Skip to main content
Log in

An Efficient Space–Time Method for Time Fractional Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A space–time Petrov–Galerkin spectral method for time fractional diffusion equations is developed in this paper. The Petrov–Galerkin method is used to simplify the computation of stiffness matrix but leads to full non-symmetric mass matrix. However, the matrix decomposition method based on eigen-decomposition is numerically unstable for non-symmetric linear systems. A QZ decomposition is adopted instead of eigen-decomposition. The QZ decomposition has essentially the same computational complexity as the eigen-decomposition but is numerically stable. Moreover, the enriched Petrov–Galerkin method is developed to resolve the weak singularity at the initial time. We also carry out the error analysis for the proposed methods and present ample numerical results to validate the accuracy and robustness of our numerical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  2. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, H., Holland, F., Stynes, M.: An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 139, 52–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Shen, J.: Enriched spectral methods and applications to problems with weakly singular solutions. J. Sci. Comput. 77(3), 1468–1489 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56(6), 3249–3275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space–time Petrov–Galerkin FEM for fractional diffusion problems. Comput. Methods Appl. Math. 18(1), 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  11. Haidvogel, D.B., Zang, T.: The accurate solution of poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30(2), 167–180 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, D., Hasan, M.T., Xu, C.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hou, D., Chuanju, X.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, C., Jiao, Y., Wang, L.-L., Zhang, Z.: Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions. SIAM J. Numer. Anal. 54(6), 3357–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52(5), 2272–2294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Chuanju, X.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, Y., Chuanju, X.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W., Wang, L.-L., Xiang, S.: A new spectral method using nonstandard singular basis functions for time-fractional differential equations. Commun. Appl. Math. Comput. 1, 1–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  26. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, J., Sheng, C., Wang, Z.: Generalized Jacobi spectral-galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Mathematics Monograph Series, vol. 3. Science Press, Beijing (2006)

  29. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  30. Shen, J., Wang, L.-L.: Fourierization of the Legendre–Galerkin method and a new space–time spectral method. Appl. Numer. Math. 57(5), 710–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sheng, C., Shen, J.: A space–time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theory Methods Appl. 11, 854–876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, Z., Xiaonan, W.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, W.Y., Deng, W., Yujiang, W.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30(2), 514–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional pdes. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeng, F., Zhang, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37(6), A2710–A2732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Zeng, F., Karniadakis, G.E.: Optimal error estimates of spectral Petrov–Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53(4), 2074–2096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Tao Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of J. Shen is partially supported by NSF DMS-1620262, DMS-1720442 and AFOSR FA9550-16-1-0102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Sheng, CT. An Efficient Space–Time Method for Time Fractional Diffusion Equation. J Sci Comput 81, 1088–1110 (2019). https://doi.org/10.1007/s10915-019-01052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01052-8

Keywords

Mathematics Subject Classification

Navigation