
ar
X

iv
:1

90
4.

07
19

4v
1

 [
m

at
h.

N
A

]
 1

5
A

pr
 2

01
9

STRONG STABILITY PRESERVING INTEGRATING FACTOR

TWO-STEP RUNGE–KUTTA METHODS

LEAH ISHERWOOD∗, ZACHARY J. GRANT† , AND SIGAL GOTTLIEB∗

Abstract. Problems with components that feature significantly different time scales, where the
stiff time-step restriction comes from a linear component, implicit-explicit (IMEX) methods alleviate
this restriction if the concern is linear stability. However, when nonlinear non-inner-product stability
properties are of interest, such as in the evolution of hyperbolic partial differential equations with
shocks or sharp gradients, linear inner-product stability is no longer sufficient for convergence, and
so strong stability preserving (SSP) methods are often needed. Where the SSP property is needed,
IMEX SSP Runge–Kutta (SSP-IMEX) methods have very restrictive time-steps. An alternative
to SSP-IMEX schemes is to adopt an integrating factor approach to handle the linear component
exactly and step the transformed problem forward using some time-evolution method. The strong
stability properties of integrating factor Runge–Kutta methods were established in [15], where it was
shown that it is possible to define explicit integrating factor Runge–Kutta methods that preserve
strong stability properties satisfied by each of the two components when coupled with forward Euler
time-stepping. It was proved that the solution will be SSP if the transformed problem is stepped
forward with an explicit SSP Runge–Kutta method that has non-decreasing abscissas. However,
explicit SSP Runge–Kutta methods have an order barrier of p = 4, and sometimes higher order is
desired. In this work we consider explicit SSP two-step Runge–Kutta integrating factor methods to
raise the order. We show that strong stability is ensured if the two-step Runge–Kutta method used to
evolve the transformed problem is SSP and has non-decreasing abscissas. We find such methods up
to eighth order and present their SSP coefficients. Adding a step allows us to break the fourth order
barrier on explicit SSP Runge–Kutta methods; furthermore, our explicit SSP two-step Runge–Kutta
methods with non-decreasing abscissas typically have larger SSP coefficients than the corresponding
one-step methods. A selection of our methods are tested for convergence and demonstrate the design
order. We also show, for selected methods, that the SSP time-step predicted by the theory is a lower
bound of the allowable time-step for linear and nonlinear problems that satisfy the total variation
diminishing (TVD) condition. We compare some of the non-decreasing abscissa SSP two-step Runge–
Kutta methods to previously found methods that do not satisfy this criterion on linear and nonlinear
TVD test cases to show that this non-decreasing abscissa condition is indeed necessary in practice as
well as theory. We also compare these results to our SSP integrating factor Runge–Kutta methods
designed in [15].

This paper is dedicated to the memory of Saul Abarbanel. His wisdom, humor,
and kindness were a gift to all who knew him.

1. Introduction. The behavior of the numerical solution of a hyperbolic partial
differential equation (PDE) of the form

Ut + f(U)x = 0,(1.1)

depends on properties of the spatial discretization and of the time discretization.
When the solution is smooth, stability is guaranteed by analyzing the L2 stability
properties of the discretization applied to the linear problem. However, when dealing
with a non-smooth solution, the numerical solution may contain non-physical oscilla-
tions that prevent the approximation from converging uniformly and thus L2 linear
stability is not sufficient to ensure convergence [26]. To ensure that the numerical
solution does not form stability-destroying oscillations, we require that the numerical
method satisfies nonlinear non-inner-product stability properties such as stability in
the maximum norm or in the total variation (TV) semi-norm.

∗Mathematics Department, University of Massachusetts Dartmouth, 285 Old Westport Road,
North Dartmouth MA 02747.

†Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, Oak
Ridge TN 37830.

1

http://arxiv.org/abs/1904.07194v1

For nonlinear hyperbolic problems with discontinuous solutions we must, there-
fore, analyze the nonlinear non-inner-product stability properties of a highly nonlinear
complex spatial discretization combined with a high order time discretization. Instead
of this difficult task a method-of-lines formulation is generally followed: we develop
a spatial discretization that satisfies nonlinear non-inner-product stability properties
when coupled with the forward Euler time stepping method. Next, we use a high order
strong stability preserving (SSP) time discretization [29, 30, 28, 34, 14, 19, 18, 22, 9, 23]
which preserves the properties of the spatial discretization coupled with forward Eu-
ler. Explicit strong stability preserving (SSP) Runge–Kutta methods were developed
in [29, 30] to preserve the properties of total variation diminishing (TVD) spatial dis-
cretizations for hyperbolic conservation laws (1.1) with discontinuous solutions. They
have since been developed extensively and have been widely used to preserve different
numerical stability properties needed in a variety of application areas. Furthermore,
many classes of SSP time-stepping methods have been studied, including SSP explicit
and implicit linear multi-step methods [9], Runge–Kutta methods [29, 30, 18, 19],
multi-stage multi-step methods [2, 22, 23], and multi-stage multi-derivative methods
[3, 12].

1.1. SSP methods. The key to developing SSP time-stepping methods is ensur-
ing that the methods can be re-written as convex combinations of forward Euler steps.
To illustrate this concept, we begin with the PDE (1.1) above, and use a spatial dis-
cretizations of f(U)x that ensures that when we evolve the resulting semi-discretized
system of ordinary differential equations (ODEs)

ut = F (u),(1.2)

using the forward Euler method, the strong stability property in the convex functional
‖ · ‖ is satisfied

‖un+1‖ = ‖un +∆tF (un)‖ ≤ ‖un‖,(1.3)

under a step size restriction

0 ≤ ∆t ≤ ∆tFE.(1.4)

Next, we use a higher order time integrator that can be written as a convex combi-
nation of forward Euler steps, so that we ensure that any convex functional strong
stability property that is satisfied by the forward Euler method will still be satisfied
by the higher order time discretization, perhaps under a different time-step. For ex-
ample, an s-stage explicit Runge–Kutta method (denoted eSSPRK(s, p) where p is
the order) can be written in Shu-Osher form [9]:

u(0) = un,

u(i) =

i−1
∑

j=0

(

αi,ju
(j) +∆tβi,jF (u(j))

)

, i = 1, ..., s(1.5)

un+1 = u(s).

(Where
∑i−1

j=0 αi,j = 1 is required for consistency). If αi,j and βi,j are non-negative,
and any αi,j is zero only if its corresponding βi,j is zero, then we can rearrange each
stage into a convex combination of forward Euler steps:

‖u(i)‖ =

∥

∥

∥

∥

∥

∥

i−1
∑

j=0

(

αi,ju
(j) +∆tβi,jF (u(j))

)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

i−1
∑

j=0

αi,j

(

u(j) +∆t
βi,j

αi,j

F (u(j)

)

∥

∥

∥

∥

∥

∥

.

2

Clearly, then, (1.3) tells us that

‖u(i)‖ ≤
i−1
∑

j=0

αi,j

∥

∥

∥

∥

u(j) +∆t
βi,j

αi,j

F (u(j)

∥

∥

∥

∥

≤ ‖un‖,

while (1.4) imposes the time-step restriction

∆t ≤ min
i,j

αi,j

βi,j

∆tFE.(1.6)

(We use the convention that the ratio in considered infinite in the case where a βi,j is
equal to zero). This convex combination ensures that the internal stages also satisfy
the strong stability property under the same time-step restriction; this can be impor-
tant when pressure, density, or water height, are simulated, because in these cases
a negative value at an intermediate or final stage may prevent the simulation from
continuing [13]. Clearly, the convex combination condition is a sufficient condition for
strong stability preservation for explicit Runge–Kutta methods; in [9, 24, 33] it was
shown to be a necessary condition as well.

This shows that when a higher order time discretization method is written as a
convex combination of forward Euler steps, it will preserve the forward Euler condition
(1.3), under a modified time-step restriction ∆t ≤ C∆tFE. When C > 0, the method
is called strong stability preserving (SSP) with SSP coefficient C [29]. While in the
original papers [29, 30], the term ‖ · ‖ was the total variation semi-norm, the strong
stability preservation property holds for any convex functional ‖ · ‖ as long as the
spatial discretization satisfies (1.3) in that convex functional for some ∆tFE as in
(1.4).

Not all methods can be decomposed into convex combinations of forward Euler
steps with C > 0. Explicit SSP Runge–Kutta methods cannot exist for order p > 4
[24, 28]. Furthermore, the SSP coefficient C is restricted too, as all explicit s-stage
Runge–Kutta methods have a SSP bound C ≤ s [9]. Unlike for smooth problems,
where implicit methods (or implicit treatment of stiff terms) can eliminate the time-
step restriction needed for linear or nonlinear inner-product norm stability, a strong
stability preserving general linear method (GLM) of order greater than one has a
finite SSP time-step [32]. In fact, it has been shown [25, 6, 19, 4] that the SSP time-
step restrictions for implicit and implicit-explicit (IMEX) SSP Runge–Kutta methods
have a restrictive observed bound of C ≤ 2s . The limitation on the SSP coefficient
of implicit and IMEX SSP Runge–Kutta methods led to the study of SSP integrating
factor Runge–Kutta methods in [15].

