large eigenvalue problems in piezoelectric resonators. Int. J. Numer. Methods Eng. 39, 909–922 (1996)

    MATH  Google Scholar 

  10. Lovane, G., Nasedkin, A.V.: Modal analysis of piezoelectric bodies with voids. I. Mathematical approaches. Appl. Math. Model. 34, 60–71 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Lovane, G., Nasedkin, A.V.: Modal analysis of piezoelectric bodies with voids. II. Finite element simulation. Appl. Math. Model. 34, 47–59 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Nowacki, W.: Some general theorems of thermopiezoelectricity. J. Therm. Stress. 1, 171–182 (1978)

    Google Scholar 

  13. Yang, J.S., Batra, R.C.: Free vibration of a linear thermopiezoelectric body. J. Therm. Stress. 18, 247–262 (2015)

    Google Scholar 

  14. Wang, H.M., Ding, H.J., Chen, Y.M.: Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems. Int. J. Solids Struct. 42, 85–102 (2005)

    MATH  Google Scholar 

  15. Abdel-Gawad, A., Wang, X.D.: An improved model of thin cylindrical piezoelectric layers between isotropic elastic media. Int. J. Solids Struct. 50, 4118–4132 (2013)

    Google Scholar 

  16. Gu, G.Q., Wei, E.B., Xu, C.: Effective elastic properties of piezoelectric composites with radially polarized cylinders. Phys. B 404, 4001–4006 (2009)

    Google Scholar 

  17. Deraemaeker, A., Nasser, H.: Numerical evaluation of the equivalent properties of Macro Fiber Composite (MFC) transducers using periodic homogenization. Int. J. Solids Struct. 47, 3272–3285 (2010)

    MATH  Google Scholar 

  18. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  19. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  20. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  21. Lions, J.L.: Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Gordon and Breach, Beijing (1981)

    MATH  Google Scholar 

  22. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Assyr, A., E, W.N., Björn, E., Eric, V.E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

  25. E, W.N.: Principles of Multiscale Modeling. Science Press, Beijing (2012)

  26. Castillero, J.B., Otero, J.A., Ramos, R.R., Bourgeat, A.: Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Struct. 35, 527–541 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Weller, T., Licht, C.: Asymptotic modeling of thin piezoelectric plates. Ann. Solid Struct. Mech. 1, 173–188 (2010)

    MATH  Google Scholar 

  28. Martinez-Ayuso, G., Friswell, M.I., Adhikari, S., Khodaparast, H.H., Berger, H.: Homogenization of porous piezoelectric materials. Int. J. Solids Struct. 113–114, 218–229 (2017)

    Google Scholar 

  29. Sabina, F.J., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R.: Close-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II. Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solid 49, 1463–1479 (2001)

    MATH  Google Scholar 

  30. Berger, H., Babbert, U., Koppe, H., Rodriguez-Ramos, R., Bravo-Castillero, J., GuinovartDiaz, R., Otero, J.A., Maugin, G.A.: Finite element and asymptotic homogenization methods applied to smart composite materials. Comput. Mech. 33, 61–67 (2003)

    MATH  Google Scholar 

  31. Berger, H., Kari, S., Gabbert, U., Rodrigues-Ramos, R., Bravo-Castillero, J., vart-Daiz, R.G.: Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique. Compos. Struct. 71, 397–400 (2005)

    Google Scholar 

  32. Rohan, E., Lukes̆, V.: Homogenization of the fluid-saturated piezoelectric porous media. Int. J. Solids Struct. 147, 110–125 (2018)

    Google Scholar 

  33. Gałka, A., Telega, J.J., Wojnar, R.: Homogenization and thermopiezoelectricity. Mech. Res. Commun. 19(4), 315–324 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Cook, A.C., Vel, S.S.: Multiscale thermopiezoelectric analysis of laminated plates with integrated piezoelectric fiber composites. Eur. J. Mech. A Solid 40, 11–33 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Fantoni, F., Bacigalupo, A., Paggi, M.: Multi-field asymptotic homogenization of thermopiezoelectric materials with periodic microstructure. Int. J. Solids Struct. 120, 32–56 (2017)