1.2. Overview of current paper. The explicit SSP integrating factor Runge–
Kutta methods and the associated theory developed in our prior work [15], reviewed
in Section 2, allow us to alleviate the time-step restriction while preserving the strong
stability property. However, because explicit SSP Runge–Kutta methods have an
order barrier of p ≤ 4, we cannot hope to get higher order explicit SSP integrating
factor Runge–Kutta methods. We could try to work with an integrating factor multi-
step approach, which is SSP as long as the multi-step method is SSP (as we show
in Subsection 4.1) but these methods have small SSP coefficients and require many
steps for high order. Instead, we follow the process in [22, 23] and examine the SSP
properties of integrating factor methods based on explicit SSP two-step Runge–Kutta
(eSSP-TSRK) methods such as those in [22]. When these are used as a basis for
integrating factor TSRK methods, the result is SSP provided that the abscissas are

3

non-decreasing. In Section 3 we discuss explicit SSP two-step Runge–Kutta meth-
ods, review the optimization problem, and review the resulting eSSP-TSRK methods
presented in [22]. In Section 4 we develop the SSP theory for explicit SSP integrat-
ing factor two-step Runge–Kutta (SSPIF-TSRK) methods, which is very similar to
that of the explicit SSP integrating factor Runge–Kutta (SSPIFRK) methods in [15],
and show that as long as these methods have non-decreasing abscissas the result is
SSP. We show that to find appropriate explicit SSP two-step Runge–Kutta for pairing
with integrating factor methods, the optimization problem needs to be augmented by
a simple condition on the abscissas. In Section 5 we present the optimized methods
found using this approach, and discuss their features. In Section 6 we test these
methods for convergence and for their SSP performance on numerical test cases.

1.3. Efficient computation of the matrix exponential. It is important to
note that in the current work as well as our prior work [15, 16], the cost of computation
of the matrix exponential will be a critical factor in the ability to efficiently imple-
ment the proposed methods. If the computation of the matrix exponential is only
needed once per simulation (i.e. if L is a constant coefficient operator), the cost may
be reasonable, but in some cases the exponential must be computed at every step,
and low-storage, matrix-free approaches are needed. New approaches to efficiently
compute the matrix exponential have been recently considered in [1, 31, 27, 7], and
such approaches, as well as others, will be critical for bringing the integrating factor
methods proposed in [15, 16] and the current work into practical use.

2. Review of SSP integrating factor Runge–Kutta methods. In [15, 16]
we considered problems of the form

ut = Lu+N(u)(2.1)

that result from a semi-discretization of a hyperbolic PDE. We focus on the case
where the problem has a linear constant coefficient component Lu and a nonlinear
component N(u), such that

‖un +∆tN(un)‖ ≤ ‖un‖ for ∆t ≤ ∆tFE(2.2)

and

‖un +∆tLun‖ ≤ ‖un‖ for ∆t ≤ ∆̃tFE.(2.3)

The notation ‖·‖ here refers to some convex functional (not usually a norm) needed for
nonlinear non-inner-product stability. Of particular interest is the case where L is a
linear operator that significantly restricts the allowable time-step due to strong stabil-
ity concerns, i.e. where ˜∆tFE << ∆tFE. For such cases, where nonlinear non-inner-
product stability properties are of concern, an implicit or implicit-explicit (IMEX)
SSP scheme doesn’t significantly alleviate the allowable time-step [4] and such meth-
ods will result in severe constraints on the allowable time-step [25, 19, 6, 9, 4].

This motivated our investigation of integrating factor methods, where the linear
component Lu is handled exactly and then the time-step restriction is dependent only
upon the step size restriction ∆t ≤ ∆tFE coming from the the nonlinear component
N(u). The methodology we considered in [15] in order to alleviate the restriction on
the allowable time-step begins with an integrating factor approach:

e−Ltut − e−LtLu = e−LtN(u)
(

e−Ltu
)

t
= e−LtN(u).

4

Defining w = e−Ltu gives us the modified ODE system

wt = e−LtN(eLtw) = G(w),(2.4)

which can then be evolved forward in time. In [15] we used an explicit SSP Runge–
Kutta method of the form (1.5). We observed that this approach is not sufficient
to ensure strong stability of the system. However, as we showed, if the transformed
problem is stepped forward using a SSP Runge–Kutta method that is carefully chosen
to have non-decreasing abscissas the resulting method will preserve the desired strong
stability property.

2.1. Motivating example. Before we repeat the formal results from [15], which
explain how non-decreasing abscissas in the Runge–Kutta method are needed to pre-
serve strong stability when using an integrating factor approach, we present the fol-
lowing example, presented in [15], which illustrates this fact:

Consider the partial differential equation

ut + aux +

(

1

2
u2

)

x

= 0 u(0, x) =

{

1, if 0 ≤ x ≤ 1/2

0, if x > 1/2
(2.5)

where x ∈ [0, 1] and the boundary conditions are periodic. In this example we consider
a = 10. A first-order upwind difference with 400 points in space is used to semi-
discretize the linear term Lu ≈ −10ux. The nonlinear terms N(u) ≈ −

(

1
2u

2
)

x
are

approximated using a fifth order WENO finite difference [17].
The transformed problem (2.4) is stepped forward in time by the explicit SSP

Runge–Kutta method with non-decreasing abscissas, denoted eSSPRK+(3, 3) in [15],
which has C = 3

4 . The resulting SSP integrating factor Runge–Kutta method is:

u(1) =
1

2
e

2

3
∆tLun +

1

2
e

2

3
∆tL

(

un +
4

3
∆tN(un)

)

u(2) =
2

3
e

2

3
∆tLun +

1

3

(

u(1) +
4

3
∆tN(u(1))

)

un+1 =
59

128
e∆tLun +

15

128
e∆tL

(

un +
4

3
∆tN(un)

)

(2.6)

+
27

64
e

1

3
∆tL

(

u(2) +
4

3
∆tN(u(2))

)

.

For comparison, the transformed problem (2.4) is also stepped forward in time by the
explicit eSSPRK(3,3) Runge–Kutta method in [29] which has C = 1 (this method is
widely known as the Shu-Osher method). The resulting (non-SSP) integrating factor
Runge–Kutta method becomes:

u(1) = eL∆tun + eL∆t∆tN(un)

u(2) =
3

4
e

1

2
L∆tun +

1

4
e−

1

2
L∆t

(

u(1) +∆tN(u(1))
)

un+1 =
1

3
eL∆tun +

2

3
e

1

2
L∆t

(

u(2) +∆tN(u(2))
)

.(2.7)

Exponentials with negative exponents appear in this formulation due to the fact that
the SSP Shu-Osher method it is based on has decreasing abscissas. Using different

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
1
0
(m

ax
im

al
ri
se

in
T
V
)

IF with eSSPRK(3,3)

IF with eSSPRK+(3,3)

Fig. 2.1. Motivating example: TV behavior of the evolution over 25 time steps using the
integrating factor methods (2.7) (blue dots) and (2.6) (red stars).

values of ∆t we evolved the solution 25 time steps using the integrating factor Runge–
Kutta methods (2.6) and (2.7), and calculated the maximal rise in total variation over
each stage for all time steps.

In Figure 2.1 we show the log10 of the maximal rise in total variation vs. the value
of λ = ∆t

∆x
of the evolution using (2.7) (in blue) and using (2.6) (in red). The results

from (2.6) maintain a small maximal rise in total variation up to λ ≈ 0.8, while in
the results from (2.7) we observe that the maximal rise in total variation is large even
for very small values of λ. This behavior is due to the fact that basing an integrating
factor Runge–Kutta method on an explicit SSP Runge–Kutta method is not enough
to ensure the preservation of a strong stability property – the method must also satisfy
the non-decreasing abscissa condition to ensure that the strong stability property is
preserved.

2.2. SSP analysis of integrating factor Runge–Kutta method. To under-
stand the results in [15] recall that each stage of the explicit Runge–Kutta method
(1.5) applied to the transformed problem (2.4) becomes

u(i) =

i−1
∑

j=0

(

αi,je
L(ti−tj)u(j) +∆tβi,je

L(ti−tj)N(u(j))
)

=

i−1
∑

j=0

(

αi,je
L(ci−cj)∆tu(j) +∆tβi,je

L(ci−cj)∆tN(u(j))
)

=

i−1
∑

j=0

eL(ci−cj)∆t
(

αi,ju
(j) +∆tβi,jN(u(j))

)

.

In the following, we consider each piece of this formula. Each of the following results
is taken directly from [15] and the proofs appear in that work. We first consider the
behavior of the exponential operator eτL. The following theorem ensures that this
term is strongly stable as long as τ ≥ 0:

Theorem 2.1. If a linear operator L satisfies (2.3) for some value of ∆̃tFE > 0,

6

then

(2.8) ‖eτLun‖ ≤ ‖un‖ ∀ τ ≥ 0.

Note that in the following results we no longer require the condition (2.3) but rather
the weaker condition (2.8). Pairing this exponential with a forward Euler type step
still preserves strong stability:

Corollary 1. Given a linear operator L that satisfies (2.8) and a (possibly non-
linear) operator N(u) that satisfies (2.2) for some value of ∆tFE > 0, we have

(2.9) ‖eτL(un +∆tN(un))‖ ≤ ‖un‖ ∀∆t ≤ ∆tFE, provided that τ ≥ 0.

Finally, we put the pieces together:

Theorem 2.2. Given a linear operator L that satisfies (2.8) and a (possibly non-
linear) operator N(u) that satisfies (2.2) for some value of ∆tFE > 0, and a Runge–
Kutta integrating factor method of the form

u(0) = un,

u(i) =

i−1
∑

j=0

eL(ci−cj)∆t
(

αi,ju
(j) +∆tβi,jN(u(j))

)

, i = 1, ..., s(2.10)

un+1 = u(s)

where 0 = c1 ≤ c2 ≤ ... ≤ cs, then un+1 obtained from (2.10) satisfies

(2.11) ‖un+1‖ ≤ ‖un‖ ∀∆t ≤ C∆tFE.

where

C = min
i,j

αi,j

βi,j

.

In [15] we used these results to motivate the search for explicit SSP Runge–Kutta
methods with non-decreasing abscissas, that would pair well with an integrating fac-
tor approach to produce SSPIFRK methods. We found explicit SSP Runge–Kutta
methods of up to s = 10 stages and order p = 4 and demonstrated the performance
of the corresponding explicit SSP integrating factor Runge–Kutta methods on widely
used test cases.

In [16] we show that it is not absolutely necessary to have non-decreasing abscis-
sas: even if there are some decreasing abscissas one can preserve the strong stability
property by replacing the operator L by an operator L̃ that satisfies

‖e−τL̃un‖ ≤ ‖un‖ ∀ τ ≥ 0,

whenever the difference of abscissas ci − cj is negative. For hyperbolic partial differ-

ential equations, L̃ is simply the spatial discretization that is stable for the backwards
in time version of the equation. This approach is employed in the classical SSP lit-
erature, called downwinding. In that case, negative coefficients βi,j preserve the SSP
property as long as the operator is replaced by a downwinded operator [10, 11, 21].

7

3. A review of explicit SSP two-step Runge–Kutta methods. The order
barrier of p ≤ 4 on explicit SSP Runge–Kutta methods and the need for higher
order explicit methods in simulations led to the investigation of the SSP properties of
explicit two-step Runge–Kutta methods (TSRK) [22], and later of explicit multi-step
Runge–Kutta methods (MSRK) [23]. In [22] it was shown that explicit SSP TSRK
methods do not use values of stages from the previous steps, so that they can be
written as:

yn1 = un

yni = diu
n−1 + (1− di)u

n +∆tâi1F (un−1) + ∆t

i−1
∑

j=1

aijF (ynj) 2 ≤ i ≤ s(3.1a)

un+1 = θun + (1− θ)un−1 +∆tb̂1F (un−1) + ∆t

s
∑

j=1

bjF (ynj).

An extension of this to multiple steps was studied in [23].
We can write the method in the matrix form

w = Sx+∆tTf(3.2)

where S and T are the matrices defined by:

S =





1 0
D

θ
T



 T =





0 0 0

Â A 0

b̂T bT 0



(3.3)

and w, x, and f are defined by:

w =















un−1

yn1
...
yns

un+1















x =

(

un−1

un

)

f =















F
(

un−1
)

F (yn1)
...

F (yns)
F
(

un+1
)















(3.4)

The D is a 2× s matrix that contains the elements Di,1 = di and Di,2 = 1− di, for
i = 1, . . . , s. The vector θ contains the elements θ1 = θ and θ2 = 1 − θ. Note that
Se = e, where e is a vector ones of the proper length.

3.1. Formulating the optimization problem. In [22] a SSP optimization
problem was defined for TSRK methods. The derivation of the optimization problem
begins with the matrix form (3.2) of the TSRK:

w = Sx+∆tTf

We then add rTw to each side of the method

(I+ rT)w = Sx+ rT

(

w +
∆t

r
f

)

and rearrange to obtain

w = Rx+P

(

w +
∆t

r
f

)

.

8

Where P = r (I+ rT)
−1

T and R = (I+ rT)
−1

S = (I−P)S. Note that the row
sums of [R P] are each equal to one

Re+Pe = (I−P)Se+Pe = ISe−PSe+Pe = e−Pe+Pe = e.

It is easy to see that if R and P have no negative values, then the method is a
convex combination of forward Euler steps, and so is SSP with SSP coefficient defined
by

C(S,T) = sup
r

{

r : (I+ rT)−1 exists and P ≥ 0,R ≥ 0
}

.

This leads directly to the optimization problem: We wish to find coefficients T

and S for explicit SSP two-step Runge–Kutta methods that maximize the value of r
while satisfying

(I+ rT)
−1

S ≥ 0(3.5a)

r (I+ rT)
−1

T ≥ 0(3.5b)

τρ = 0 for ρ = 1, ..., p.(3.5c)

This requires that (I+ rT)
−1

exists. The inequalities (3.5a) and (3.5b) are understood
componentwise. The τρ in (3.5c) are the order conditions listed in Appendix A.

3.2. Optimized SSP two-step Runge–Kutta methods. In [22] a SSP opti-
mization problem was defined for the TSRK methods, and optimized explicit TSRK
methods of up to eighth order were found numerically. The SSP coefficients C of these
methods up to seventh order are in Table 3.1. Of course, a method with more stages
will have a higher SSP coefficient, but also require more computations. To account for
this we define the effective SSP coefficient Ceff = 1

s
C, which is the SSP coefficient nor-

malized by the number of stages, in Table 3.2. An eleven stage eighth order method
has an SSP cefficient C = 0.341 and an effective SSP Coefficient Ceff = 0.031.

These methods break the fourth-order barrier of (one-step) SSP Runge–Kutta
methods and have significantly larger SSP coefficients than the corresponding order
multi-step methods. Numerical tests in [22] showed that these high order SSP two-
step Runge-Kutta methods are beneficial for preserving the order and strong stability
properties when used with high order spatial discretizations for the time integration of
a variety of hyperbolic PDEs. It was proved in [22] that explicit SSP TSRK methods
have order at most eight. In [23] it was shown that adding more steps overcomes this
order barrier as well.

4. Explicit SSP two-step Runge–Kutta schemes for use with integrat-

ing factor methods. In this section we consider, as we did in [15, 16], a problem of
the form (2.1) with a linear constant coefficient component Lu that satisfies the strong
stability condition (2.3) and a nonlinear component N(u) that satisfies the strong
stability condition (2.2). When ∆̃tFE << ∆tFE using an explicit SSP Runge–Kutta
method will result in severe constraints on the allowable time-step that is not allevi-
ated by using an implicit or an implicit-explicit (IMEX) SSP Runge–Kutta method
[25, 19, 6, 9, 4]. This is in contrast to the case with linear L2 stability, where using
an implicit or an IMEX method may completely alleviate the time-step restriction
coming from the stiff component.

To alleviate the restriction on the allowable time-step we can solve the linear
part exactly by an integrating factor approach as in (2.4). This new ODE can be

9

s
p

2 3 4 5 6 7

1 - - - - - -
2 1.4142 0.7320 - - - -
3 2.4495 1.6506 0.8588 - - -
4 3.4641 2.3027 1.5926 0.8542 - -
5 4.4721 2.9879 2.3605 1.6481 - -
6 5.4772 3.7768 3.0559 2.3093 0.5957 -
7 6.4807 4.4836 3.7405 2.9278 1.2719 -
8 7.4833 5.2227 4.4921 3.5794 1.9384 0.5666
9 8.4853 6.0498 5.2705 3.9415 2.5826 1.1199
10 9.4868 6.8274 6.1039 4.2544 3.1992 1.7857

Table 3.1

SSP coefficients of the optimized eSSP-TSRK(s,p) methods [22].

s
p

2 3 4 5 6 7

1 - - - - - -
2 0.7071 0.3660 - - - -
3 0.8165 0.5502 0.2863 - - -
4 0.8660 0.5757 0.3982 0.2135 - -
5 0.8944 0.5976 0.4721 0.3296 - -
6 0.9129 0.6295 0.5093 0.3849 0.0993 -
7 0.9258 0.6405 0.5343 0.4183 0.1817 -
8 0.9354 0.6528 0.5615 0.4474 0.2423 0.0708
9 0.9428 0.6722 0.5856 0.4379 0.2869 0.1244
10 0.9487 0.6827 0.6104 0.4254 0.3199 0.1786

Table 3.2

Effective SSP coefficients of the optimized eSSP-TSRK(s,p) methods [22].

evolved forward in time using standard methods. As described in Section 2, in [15]
we considered stepping the transformed problem (2.4) forward using an explicit SSP
Runge–Kutta method of the form (1.5) and found that the result was SSP provided
that the method had non-decreasing abscissas. In the following, we consider extending
the SSP integrating factor approach by using multi-step and two-step Runge–Kutta
integrating factor methods to obtain order p ≥ 4

4.1. SSP integrating factor linear multi-step methods. It can be easily
shown that if we use an explicit SSP multi-step method

un+1 =

k
∑

l=1

(

αlu
n−k+l +∆tβlF (un−k+l)

)

,(4.1)

which satisfies

un+1 ≤ max
l=1,...,k

{

‖un−k+l‖
}

.

with SSP coefficient C = maxl
αl

βl
, the result is SSP as well, with the same SSP

coefficient:

10

Theorem 4.1. Given a linear operator L that satisfies (2.8) and a (possibly non-
linear) operator N(u) that satisfies (2.2) for some value of ∆tFE > 0, and a k-step
explicit SSP integrating factor multi-step method of the form

un+1 =
k

∑

l=1

eL(k−l+1)
(

αlu
n−k+l +∆tβlN(un−k+l)

)

,(4.2)

then the numerical solution satisfies

(4.3) ‖un+1‖ ≤ max
l=1,...,k

{

‖un−k+l‖
}

. ∀∆t ≤ C∆tFE.

where C = maxl
αl

βl
.