    Google Scholar 

  36. Sixto-Camacho L. M., Bravo-Castillero J., Brenner R., Cuinovart-D\(\acute{i}\)az R., Mechkour H., Rodr\(\acute{i}\)guez-Ramos R., Sabina F. J.: Asymptotic homogenization of periodic thermo-megneto-electro-elastic heterogeneous media. Comput. Math. Appl. 66, 2056–2074 (2013)

  37. Yang, Y., Lei, C.H., Gao, C.F., Li, J.Y.: Asymptotic homogenization of three-dimensional thermoelectric composites. J. Mech. Phys. Solids 76, 98–126 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Tsalis, D., Chatzigeorgiou, G., Charalambakis, N.: Homogenization of structures with generalized periodicity. Compos. Part B 43, 2495–2512 (2012)

    Google Scholar 

  39. Chatzgeorgiou, G., Efendiev, Y., Charalambakis, N., Lagoudas, D.C.: Effective thermoelastic properties of composites with periodicity in cylindrical coordinates. Int. J. Solids Struct. 49, 2590–2603 (2012)

    Google Scholar 

  40. Ghergu, M., Griso, G., Mechkour, H., Miara, B.: Homogenization of thin piezoelectric perforated shells. Esaim-Math. Model. Num. 41(5), 875–895 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Cui, J.Z., Cao, L.Q.: Finite element method based on two-scale asymptotic analysis. Math. Numer. Sin. 1, 89–102 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Feng, Y.P., Cui, J.Z.: Multi-scale analysis and FE computation for the structure of composite materials with small periodicity configuration under condition of coupled thermoelasticity. Int. J. Numer. Methods Eng. 60, 241–269 (2004)

    Google Scholar 

  43. Yang, Z.H., Cui, J.Z., Wu, Y.T., Wang, Z.Q., Wan, J.J.: Second-order two-scale analysis method for dynamic thermo-mechanical problems in periodic structure. Int. J. Numer. Anal. Model. 12, 144–161 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Yang, Z.Q., Hao, Z.W., Sun, Y., Li, Y.Z., Dong, H.: Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach. Int. J. Solids Struct. 178–179, 91–107 (2019)

    Google Scholar 

  45. Zhang, Y., Cao, L.Q., Wong, Y.S.: Multiscale computations for 3D time-dependent Maxwell’s equations in composite materials. SIAM J. Sci. Comput. 32(5), 2560–2583 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Deng, M.X., Feng, Y.P.: The two-scale finite element method for piezoelectric problem in periodic structure. Appl. Math. Mech. 32, 1525–1540 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Su, F., Cui, J.Z.: A second-order and two-scale analysis method for the quasi-periodic structure of composite materials. Finite Elem. Anal. Des. 46, 320–327 (2010)

    MathSciNet  Google Scholar 

  48. Ma, Q., Cui, J.Z., Li, Z.H., Wang, Z.Q.: Second-order asymptotic algorithm for heat conduction problems of periodic composite materials in curvilinear coordinates. J. Comput. Appl. Math. 306, 87–115 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Ma, Q., Li, Z.H., Yang, Z.H., Cui, J.Z.: Asymptotic computation for transient heat conduction performance of periodic porous materials in curvilinear coordinates: by the secondorder two-scale method. Math. Methods. Appl. Sci. 40, 5109–5130 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Ma, Q., Li, Z.H., Cui, J.Z.: Multi-scale asymptotic analysis and computation of the elliptic eigenvalue problems in curvilinear coordinates. Comput. Methods Appl. Mech. Eng. 340, 340–365 (2018)

    MathSciNet  Google Scholar 

  51. Ma, Q., Cui, J.Z., Li, Z.H.: Second-order two-scale asymptotic analysis for axisymmetric and spherical symmetric structure with periodic configur1ations. Int. J. Solids Struct. 78–79, 77–100 (2016)