Notice that for multi-step methods the notion of SSP includes all the previous steps
considered.

Proof. We write the method in the form

‖un+1‖ = ‖

k
∑

l=1

eL(k−l+1)
(

αlu
n−k+l +∆tβlN(un−k+l)

)

‖

≤

k
∑

l=1

‖eL(k−l+1)
(

αlu
n−k+l +∆tβlN(un−k+l)

)

‖

≤

k
∑

l=1

αl‖e
L(k−l+1)

(

un−k+l +∆t
βl

αl

N(un−k+l)

)

‖

≤

k
∑

l=1

αl‖u
n−k+l‖.

the last inequality holds provided that ∆t βl

αl
≤ ∆tFE. Using the fact that by consis-

tency we have
∑k

l=1 αl = 1, we can conclude that

‖un+1‖ ≤ max
l=1,...,k

{

‖un−k+l‖
}

.

However, SSP multi-step methods require many steps for high order and have small
SSP coefficients as shown in [9]. Now that we see that building explicit SSP multi-
step integrating factor methods is trivial, we are ready to approach the main question
of this paper: is it possible to extend our results in [15] to two-step Runge–Kutta
methods?

4.2. SSP integrating factor two-step Runge–Kutta methods. Any ex-
plicit SSP TSRK method of the form (3.1) that is SSP with SSP coefficient C = r can
be re-written in the matrix-vector form (3.2), which can also be represented as

y1 = un

yi = vi,1u
n−1 + vi,2u

n + α̂i

(

un−1 +
∆t

r
F (un−1)

)

(4.4a)

+
i−1
∑

j=1

αi,j

(

yj +
∆t

r
F (yj)

)

2 ≤ i ≤ s+ 1

un+1 = ys+1,

11

where 0 ≤ vi ≤ 1, α̂i ≥ 0, and αi,j ≥ 0. Here, the consistency condition Re+Pe = e

can be written as vi,1 + vi,2 + α̂i +
∑i−1

j=1 αi,j = 1 for each row i.
We note that the time-levels for each stage, also called the abscissas,

c = (c1, c2, c3, ..., cs, cs+1) = (0, c2, c3, ..., cs, 1)

can be computed (in the matrix form) by D, A, and Â where c = Âe+Ae−Di,1.
The abscissa corresponding to un is 0, the ones corresponding to all the internal stages
j = 2, ..., s are cj and the one corresponding to the final stage un+1 is 1.

Applying (4.4) to the transformed equation becomes

y1 = un

yi = vi,1e
(ci+1)∆tun−1 + vi,2u

n + α̂ie
(ci+1)∆t

(

un−1 +
∆t

r
N(un−1)

)

(4.5a)

+
i−1
∑

j=1

αi,je
(ci−cj)∆t

(

yj +
∆t

r
N(yj)

)

2 ≤ i ≤ s+ 1

un+1 = ys+1

The following theorem tells us what conditions an explicit SSP TSRK method
(4.4) has to satisfy to preserve the strong stability of a numerical solution when
coupled with an integrating factor approach as in (4.5).

Theorem 4.2. Given a linear operator L that satisfies (2.8) and a (possibly non-
linear) operator N(u) that satisfies (2.2) for some value of ∆tFE > 0, and an explicit
SSP two-step Runge–Kutta integrating factor method of the form (4.5) based on the
SSP method (4.4) with non-decreasing abscissas 0 = c1 ≤ c2 ≤ c3....... ≤ cs ≤ cs+1 =
1, then the numerical solution satisfies

(4.6) ‖un+1‖ ≤ max
{

‖un−1‖, ‖un‖
}

∀∆t ≤ C∆tFE.

where the SSP coefficient C = r.

Proof. Consider each stage of (4.5)

‖yi‖ = ‖vi,1e
(ci+1)∆tun−1 + vi,2u

n + α̂ie
(ci+1)∆t

(

un−1 +
∆t

r
N(un−1)

)

+
i−1
∑

j=1

αi,je
(ci−cj)∆t

(

yj +
∆t

r
N(yj)

)

‖

≤ vi,1‖e
(ci+1)∆tLun−1‖+ vi,2‖u

n‖+ α̂i‖e
(ci+1)∆t

(

un−1 +
∆t

r
N(un−1)

)

‖

+

i−1
∑

j=1

αi,j‖e
(ci−cj)∆tL

(

yj +
∆t

r
N(yj)

)

‖

Now noting that ci − cj ≥ 0 and applying the result in Corollary 1, we obtain

‖yi‖ ≤ vi,1‖u
n−1‖+ vi,2‖u

n‖+ α̂i‖u
n−1‖+

i−1
∑

j=1

αi,j‖u
n‖

≤ max{‖un‖, ‖un−1‖}

for any ∆t ≤ C∆tFE .

12

0 0.5 1 1.5 2 2.5 3

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

IF with eSSP-TSRK(10,5)

IF with eSSP-TSRK+(10,5)

Fig. 4.1. Total variation behavior of the evolution over 25 time-steps for the motivating example
in Subsection 2.1, using the integrating factor methods based on eSSP-TSRK+(10, 5) (red stars) and
eSSP-TSRK(10, 5) (blue dots).

This theorem shows us that to find optimal SSP two-step Runge–Kutta methods
that are suitable for use with the integrating factor approach, we must augment the
optimization problem with additional conditions reflecting the need for non-decreasing
abscissas.

To see how this theorem matters in practice, consider, once again, the motivating
example in Subsection 2.1 where we solve Equation (2.5) using an integrating factor
approach. In this case, we use a = 2 so Lu ≈ −2ux. Otherwise, everything is the
same as in Subsection 2.1. We evolve the transformed problem forward 25 time-steps
for various time-steps using the eSSP-TSRK(10, 5) method in [22] and a new eSSP-
TSRK+(10, 5) method that has non-decreasing abscissas. The log10 of the maximal
rise in total variation at each stage vs. the value λ = ∆t

∆x
is shown in Figure 4.1. We

observe that the new method preserves the TVD behavior of the spatial discretization
up to a large λ, while the eSSP-TSRK(10, 5) method in [22] does not preserve the
TVD property of the spatial discretization.

5. Optimal and optimized methods with non-decreasing abscissas. We
augmented the optimization problem from [22] described in Subsection 3.1 by impos-
ing the non-decreasing abscissa constraint

0 = c1 ≤ c2 ≤ c3 ≤ ≤ cs−1 ≤ cs ≤ cs+1 = 1(5.1)

in addition to (3.5). We then implemented in Matlab (as in [18, 20, 19]), and
used to find optimized explicit eSSP-TSRK+ methods of s ≤ 10 stages and order
p ≤ 7, as well as an eighth order method with s = 11. The new methods have non-
decreasing abscissas, and are denoted eSSP-TSRK+(s, p). As we saw above, these
methods preserve the SSP properties of a transformed problem (2.4) and so can be
used as a basis for explicit SSP integrating factor two-step Runge–Kutta (SSPIF-
TSRK) methods.

The SSP coefficients and effective SSP coefficients of the optimized methods with
non-decreasing abscissas (eSSP-TSRK+) are listed in Tables 5.1 and 5.2. We boldface
the coefficients of the eSSP-TSRK+ methods that are the same as the optimized eSSP-
TSRK methods (previously found in [22, 23]) shown in Tables 3.1 and 3.2. In Figure
5.1 we show the effective SSP coefficients of the eSSP-TSRK+ methods and compare

13

2 3 4 5 6 7 8 9 10

s - number of stages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
E

ff
 -

 e
ffe

ct
iv

e
S

S
P

 c
oe

ffi
ci

en
t

eSSP-TSRK+(s,2)
eSSP-TSRK(s,2)

eSSSRK+(s,2)

eSSP-TSRK+(s,3)
eSSP-TSRK(s,3)

eSSPRK+(s,3)

eSSP-TSRK+(s,4)
eSSP-TSRK(s,4)

eSSRK+(s,4)

2 3 4 5 6 7 8 9 10

s - number of stages

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
E

ff
 -

 e
ffe

ct
iv

e
S

S
P

 c
oe

ffi
ci

en
t

eSSP-TSRK+(s,5)
eSSP-TSRK(s,5)

eSSP-TSRK+(s,6)
eSSP-TSRK(s,6)

eSSP-TSRK+(s,7)
eSSP-TSRK(s,7)

Fig. 5.1. The effective SSP coefficient for methods of order p = 2 (blue), p = 3 (red) and p = 4
(green) on left, and of order p = 5 (magenta), p = 6 (cyan) and p = 7 (black) on right. The circles
indicate the SSP coefficient of the optimized eSSP-TSRK methods in [22] while the + signs are the
SSP coefficients of the optimized eSSP-TSRK+ methods. The triangles show the SSP coefficients
of the corresponding eSSPRK+ methods (where relevant).

them to those of the corresponding eSSP-TSRK methods. For orders p ≤ 4 we also
show the effective SSP coefficients of the eSSPRK+, for comparison. These tables and
graphs include all the second order p = 2 methods, which already have non-decreasing
coefficients.