    Google Scholar 

  52. Li, Z.H., Ma, Q., Cui, J.Z.: Second-order two-scale finite element algorithm for dynamic thermo-mechanical coupling problem in symmetric structure. J. Comput. Phys. 314, 712–748 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Li, Z.H., Ma, Q., Cui, J.Z.: Multi-scale modal analysis for axisymmetric and spherical symmetric structures with periodic configurations. Comput. Methods Appl. Mech. Eng. 317, 1068–1101 (2017)

    MathSciNet  Google Scholar 

  54. Dong, H., Cui, J.Z., Nie, Y.F., Yang, Z.H.: Second-order two-scale computational method for nonlinear dynamic thermo-mechanical problems of composites with cylindrical periodicity. Commun. Comput. Phys. 21, 1173–1206 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Dong, H., Cui, J.Z., Nie, Y.F., Ma, Q., Yang, Z.H.: Multiscale computational method for the thermoelastic problem of composite materials with orthogonal periodic configurations. Appl. Math. Model. 60, 634–660 (2018)

    MathSciNet  Google Scholar 

  56. Dong, H., Zheng, X.J., Cui, J.Z., Nie, Y.F., Yang, Z.Q., Ma, Q.: Multi-scale computational method for dynamic themo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations. Comput. Methods Appl. Mech. Eng. 354, 143–180 (2019)

    Google Scholar 

Download references

Acknowledgements

The research is supported by National Natural Science Foundation of China (11801387, 11501389, 11471214), State Key Laboratory of Science and Engineering Computing and the fundamental research funds for the central universities. The first author would like to thank Emily Lee for her useful help on proofreading the problem of language of this paper. The authors are particularly thankful to the reviewers and editor for their valuable comments and suggestions, which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wang or Zhiqiang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Cell Solutions for the Plane Axisymmetric and Spherically Symmetric Problems

For the plane axisymmetric problem (6), the first-order periodic cell functions \(N_1\), F, M, \(R_1\), H and T satisfy the following boundary value problems

$$\begin{aligned}&\left\{ \begin{array}{l} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{N_1}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{dH}}{{d{y_1}}}\right) = \dfrac{{d{G_1}}}{{d{y_1}}}\quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{dH}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{N_1}}}{{d{y_1}}}\right) = - \dfrac{{d{e_1}}}{{d{y_1}}}\quad \text {in}\ [0,1],\\ {N_1}\left( 0\right) = {N_1}\left( 1\right) = H\left( 0\right) = H\left( 1\right) = 0, \end{array} \right. \end{aligned}$$
(47)
$$\begin{aligned}&\left\{ \begin{array}{l} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{dF}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{R_1}}}{{d{y_1}}}\right) = \dfrac{{d{e_1}}}{{d{y_1}}}\quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d{R_1}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{dF}}{{d{y_1}}}\right) = \dfrac{{d{\epsilon _1}}}{{d{y_1}}}\quad \text {in}\ [0,1],\\ F\left( 0\right) = F\left( 1\right) = {R_1}\left( 0\right) = {R_1}\left( 1\right) = 0, \end{array} \right. \end{aligned}$$
(48)
$$\begin{aligned}&\left\{ \begin{array}{l} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{dM}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d T}}{{d{y_1}}}\right) = \dfrac{{d\lambda }}{{d{y_1}}}\quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d T}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{dM}}{{d{y_1}}}\right) = - \dfrac{{d{e_\theta }}}{{d{y_1}}}\quad \text {in}\ [0,1],\\ M\left( 0\right) = M\left( 1\right) = T\left( 0\right) = T\left( 1\right) = 0, \end{array} \right. \end{aligned}$$
(49)

respectively. Based on these problems and the homogenized coefficients in Eq. (40), we have

$$\begin{aligned} \begin{array}{l} G_1^0 = \dfrac{{{V_G}(1)}}{{{V_0}}},\epsilon _1^0 = \dfrac{{{V_\epsilon }(1)}}{{{V_0}}},e_1^0 = \dfrac{{{V_e}(1)}}{{{V_0}}},\\ {\lambda ^0} = e_1^0{V_1}(1) + G_1^0{V_2}(1) = \displaystyle {\int _0^1} {\dfrac{{\lambda (G_1^0{\epsilon _1} + e_1^0{e_1}) + {e_\theta }(G_1^0{e_1} - {G_1}e_1^0)}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy}, \\ e_\theta ^0 = e_1^0{V_2}(1) - \epsilon _1^0{V_1}(1) = \displaystyle {\int _0^1} {\dfrac{{{e_\theta }({G_1}\epsilon _1^0 + e_1^0{e_1}) + \lambda (e_1^0{\epsilon _1} - {e_1}\epsilon _1^0)}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} ,\\ G_\theta ^0 = \displaystyle {\int _0^1} {\left[ {{G_\theta } + \dfrac{{({G_1}{e_\theta } - \lambda {e_1})({e_\theta } - e_\theta ^0) - (\lambda {\epsilon _1} + {e_\theta }{e_1})(\lambda - {\lambda ^0})}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}} \right] dy}, \end{array} \end{aligned}$$
(50)

where

$$\begin{aligned} {V_e}({y_1})= & {} \displaystyle {\int _0^{{y_1}}} {\dfrac{{{e_1}}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} ,\quad {V_G}({y_1}) = \displaystyle {\int _0^{{y_1}}} {\dfrac{{{G_1}}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} ,\\ {V_\epsilon }({y_1})= & {} \displaystyle {\int _0^{{y_1}}} {\dfrac{{{\epsilon _1}}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} ,\\ {V_1}({y_1})= & {} \displaystyle {\int _0^{{y_1}}} {\dfrac{{\lambda {e_1} - {G_1}{e_\theta }}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} , \quad {V_2}({y_1}) = \displaystyle {\int _0^{{y_1}}} {\dfrac{{\lambda {\epsilon _1} + {e_\theta }{e_1}}}{{{G_1}{\epsilon _1} + {{({e_1})}^2}}}dy} , \\ {V_0}= & {} {V_G}(1){V_\epsilon }(1) + V_e^2(1). \end{aligned}$$

As the polarized piezoelectric constituent materials are not isotropic, it is of few interests to compare the magnitude of the coefficients in different directions as was done in [51,52,53].

Moreover, the explicit solutions of all the first-order cell functions are

$$\begin{aligned} \begin{array}{l} {N_1}({y_1}) = G_1^0{V_\epsilon }({y_1}) + e_1^0{V_e}({y_1}) - {y_1},\quad H({y_1}) = G_1^0{V_e}({y_1}) - e_1^0{V_G}({y_1}),\\ F({y_1}) = e_1^0{V_\epsilon }({y_1}) - \epsilon _1^0{V_e}({y_1}), \quad {R_1}({y_1}) =\epsilon _1^0{V_G}({y_1}) + e_1^0{V_e}({y_1}) - {y_1},\\ M({y_1}) = e_\theta ^0{V_e}({y_1}) + {\lambda ^0}{V_\epsilon }({y_1}) - {V_2}({y_1}),\quad T({y_1}) = {\lambda ^0}{V_e}({y_1}) - e_\theta ^0{V_G}({y_1}) - {V_1}({y_1}), \end{array} \end{aligned}$$
(51)

respectively, and we also have

$$\begin{aligned} \begin{array}{l} G_1^0 = {G_1} + {G_1}\dfrac{{d{N_1}}}{{d{y_1}}} + {e_1}\dfrac{{dH}}{{d{y_1}}}, \quad e_1^0 = {e_1} + {e_1}\dfrac{{d{R_1}}}{{d{y_1}}} + {G_1}\dfrac{{dF}}{{d{y_1}}} = {e_1} + {e_1}\dfrac{{d{N_1}}}{{d{y_1}}} - {\epsilon _1}\dfrac{{dH}}{{d{y_1}}}, \\ {\lambda ^0} = \lambda + {G_1}\dfrac{{dM}}{{d{y_1}}} + {e_1}\dfrac{{dS}}{{d{y_1}}}, \quad e_\theta ^0 = {e_\theta } - {\epsilon _1}\dfrac{{dS}}{{d{y_1}}} + {e_1}\dfrac{{dM}}{{d{y_1}}}, \quad \epsilon _1^0 = {\epsilon _1} + {\epsilon _1}\dfrac{{d{R_1}}}{{d{y_1}}} - {e_1}\dfrac{{dF}}{{d{y_1}}}. \end{array} \end{aligned}$$