The third order eSSP-TSRK+(s, 3) methods with s = 2, 3, 4 also have the same
effective SSP coefficients as the eSSP-TSRK(s, 3) methods in [22]. Although the
eSSP-TSRK(3, 3) method in [22] has decreasing coefficients, we were able to find an
eSSP-TSRK+(3, 3) non-decreasing coefficient method with the same SSP coefficient.
The eSSP-TSRK+(s,3) methods with s > 4 have smaller SSP coefficients than the
corresponding eSSP-TSRK methods, but the loss in size of effective SSP coefficient is
under 1%. These methods have a significant advantage over the eSSPRK+ methods,
but this advantage disappears as we allow a larger number of stages s, as can be seen
in Figure 5.1.

The fourth order eSSP-TSRK+(s, 4) methods with s = 3, 4 also have the same
SSP coefficients as the corresponding eSSP-TSRK in [22]. These two methods are sig-
nificant because allowing an additional step makes possible fourth order SSP meth-
ods with s = 3, 4, which cannot be achieved for eSSPRK methods. Once we look
at more stages, s > 4, we see that the eSSP-TSRK+(s, 4) methods suffer some loss
over the eSSP-TSRK(s, 4) in the magnitude of the effective SSP coefficient, but it is
still under 2%, so the differences are not obvious in Figure 5.1. Once again, these
eSSP-TSRK+(s, 4) methods offer a significantly larger effective SSP coefficient than
the corresponding eSSPRK+ methods.

The fifth order eSSP-TSRK+(s, 5) methods with s = 4, 5, 6, 9 also have the same
SSP coefficients as the corresponding eSSP-TSRK methods in [22]. We note that
our optimization code found a slightly better eSSP-TSRK+(9, 5) than the eSSP-
TSRK(9, 5) previously found in the literature. For s = 7, 8, 10 the eSSP-TSRK+(s, 5)
cannot match the SSP coefficients of the eSSP-TSRK(s, 5) methods in [22]. The loss
that we see in the effective SSP coefficients is, once again, under 1%, so the differ-
ence cannot be seen in Figure 5.1. It is important to note that there are no explicit
SSP Runge–Kutta methods of fifth order or above, so the eSSP-TSRK methods are
particularly useful if one needs to go to higher order.

The sixth order eSSP-TSRK+(s, 6) methods we found all have smaller SSP co-
efficients than the eSSP-TSRK(s, 6) in [22]. For s ≤ 7 the loss is under 0.5% which

14

cannot be seen in Figure 5.1. However, once we get to s = 8, 9, 10 we see more sig-
nificant losses in the size of the SSP coefficients, however these are still below 5%. It
is interesting to notice that the explicit eSSP-TSRK+(10, 6) method has an effective
SSP coefficient Ceff ≈ 0.31 that is about half that of the eSSPRK(10, 4) (which is
Ceff = 0.6) and about 60% of that of the eSSPRK+(10, 4) (which is Ceff ≈ 0.5299).

The eSSP-TSRK+(8, 7) method we found has the same SSP coefficient as the
eSSP-TSRK(8, 7) in [22], while the eSSP-TSRK+(s, 7) methods with s = 9, 10 have a
loss in the effective SSP coefficient of 4.4% and 5.55% compared with the correspond-
ing eSSP-TSRK methods in [22]. Although it is possible to find eighth order methods,
these require more than ten stages. Using our optimization code, we found an eleven
stage eighth order method with non-decreasing abscissas eSSP-TSRK+(11,8) with an
effective SSP coefficient Ceff ≈ 0.0249. The SSP coefficient of the eSSP-TSRK+(11, 8)
methods is significantly smaller (by close to 20%) than the eleven stage eighth order
method eSSP-TSRK(11, 8) in [22] which has Ceff ≈ 0.031.

In general, we see that for lower number of stages, the SSP coefficients of the meth-
ods with non-decreasing abscissas are no smaller than the methods with decreasing
abscissas. Perhaps this reflects the fact that the solution space for methods with s close
to p is already limited, and so the additional constraint of non-decreasing abscissas
poses no major restriction. However, it is interesting to notice that despite the con-
strained solution space when s is close to p, in every case where an eSSP-TSRK(s, p)
method was found it was also possible to find an eSSP-TSRK+(s, p) method.

s
p

2 3 4 5 6 7

1 - - - - - -
2 1.4142 0.7320 - - - -
3 2.4495 1.6506 0.8588 - - -
4 3.4641 2.3027 1.5926 0.8542 - -
5 4.4721 2.9807 2.3523 1.6481 - -
6 5.4772 3.7672 3.0140 2.3093 0.5958 -
7 6.4807 4.4533 3.6751 2.9173 1.2671 -
8 7.4833 5.2134 4.4178 3.5477 1.8728 0.5666

9 8.4853 6.0012 5.2120 3.9426 2.4784 1.0715
10 9.4868 6.7916 6.0626 4.2362 3.1646 1.6892

Table 5.1

SSP coefficients of the optimized eSSP-TSRK+(s,p) methods.

6. Numerical Results. In this section we demonstrate the performance of the
SSP integrating factor two-step Runge–Kutta (SSPIF-TSRK) methods based on the
eSSP-TSRK+ methods reported in Section 5. The SSP coefficients of these methods
are presented in Table 5.1; the coefficients of these methods can be downloaded from
[8].

Our tests focus on convergence and the SSP properties of the methods. In Sub-
section 6.1 we verify convergence at the design order for a selection of these methods
on the van der Pol problem. In Subsections 6.2 and 6.3 we study the behavior of these
methods in terms of their allowable TVD time-step on linear and nonlinear problems
with spatial discretizations that are TVD. The simple TVD test in these sections have
been used extensively because they demonstrate the behavior of the SSP time-step,
and provide evidence that there are some cases in which the SSP property is necessary

15

s
p

2 3 4 5 6 7

1 - - - - - -
2 0.7071 0.3660 - - - -
3 0.8165 0.5502 0.2863 - - -
4 0.8660 0.5757 0.3982 0.2135 - -
5 0.8944 0.5961 0.4705 0.3296 - -
6 0.9129 0.6279 0.5023 0.3849 0.0993 -
7 0.9258 0.6362 0.5250 0.4168 0.1810 -
8 0.9354 0.6517 0.5522 0.4435 0.2341 0.0708

9 0.9428 0.6668 0.5791 0.4381 0.2754 0.1191
10 0.9487 0.6792 0.6063 0.4236 0.3165 0.1689

Table 5.2

Effective SSP coefficients of the optimized eSSP-TSRK+(s,p) methods.

to preserve the TVD property.

6.1. Example 1: Convergence study. Consider the van der Pol problem, a
nonlinear system of ODEs of the form

u′

1 = u2

u′

2 = (−u1 + (1− u2
1)u2).

The problem can be written as ut = Lu+N(u) where u = (u1;u2) and

L =

(

0 1
−1 0

)

, N(u) =

(

0
(1− u2

1)u2

)

.

We initialize the problem with u0 = (2; 0). Using a variety of SSPIF-TSRK methods,
we run the problem to final time Tfinal = 2, with ∆t = 0.01, 0.02, 0.04, 0.05, 0.08, 0.10.
The initial values and the exact solution (for error calculation) was calculated by
Matlab’s ODE45 routine with tolerances set to AbsTol=2× 10−14 and RelTol=2×
10−14. We tested the SSPIF-TSRK methods based on the eSSP-TSRK+ methods
whose SSP coefficients are presented in Table 5.1 above. We calculated the orders
by finding the slopes of the log10(errors) using Matlab’s polyfit function. The
results, shown in Figure 6.1 for several selected methods, validate that the methods
exhibit the expected order of convergence.

6.2. Example 2: Sharpness of SSP time-step for a linear problem. While
the importance of SSP methods is not limited to cases where we need to preserve the
TVD property, TVD studies tend to exhibit the sharpness of the SSP time-step and so
are traditionally used to test SSP time-stepping methods. We begin with a case where
the TVD property of the spatial discretization can be proven, and investigate the
TVD behavior of the numerical solutions resulting from evolving the semi-discretized
problem using our SSP integrating factor two-step Runge–Kutta methods.

We use our SSPIF-TSRK methods to evolve in time the linear advection equation
on the domain x ∈ [0, 1] with periodic boundary conditions and a step function initial
condition

ut + aux + ux = 0 u(0, x) =

{

1, if 1
4 ≤ x ≤ 3

4

0, else .
(6.1)

16

-2 -1.8 -1.6 -1.4 -1.2 -1
∆t

∆x

-14

-12

-10

-8

-6

-4

-2

0

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

(2,2) m=2
(9,2) m=2
(3,3) m=3
(9,3) m=2.9
(4,4) m=4.1
(9,4) m=3.9
(5,5) m=4.9
(9,5) m=4.7
(6,6) m=5.9
(9,6) m=5.9
(8,7) m=6.9
(9,7) m=7
(11,8) m=8.3

Fig. 6.1. Convergence plot for Example 1. The slope of the line is given by m in the legend.

Using a simple first-order forward difference to discretize the spatial derivatives with a
spatial grid of 1000 points. We split the problem as with Lu ≈ −aux andN(u) ≈ −ux.
The spatial discretization is TVD when coupled with forward Euler in the sense that

‖un +∆tLun‖TV ≤ ‖un‖TV for. ∆̃tFE =
1

a
∆x

and
‖un +∆tN(un)‖TV ≤ ‖un‖TV for ∆tFE = ∆x.

We evolve the numerical solution forward ten time-steps for different values of
λ = ∆t

∆x
, and measure the total variation at each stage. To ensure internal stage

monotonicity we compare the total variation at any stage to the total variation at
the previous stage. We are interested in the observed TVD time-step ∆tTV D

obs , which
is the size of time-step ∆t at which the maximal rise in total variation between any
two stages is greater than 10−12. We compare the observed TVD time-step with
the theoretical TVD time-step condition. The SSP coefficient that corresponds to
the value of the observed TVD time-step is called the observed SSP coefficient Cobs,
defined by

Cobs =
∆tTV D

obs

∆tFE
.

Since the forward Euler TVD time-step for this problem is ∆tFE = ∆x, we have

Cobs =
∆tTV D

obs

∆x
= λTV D

obs .

6.2.1. Example 2a: Comparison of integrating methods for wavespeeds

a = 5 and a = 2. In this example we consider a variety of SSPIF-TSRK methods
for the time-evolution of (6.1) with wavespeeds a = 5 and a = 2.

In Figure 6.2 (left) we show the observed maximal rise in total variation when this
equation is evolved forward by several SSPIF-TSRK methods using different values of
the CFL number λ = ∆t

∆x
. We consider a selection of fourth order methods. First, we

explore the performance of the SSPIF-TSRK(s, p) methods with (s, p) = (3, 4), (4, 4)
(the corresponding SSPIFRK methods do not exist). If we consider the effective
observed time-step

Ceff
obs =

1

s
Cobs

17

0 1 2 3 4 5 6 7 8

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

SSPIFRK(5,4)
SSPIFRK(9,4)
SSPIF-TSRK(3,4)
SSPIF-TSRK(4,4)
SSPIF-TSRK(5,4)
SSPIF-TSRK(9,4)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

SSPIF-TSRK(10,5)
SSPIF-TSRK(10,6)
SSPIF-TSRK(8,7)
SSPIF-TSRK(11,8)

Fig. 6.2. Example 2a: Linear advection with a step function initial condition and wavespeeds
a = 5 (left) and a = 2 (right).

(i.e. the observed time-step normalized by the number of stages s) we see that the

SSPIFRK(9, 4) has Ceff
obs = 0.47 while the SSPIF-TSRK(3, 4) has a smaller Ceff

obs = 0.42

and SSPIF-TSRK(4, 4) has an even smaller Ceff
obs = 0.4. However, we observe that

the allowable TVD time-step of the SSPIFRK methods with (s, p) = (5, 4), (9, 4) is
smaller than that of the corresponding SSPIF-TSRK methods. The SSPIF-TSRK
methods allow us to obtain higher order for fewer stages than the SSPIFRK methods,
and larger observed time-steps for the same (s, p).

Figure 6.2 (right) shows us the performance of the higher order SSPIF-TSRK
methods, with orders p = 5, 6, 7, 8. In this case we use a = 2 in (6.1). We selected the
best performing methods in terms of observed SSP time-step, the SSPIF-TSRK(s, p)
methods for (s, p) = (10, 5), (10, 6), (8, 7), (11, 8). We note that the (s, p) = (11, 8)
method has the same SSP time-step performance as the (s, p) = (10, 6), showing the
eighth order method to be a viable and efficient method.

6.2.2. Example 2b: Considering different wavespeeds. In [15] we showed
that unlike fully explicit SSP Runge–Kutta methods or implicit-explicit SSP Runge–
Kutta (SSP-IMEX) methods, the SSP integrating factor Runge–Kutta schemes have
an allowable SSP time-step that is not impacted by the restriction on the time-step
resulting from the linear component L. This is also true for the SSP integrating
factor two-step Runge–Kutta methods. In this section, we investigate how different
wavespeeds in L impact the allowable SSP time-step of different methods.

In Table 6.1 we show the observed SSP coefficient λTV D
obs for values of a = 0, 1, 5

in (6.1) for a variety of SSPIF-TSRK methods. We notice that for the methods with
(s, p) = (5, 4), (9, 4), (6, 5), (9, 5) the observed SSP coefficient for a = 0, 1 was sharp,
i.e. exactly the SSP coefficient C predicted by the theory. As a gets larger (a = 5)
the observed SSP coefficient becomes larger than predicted by the theory, which only
provides a guaranteed lower bound. This occurs because the damping effect of the
exponential increases as a gets larger and so rises in total variation are damped out
and fall below the threshold. For the other methods, the observed SSP coefficient for
a = 0 is larger than predicted by the theory. For (s, p) = (7.6), (9, 6) the observed
SSP coefficient for a = 0, 1 was the same, while for a = 5 the observed SSP coefficient
is larger. For the other methods, we see an increase in the observed SSP coefficient
as a increases.

These results are in sharp distinction to explicit SSP Runge–Kutta methods and
SSP-IMEX methods. In Table 6.2 we compare the observed SSP coefficient of some

18

Method C λTV D
obs

for a = 0 a = 1.0 a = 5
SSPIF-TSRK(3,4) 0.8588 1.0454 1.2550 1.2621
SSPIF-TSRK(5,4) 2.3523 2.3523 2.3523 2.4123
SSPIF-TSRK(9,4) 5.2120 5.2120 5.2120 6.4010
SSPIF-TSRK(4,5) 0.8542 1.1852 1.3388 1.3389
SSPIF-TSRK(6,5) 2.3093 2.3093 2.3093 2.3094
SSPIF-TSRK(9,5) 3.9426 3.9426 3.9426 4.1173
SSPIF-TSRK(6,6) 0.5958 1.7771 1.7891 1.7893
SSPIF-TSRK(7,6) 1.2671 2.0239 2.0239 2.0261
SSPIF-TSRK(9,6) 2.4784 2.8038 2.8038 2.8204
SSPIF-TSRK(8,7) 0.5666 1.6624 2.6737 2.7788
SSPIF-TSRK(9,7) 1.0715 2.1626 2.4053 2.4053
SSPIF-TSRK(11,8) 0.2743 2.3871 3.1137 3.1271

Table 6.1

The observed SSP coefficient of a variety of SSPIF-TSRK(s, p) methods compared to theirpre-
dicted SSP coefficient, shown for various wavespeeds a. The value of a does not negatively impact
the observed SSP coefficient.

four stage explicit SSP integrating factor methods to those of the explicit SSP Runge–
Kutta method eSSPRK(4,3) and the SSP-IMEX(4,3,K) methods.

When the eSSPRK(4,3) method is applied to (6.1) with wavespeed a+ 1, where
a = 0, 1, 2, 10, Table 6.2 shows that the observed SSP coefficient exactly matches the
predicted

λTV D
obs =

C

a+ 1
=

2

a+ 1
.

This means that as the wavespeed a increases, the observed SSP coefficient goes down
as expected.

The SSP-IMEX(4,3,K) we use are from [4], and have SSP explicit and implicit
parts that were optimized for the SSP step size for each value of K = 1

a
. The results

presented in Table 6.2 show that, as expected from SSP theory, the observed SSP
coefficient decays linearly as the wavespeed a rises. This matches with the results in
[4] that, in contrast to the fact that IMEX methods may be A-stable, they cannot
be unconditionally SSP past first order. This limitation highlights the need for SSP
integrating factor methods.

Finally, we see that the observed SSP coefficients for the explicit SSP integrating
factor methods do not decay as the wavespeed a goes up. For the SSPIFRK(4,3)
method the observed SSP coefficient is exactly the same for a = 0, 1, 2, 10, while
the SSPIF-TSRK(4,3) and SSPIF-TSRK(4,4) methods have the same observed SSP
coefficient for a = 0, 1, 2 and a larger observed SSP coefficient for a = 10.