By considering these equalities above, the boundary value problems for the second-order cell functions \(N_{11}\), \(H_{11}\), \(\bar{N}_1\) , \(\bar{H}_1\) , \(\bar{M}_1\) , \(\bar{T}\) , \(F_{11}\) , \(H_{11}\) ,\(F_1\) , \(\bar{R}_1\) , \(\bar{P}_1\) and \(\bar{W}\) can be simplified as

$$\begin{aligned}&{\left\{ \begin{array}{ll} \begin{aligned} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{N_{11}}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{H_{11}}}}{{d{y_1}}}\right) =\, &{} \dfrac{d}{{d{y_1}}}\left( {G_1}{N_1} + {e_1}H\right) + G_1^0\left( 1 - \dfrac{\rho }{{{\rho ^0}}}\right) \quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d{H_{11}}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{N_{11}}}}{{d{y_1}}}\right) =\, &{} \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}H - {e_1}{N_1}\right) - e_1^0\left( 1 - \dfrac{{{\rho _\phi }}}{{\rho _\phi ^0}}\right) \quad \text {in}\ [0,1],\\ \end{aligned}\\ {N_{11}}(0) = {N_{11}}(1) = {H_{11}}(0) = {H_{11}}(1) = 0, \end{array}\right. } \end{aligned}$$
(52)
$$\begin{aligned}&{\left\{ \begin{array}{ll} \begin{aligned} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{{\bar{N}}_1}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{{\bar{H}}_1}}}{{d{y_1}}}\right) =\, &{} \dfrac{d}{{d{y_1}}}\left( {G_1}M + \lambda {N_1} + {e_1}T\right) + G_1^0\left( 1 - \dfrac{\rho }{{{\rho ^0}}}\right) \\ &{} - \lambda \dfrac{{d{N_1}}}{{d{y_1}}} - {e_\theta }\dfrac{{dH}}{{d{y_1}}} - \lambda + {\lambda ^0}\quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d\bar{H}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{{\bar{N}}_1}}}{{d{y_1}}}\right) =\, &{}\dfrac{d}{{d{y_1}}}\left( {\epsilon _1}T - {e_1}M - {e_\theta }{N_1}\right) \\ &{} - \left( e_1^0 + e_\theta ^0\right) \left( 1 - \dfrac{{{\rho _\phi }}}{{\rho _\phi ^0}}\right) \quad \text {in}\ [0,1],\\ \end{aligned}\\ {{\bar{N}}_1}(0) = {{\bar{N}}_1}(1) = \bar{H}(0) = \bar{H}(1) = 0, \end{array}\right. } \end{aligned}$$
(53)
$$\begin{aligned}&{\left\{ \begin{array}{ll} \begin{aligned} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{{\bar{M}}_1}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d\bar{T}}}{{d{y_1}}}\right) =\ &{} \dfrac{d}{{d{y_1}}}\left( \left( \lambda - {G_1}\right) M - {e_1}T\right) \\ &{} - \lambda \dfrac{{dM}}{{d{y_1}}} - {e_\theta }\dfrac{{dT}}{{d{y_1}}} - {G_\theta } + \dfrac{{\rho G_\theta ^0}}{{{\rho ^0}}}\quad {\text {in}}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d\bar{T}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{{\bar{M}}_1}}}{{d{y_1}}}\right) =\ &{} \dfrac{d}{{d{y_1}}}\left( \left( {e_1} - {e_\theta }\right) M - {\epsilon _1}T\right) \quad \text {in}\ [0,1], \end{aligned}\\ {{\bar{M}}_1}(0) = {{\bar{M}}_1}(1) = \bar{T}(0) = \bar{T}(1) = 0, \end{array}\right. } \end{aligned}$$
(54)
$$\begin{aligned}&{\left\{ \begin{array}{ll} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{F_{11}}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{R_{11}}}}{{d{y_1}}}\right) = \dfrac{d}{{d{y_1}}}\left( {G_1}F + {e_1}{R_1}\right) + e_1^0\left( 1 - \dfrac{\rho }{{{\rho ^0}}}\right) \quad {\text {in}}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d{R_{11}}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{F_{11}}}}{{d{y_1}}}\right) = \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}{R_1} - {e_1}F\right) + \epsilon _1^0\left( 1 - \dfrac{{{\rho _\phi }}}{{\rho _\phi ^0}}\right) \quad {\text {in}}\ [0,1],\\ {F_{11}}\left( 0\right) = {F_{11}}\left( 1\right) = {R_{11}}\left( 0\right) = {R_{11}}\left( 1\right) = 0, \end{array}\right. } \end{aligned}$$
(55)
$$\begin{aligned}&{\left\{ \begin{array}{ll} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{F_1}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{{\bar{R}}_1}}}{{d{y_1}}}\right) = \dfrac{d}{{d{y_1}}}\left( \lambda F\right) - \lambda \dfrac{{dF}}{{d{y_1}}}\\ \qquad \qquad - {e_\theta }\dfrac{{d{R_1}}}{{d{y_1}}} - {e_\theta } + e_\theta ^0\dfrac{\rho }{{{\rho ^0}}} + e_1^0\left( 1 - \dfrac{\rho }{{{\rho ^0}}}\right) \quad {\text {in}}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d{{\bar{R}}_1}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{F_1}}}{{d{y_1}}}\right) = - \dfrac{d}{{d{y_1}}}\left( {e_\theta }F\right) + \epsilon _1^0\left( 1 - \dfrac{{{\rho _\phi }}}{{\rho _\phi ^0}}\right) \quad {\text {in}}\ [0,1],\\ {F_1}\left( 0\right) = {F_1}\left( 1\right) = {{\bar{R}}_1}\left( 0\right) = {{\bar{R}}_1}\left( 1\right) = 0, \end{array}\right. } \end{aligned}$$
(56)
$$\begin{aligned}&{\left\{ \begin{array}{ll} - \dfrac{d}{{d{y_1}}}\left( {G_1}\dfrac{{d{{\bar{P}}_1}}}{{d{y_1}}}\right) - \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d\bar{W}}}{{d{y_1}}}\right) = {f_1} - \dfrac{{\rho f_1^0}}{{{\rho ^0}}}\quad \text {in}\ [0,1],\\ - \dfrac{d}{{d{y_1}}}\left( {\epsilon _1}\dfrac{{d\bar{W}}}{{d{y_1}}}\right) + \dfrac{d}{{d{y_1}}}\left( {e_1}\dfrac{{d{{\bar{P}}_1}}}{{d{y_1}}}\right) = 0\quad \text {in}\ [0,1],\\ {{\bar{P}}_1}\left( 0\right) = {{\bar{P}}_1}\left( 1\right) = \bar{W}\left( 0\right) = \bar{W}\left( 1\right) = 0, \end{array}\right. } \end{aligned}$$
(57)