6.3. Example 3: Sharpness of SSP time-step for a nonlinear problem.

Once again we consider the motivating problem (2.5) in Subsection 2.1:

ut + aux +

(

1

2
u2

)

x

= 0 u(0, x) =

{

1, if 0 ≤ x ≤ 1/2

0, if x > 1/2

on the domain [0, 1] with periodic boundary conditions.
We used a first-order upwind difference to semi-discretize, with 400 spatial points,

the linear term Lu ≈ −aux, and a fifth order WENO finite difference for the nonlinear

19

Method λTV D
obs

a = 0 a = 1.0 a = 2 a = 10
SSPIF-TSRK(4,3) 2.303 2.303 2.303 2.775
SSPIF-TSRK(4,4) 1.593 1.593 1.593 1.639
SSPIFRK(4,3) 1.818 1.818 1.818 1.818
SSP-IMEX(4,3,K) 2.000 1.476 1.192 0.310
eSSPRK(4,3) 2.000 1.000 0.666 0.181

Table 6.2

The observed SSP coefficients for integrating factor methods, an SSP-IMEX method, and an
explicit Runge–Kutta method for Example 2b with various wavespeeds a. The value of a does not
negatively impact the observed SSP coefficient for the integrating factor methods, but it does for the
IMEX and the explicit Runge–Kutta methods.

terms N(u) ≈ −
(

1
2u

2
)

x
. We note that the WENO scheme is not TVD. However, its

total variation is generally well-controlled in typical simulations.
We evolve the semi-discrerized problem forward 25 time steps using ∆t = λ∆x,

and measure the total variation at each stage. We then calculate the maximal rise in
total variation over each stage. Once again, the quantity of interest is the observed
TVD time-step, but in the absence of a forward Euler condition (as WENO is not
TVD) we cannot determine the observed SSP coefficient, only the observed TVD
time-step.

We first show the results for a selection of third order methods on problem (2.5)
with the value a = 5. In Figure 6.3 (left) we plot log10 of the maximal rise in total
variation versus the ratio λ = ∆t

∆x
. Our SSPIF-TSRK(3,3) method out-performs the

SSPIFRK(3,3) method in [15] by more than 10%. In contrast, the fully explicit three
stage third order Shu-Osher method applied begins to feature a large rise in total
variation for a much smaller value of λ = .15 ≈ 1

1+a
, as expected. Evolving the trans-

formed problem with the Shu-Osher method (2.7) (denoted IF with eSSPRK(3,3))
and with the three-stage third order Cox and Matthews exponential time differencing
Runge–Kutta method (ETDRK3) [5] results in a maximal rise in total variation that
increases rapidly with λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g
1
0
(m

ax
im

al
ri
se

in
T
V
)

SSPIF-TSRK(3,3)
SSPIFRK(3,3)
IF with eSSPRK(3,3)
eSSPRK(3,3)
ETDRK3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g
1
0
(m

ax
im

al
ri
se

in
T
V
)

SSPIF-TSRK(5,4)
SSPIFRK(5,4)
SSP-IMEX(5,4,0.1)
ETDRK4

Fig. 6.3. A comparison of the TVD time-step for a variety of integrating factor, exponential
time differencing, explicit and IMEX SSP Runge–Kutta methods applied to Example 3. Left: Third
order methods. Right: Fourth order methods.

In Figure 6.3 (right) we show a similar study using fourth order methods. Our
SSPIF-TSRK(5,4) method allows a TVD time-step of λobs ≈ 1.3, while the corre-

20

sponding integrating factor Runge–Kutta method SSPIFRK(5,4) method maintains
a small maximal rise in total variation until λobs ≈ 1. The fourth order ETDRK4
method of [5] does not have good TVD performance: the maximal rise in total vari-
ation when using the ETDRK4 rises rapidly from the smallest value of λ. The SSP-
IMEX(5,4,0.1) method features an observed value of λobs ≈ 0.5, pointing once again
to the fact that IMEX methods are not as suitable when the SSP property is desired.

Finally, we compare TVD time-step of the SSPIF-TSRK(s, p) methods with
(s, p) = (4, 3), (5, 4), (6, 5), (7, 6), (8, 7). In Figure 6.4 we show the log10 of the maximal
rise in total variation at each stage compared to the previous stage, plotted against
the ratio λ = ∆t

∆x
. These integrating factor methods all perform well for this prob-

lem. Notably, the seventh order method has the largest observed TVD time-step and
the sixth order method has the smallest observed TVD time-step for both a = 1 and
a = 5. The fourth order method behaves consistently for both a = 1 and a = 5. These
results are all consistent with those of the linear test case. Once again, we observe
that as the exponent increases we generally have a larger allowable TVD time-step,
as we noted above.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

SSPIF-TSRK(3,2)
SSPIF-TSRK(4,3)
SSPIF-TSRK(5,4)
SSPIF-TSRK(6,5)
SSPIF-TSRK(7,6)
SSPIF-TSRK(8,7)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
λ = ∆t

∆x

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
10
(m

ax
im

al
ri
se

in
T
V
)

SSPIF-TSRK(3,2)
SSPIF-TSRK(4,3)
SSPIF-TSRK(5,4)
SSPIF-TSRK(6,5)
SSPIF-TSRK(7,6)
SSPIF-TSRK(8,7)

Fig. 6.4. Performance of integrating factor methods for Example 3 for a = 1 (left) and a = 5
(right).

7. Conclusions. In this work we extended the SSP theory for integrating factor
Runge–Kutta methods established in [15] to integrating factor two step Runge–Kutta
methods. SSP integrating factor methods are needed for problems that require a
nonlinear non-inner product stability property, and where the linear component is
severely restricting the time-step. Unlike the case where linear L2 stability is of
interest, implicit or IMEX methods do not alleviate this restriction. However, inte-
grating factor Runge–Kutta methods based on applying a SSP Runge–Kutta method
with nondecreasing abscissas to the transformed equation completely alleviate the
time-step restriction. SSP Runge–Kutta methods only exist up to fourth order. To
extend these results to higher order methods, we considered herein SSP two-step
Runge–Kutta methods applied in conjunction with an integrating factor approach.
We showed that, just as for the Runge–Kutta case, if the two-step Runge–Kutta
methods are SSP and have non-decreasing abscissas then they can be used to time-
step the transformed problem. We enhanced the optimization problem in [22] with the
condition (5.1) and found SSP two-step Runge–Kutta methods with non-decreasing
abscissas that have optimized SSP coefficients (presented in Table 5.1). We tested
the resulting SSPIF-TSRK methods on a variety of problems and showed that the
new high order methods perform as expected in terms of convergence and the strong

21

stability property.

Appendix A. Order Conditions. The order conditions, (3.5c) for a k-step
SSP Runge-Kutta were derived by Ketcheson and used in [23]. We can write the
generalized form for a multi-step Runge–Kutta method as

yn1 = un

yni =

k
∑

l=1

dilu
n−k+l +∆t

k−1
∑

l=1

âilF (un−k+1) + ∆t

i−1
∑

j=1

aijF (ynj) 2 ≤ i ≤ s

un+1 =

k
∑

l=1

θlu
n−k+l +∆t

k−1
∑

l=1

b̂lF (un−k+l) + ∆t

s
∑

j=1

bjF (ynj).

and rewrite it into a matrix form by defining

D̃ =

(

I(k−1)×(k−1) 01×(k−1)

D

)

Ã =

(

0 0

Â A

)

and b̃ =
(

b̂ b
)

.

The method then becomes

yn = D̃un +∆tÃfn

un+1 = θ
T
un +∆tb̃Tfn

and by leting l be the vector l = (k − 1, k − 2, ..., 1, 0)T to compute the abscissas
c = Ãe− D̃l to get the the following expressions

τ ρ =
1

ρ!

(

cρ − D̃(−l)ρ
)

−
1

(ρ− 1)!
Ãcρ−1

τρ =
1

ρ!
(1− θ(−l)ρ)−

1

(ρ− 1)!
b̃T cρ−1

Below are the order conditions for methods from first to eighth order. As the
order increases the methods must satisfy all previous order conditions as well as the
additional ones for each order.
First:

b̃T e = 1 + θ
T
l

Second:

b̃T c =
1− θ

T
l
2

2
.

Third:

b̃T
(

c2
)

=
1 + θ

T
l
3

3
, b̃T

τ 2 = 0.