respectively. Combining all the first-order cell solutions in Eq. (51) and the homogenized coefficients in Eq. (40), the explicit expressions of all the second-order cell functions can also be obtained successively.

For the second-order correctors of the spherically symmetric problem, the only pair of cell functions that is different from the one in the axisymmetric case is \((\bar{M}_1, \bar{T})\), which satisfies the cell problem in Q as

$$\begin{aligned} \left\{ \begin{array}{lll} - \dfrac{d }{{d {y_1}}}\left( {G_1}\dfrac{{d {{\bar{M}}_1}}}{{d {y_1}}}\right) - \dfrac{d }{{d {y_1}}}\left( {e_1}\dfrac{{d \bar{T}}}{{d {y_1}}}\right) = \dfrac{d }{{d {y_1}}}\left[ (2\lambda - {G_1})M - {e_1}T)\right] + {\lambda ^0}\left( 1 - \dfrac{\rho }{{{\rho ^0}}}\right) \\ \quad \quad - 2\lambda \dfrac{{d M}}{{d {y_1}}} - 2{e_\theta }\dfrac{{d T}}{{d {y_1}}} - \left( {G_\theta } + {\lambda _\theta }\right) + {\left( {G_\theta } + {\lambda _\theta }\right) ^0}\dfrac{\rho }{{{\rho ^0}}}\quad {\text {in}}\ [0,1],\\ - \dfrac{d }{{d {y_1}}}\left( {\epsilon _1}\dfrac{{d \bar{T}}}{{d {y_1}}}\right) + \dfrac{d }{{d {y_1}}}\left( {e_1}\dfrac{{d {{\bar{M}}_1}}}{{d {y_1}}}\right) = \dfrac{d }{{d {y_1}}}(({e_1} - 2{e_\theta })M - {\epsilon _1}T) - e_\theta ^0\left( 1 - \dfrac{{{\rho _\phi }}}{{\rho _\phi ^0}}\right) \quad {\text {in}}\ [0,1],\\ {{\bar{M}}_1}(0) = {{\bar{M}}_1}(1) = \bar{T}(0) = \bar{T}(1) = 0. \end{array} \right. \end{aligned}$$

Appendix B: Homogenized Solutions for the Plane Asixymmetric and Spherically Symmetric Cases

The static plane axisymmetric piezoelectric problem without the source term is written as

$$\begin{aligned} \left\{ \begin{array}{lll} G_1^0\dfrac{{{d^2}u_1^0}}{{dx_1^2}} + G_1^0\dfrac{1}{{{x_1}}}\dfrac{{du_1^0}}{{d{x_1}}} - G_\theta ^0\dfrac{{u_1^0}}{{x_1^2}} + e_1^0\dfrac{{{d^2}{\phi ^0}}}{{dx_1^2}} + (e_1^0 - e_\theta ^0)\dfrac{1}{{{x_1}}}\dfrac{{d{\phi ^0}}}{{d{x_1}}} = 0\quad \text {in}\ [a,b],\\ - \epsilon _1^0\dfrac{{{d^2}{\phi ^0}}}{{dx_1^2}} - \epsilon _1^0\dfrac{1}{{{x_1}}}\dfrac{{d{\phi ^0}}}{{d{x_1}}} + e_1^0\dfrac{{{d^2}u_1^0}}{{dx_1^2}} + (e_1^0 + e_\theta ^0)\dfrac{1}{{{x_1}}}\dfrac{{du_1^0}}{{d{x_1}}} = 0\quad \text {in}\ [a,b],\\ \sigma _1^0(a) = {p_1},\sigma _1^0(b) = {p_2},{\phi ^0}(a) = D_1^0(b) = 0. \end{array} \right. \end{aligned}$$
(58)

Let \(u_1^0=\alpha x_1^k\) and \(\phi = \beta x_1^k\), where \(\alpha \) , \(\beta \) and k are real numbers. Substituting them into the equations in (58), we have

$$\begin{aligned} \begin{aligned}&(G_1^0{k^2} - G_\theta ^0)\alpha + (e_1^0{k^2} - e_\theta ^0k)\beta = 0, \\&(e_1^0{k^2} + e_\theta ^0k)\alpha - \epsilon _1^0{k^2}\beta = 0. \end{aligned} \end{aligned}$$

Since the nontrivial solutions are sought, \(\alpha \) and \(\beta \) cannot be both 0. Thus, the determinant of the coefficient matrix above has to vanish, i.e.,

$$\begin{aligned} \left| {\begin{array}{*{20}{c}} {G_1^0{k^2} - G_\theta ^0}&{}{e_1^0{k^2} - e_\theta ^0k}\\ {e_1^0{k^2} + e_\theta ^0k}&{}{ - \epsilon _1^0{k^2}} \end{array}} \right| = 0. \end{aligned}$$

Then

$$\begin{aligned} k = 0,\ k = \pm \gamma ,\ \gamma = \sqrt{{V_0}(G_\theta ^0\epsilon _1^0 + {{(e_\theta ^0)}^2})}, \end{aligned}$$

and we obtain the general solution for \(u_1^0\) and \(\phi ^0\) as

$$\begin{aligned}&u_1^0 = {C_1}\epsilon _1^0{\gamma ^2}{x^\gamma } + {C_2}\epsilon _1^0{\gamma ^2}{x^{ - \gamma }} + {C_3},\nonumber \\&{\phi ^0} = {C_1}(e_1^0{\gamma ^2} + e_\theta ^0\gamma ){x^\gamma } +\, {C_2}(e_1^0{\gamma ^2} - e_\theta ^0\gamma ){x^{ - \gamma }} - {C_3}\dfrac{{G_\theta ^0}}{{e_\theta ^0}}\ln x + {C_4}. \end{aligned}$$
(59)

Together with the boundary conditions, the unknown \(C_1\) , \(C_2\) , \(C_3\) and \(C_4\) can be determined.

The homogenized static piezoelectric problem with spherical symmetry reads as

$$\begin{aligned} \left\{ \begin{array}{lll} G_1^0\dfrac{{{d^2}u_1^0}}{{dx_1^2}} + G_1^0\dfrac{2}{{{x_1}}}\dfrac{{du_1^0}}{{d{x_1}}} + ({\lambda ^0} - {({G_\theta } + {\lambda _\theta })^0})\dfrac{{2u_1^0}}{{x_1^2}} + e_1^0\dfrac{{{d^2}{\phi ^0}}}{{dx_1^2}} + (e_1^0 - e_\theta ^0)\dfrac{2}{{{x_1}}}\dfrac{{d{\phi ^0}}}{{d{x_1}}} = 0\quad \text {in}\ [a,b],\\ - \epsilon _1^0\dfrac{{{d^2}{\phi ^0}}}{{dx_1^2}} - \epsilon _1^0\dfrac{2}{{{x_1}}}\dfrac{{d{\phi ^0}}}{{d{x_1}}} + e_1^0\dfrac{{{d^2}u_1^0}}{{dx_1^2}} + (e_1^0 + e_\theta ^0)\dfrac{2}{{{x_1}}}\dfrac{{du_1^0}}{{d{x_1}}} + e_\theta ^0\dfrac{{2u_1^0}}{{x_1^2}} = 0\quad \text {in}\ [a,b]. \end{array} \right. \end{aligned}$$
(60)

By the same argument as the axisymmetric case, we obtain the general solutions written by

$$\begin{aligned} u_1^0= & {} {C_1}_1^0V_kx_1^{{k_1}} + {C_2}\epsilon _1^0V_k x_1^{{k_2}} + {C_3}e_\theta ^0x_1^{ - 1},\\ {\phi ^0}= & {} {C_1}(e_1^0{k_1} + 2e_\theta ^0)({k_1} + 1)x_1^{{k_1}} + {C_2}(e_1^0{k_2} + 2e_\theta ^0)({k_2} + 1)x_1^{{k_2}} \\&+\, {C_3}({\lambda ^0} -\, {({G_\theta } + {\lambda _\theta })^0})x_1^{ - 1} + {C_4}, \end{aligned}$$

where \(V_k = 2{V_0}(\epsilon _1^0({({G_\theta } + {\lambda _\theta })^0} - {\lambda ^0}) - e_\theta ^0(2e_\theta ^0 - e_1^0))\), and \(k_1\) and \(k_2\) are the roots of the following quadratic equation

$$\begin{aligned} {k^2} + k - V_k = 0. \end{aligned}$$

The unknown constants \(C_1\), \(C_2\), \(C_3\) and \(C_4\) are obtained by applying the boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Wang, H., Yang, Z. et al. Second-Order Asymptotic Analysis and Computations of Axially and Spherically Symmetric Piezoelectric Problems for Composite Structures. J Sci Comput 81, 689–731 (2019). https://doi.org/10.1007/s10915-019-01041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01041-x

Keywords

Navigation