Fourth:

b̃T
(

c3
)

=
1− θ

T
l
4

4
, b̃T Ãτ 2 = 0, b̃TCτ 2 = 0, b̃T

τ 3 = 0

22

Fifth:

b̃T
(

c4
)

=
1 + θ

T
l
5

5
, b̃T Ãτ 3 = 0, b̃TCτ 3 = 0, b̃T

τ 4 = 0, τ 2 = 0

Sixth:

b̃T
(

c5
)

=
1− θ

T
l
6

6
, b̃T Ãτ 4 = 0, b̃TCτ 4 = 0, b̃T

τ 5 = 0,

b̃T Ã2τ 3 = 0, b̃T ÃCτ 3 = 0, b̃TCÃτ 3 = 0, b̃TC2
τ 3 = 0

Seventh:

b̃T
(

c6
)

=
1+ θ

T
l
7

7
, b̃T Ãτ 5 = 0, b̃TCτ 5 = 0,

b̃T
τ 6 = 0, b̃T Ã2τ 4 = 0, b̃T ÃCτ 4 = 0,

b̃TCÃτ 4 = 0, b̃TC2
τ 4 = 0, τ 3 = 0

Eighth:

b̃T
(

c7
)

=
1− θ

T
l
8

8
, b̃T Ãτ 6 = 0, b̃TCτ 6 = 0, b̃T

τ 7 = 0,

b̃T Ã3τ 4 = 0, b̃T Ã2τ 5 = 0, b̃T Ã2Cτ 4 = 0, b̃T ÃCÃτ 4 = 0,

b̃T ÃCτ 5 = 0, b̃T ÃC2
τ 4 = 0, b̃TCÃ2τ 4 = 0, b̃TCÃτ 5 = 0,

b̃TCÃCτ 4 = 0, b̃TC2Ãτ 4 = 0, b̃TC2
τ 5 = 0, b̃TC3

τ 4 = 0

Where C is a diagonal matrix of the abscissas C = diag(c) and the exponentiation is
considered to be element wise i.e. c3 = (c · c · c).

Acknowledgment. This publication is based on work supported by AFOSR
grant FA9550-18-1-0383. A part of this research is sponsored by the Office of Advanced
Scientific Computing Research; US Department of Energy, and was performed at the
Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Con-
tract no. De-AC05-00OR22725. This manuscript has been authored by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US Department of Energy. The
United States Government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.

23

REFERENCES

[1] A.H. Al Mohy and N.J. Higham, Computing the action of the matrix exponential of a matrix,
with an application to exponential integrators, SIAM Journal on Scientific Computing 33(2)
(2011), pp. 488–511.

[2] E. M. Constantinescu and A. Sandu, Optimal strong-stability-preserving general linear
methods, SIAM Journal of Scientific Computing 32(5) (2010), pp. 3130-3150.

[3] A.J. Christlieb, S. Gottlieb, Z. Grant, and D. C. Seal, Explicit Strong Stability Preserving
Multistage Two-Derivative Time-Stepping Schemes, Journal of Scientific Computing 68(3)
(2016), pp. 914-942.

[4] S. Conde, S. Gottlieb, Z. Grant, J.N. Shadid, Implicit and Implicit-Explicit Strong Stability
Preserving RungeKutta Methods with High Linear Order, Journal of Scientific Computing
73(2) (2017), pp. 667–690.

[5] S. Cox and P. Matthews, Exponential time differencing for stiff systems, Journal of Com-
putational Physics, 176 (2002), pp. 430–455.

[6] L. Ferracina and M.N. Spijker, Strong stability of singly-diagonally-implicit Runge-Kutta
methods, Applied Numerical Mathematics 58 (2008), pp. 1675-1686.

[7] S. Gaudreault, G. Rainwater, M. Tokman, KIOPS: A fast adaptive Krylov subspace solver
for exponential integrators, Journal of Computational Physics 372 (2018), pp. 236-255.

[8] S. Gottlieb, Z. Grant, and L. Isherwood, Optimized strong stability preserving in-
tegrating factor two-step Runge–Kutta methods. https://github.com/SSPmethods/
SSPIF-TSRK-methods.

[9] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge–Kutta and
Multistep Time Discretizations, World Scientific Press, 2011.

[10] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge–Kutta methods, Mathematics
of Computation, 67 (1998), pp. 73–85.

[11] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong Stability Preserving High-Order Time Dis-
cretization Methods, SIAM Review, 43 (2001), pp. 89–112.

[12] Z. Grant, S. Gottlieb, D.C. Seal, A Strong Stability Preserving Analysis for Explicit Mul-
tistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions, To
appear in Communication on Applied Mathematics and Computation 1(1) (2019), pp. 21-
59.

[13] J.S. Hesthaven, Numerical methods for conservation laws: From analysis to algorithms, SIAM
Publishing, Philadelphia (2017).

[14] W. Hundsdorfer, S.J. Ruuth and R.J. Spiteri, Monotonicity-preserving linear multistep
methods, SIAM Journal on Numerical Analysis 41 (2003), pp. 605–623.

[15] L. Isherwood, S. Gottlieb, Z. Grant, Strong Stability Preserving Integrating Factor Runge–
Kutta Methods. SIAM Journal on Numerical Analysis 56(6) (2018), pp. 3276–3307.

[16] L. Isherwood, S. Gottlieb, Z. Grant, Downwinding for Preserving Strong Stability in Ex-
plicit Integrating Factor Runge–Kutta Methods, Pure and Applied Mathematics Quarterly
14(1) (2019), pp. 3-25.

[17] G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of
Computational Physics 126(1) (1996), pp. 202-228.

[18] D. I. Ketcheson, Highly efficient strong stability preserving Runge–Kutta methods with low-
storage implementations, SIAM Journal on Scientific Computing, 30 (2008), pp. 2113–2136.

[19] D.I. Ketcheson, C.B. Macdonald and S. Gottlieb, Optimal implicit strong stability pre-
serving Runge-Kutta methods, Applied Numerical Mathematics 52 (2009), pp. 373–392.

[20] D. I. Ketcheson, Computation of optimal monotonicity preserving general linear methods,
Mathematics of Computation 78 (2009), pp. 1497–1513.

[21] D. I. Ketcheson, Step sizes for strong stability preservation with downwind-biased operators,
SIAM Journal on Numerical Analysis 49 (4) (2011), pp. 1649–1660.

[22] D.I. Ketcheson, S. Gottlieb, and C. B. Macdonald, Strong stability preserving two- step
Runge-Kutta methods, SIAM Journal on Numerical Analysis 49 (2012), pp. 2618-2639.

[23] C. Bresten, S. Gottlieb, Z. Grant, D. Higgs, D.I. Ketcheson, and A. Nemeth, Explicit
strong stability preserving multistep Runge-Kutta methods, Mathematics of Computation
86 (2017), pp. 747-769.

[24] J. F. B. M. Kraaijevanger, Contractivity of Runge–Kutta methods, BIT, 31 (1991), pp. 482–
528.

[25] H.W.J. Lenferink, Contractivity-preserving implicit linear multistep methods, Mathematics
of Computation 56 (1991), pp. 177–199.

[26] R. J. LeVeque, Numerical Methods for Conservation Laws, ETH Lectures in Mathematics
Series, Birkhauser-Verlag, (1990).

24

https://github.com/SSPmethods/SSPIF-TSRK-methods
https://github.com/SSPmethods/SSPIF-TSRK-methods

[27] J. Niesen and W.M. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating
the φ-functions appearing in exponential integrators, ACM Transactions on Mathematical
Software 38(3) (2012), pp. 22.

[28] S. J. Ruuth and R. J. Spiteri, Two barriers on strong-stability-preserving time discretization
methods, Journal of Scientific Computation, 17 (2002), pp. 211–220.

[29] C.-W. Shu, Total-variation diminishing time discretizations, SIAM Journal on Scientific Sta-
tistical Computing 9 (1988), pp. 1073–1084.

[30] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, Journal of Computational Physics 77 (1988), pp. 439–471.

[31] R.B. Sidje, EXPOKIT: A software package for computing matrix exponentials, ACM Trans-
actions on Mathematical Software 24(1) (1998), pp. 130–156.

[32] M.N. Spijker, Contractivity in the numerical solution of initial value problems, Numerische
Mathematik 42 (1983), pp. 271–290.

[33] M. Spijker, Stepsize conditions for general monotonicity in numerical initial value problems,
SIAM Journal on Numerical Analysis, 45 (2008), pp. 1226–1245.

[34] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving
time discretization methods, SIAM Journal on Numerical Analysis, 40 (2002), pp. 469–491.

25

	1 Introduction
	1.1 SSP methods
	1.2 Overview of current paper
	1.3 Efficient computation of the matrix exponential

	2 Review of SSP integrating factor Runge–Kutta methods
	2.1 Motivating example
	2.2 SSP analysis of integrating factor Runge–Kutta method

	3 A review of explicit SSP two-step Runge–Kutta methods
	3.1 Formulating the optimization problem
	3.2 Optimized SSP two-step Runge–Kutta methods

	4 Explicit SSP two-step Runge–Kutta schemes for use with integrating factor methods
	4.1 SSP integrating factor linear multi-step methods
	4.2 SSP integrating factor two-step Runge–Kutta methods

	5 Optimal and optimized methods with non-decreasing abscissas
	6 Numerical Results
	6.1 Example 1: Convergence study
	6.2 Example 2: Sharpness of SSP time-step for a linear problem
	6.2.1 Example 2a: Comparison of integrating methods for wavespeeds bold0mu mumu a=5a=5subsubsectiona=5a=5a=5a=5 and bold0mu mumu a=2a=2subsubsectiona=2a=2a=2a=2
	6.2.2 Example 2b: Considering different wavespeeds

	6.3 Example 3: Sharpness of SSP time-step for a nonlinear problem

	7 Conclusions
	Appendix A. Order Conditions
	References

