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Abstract We present a family of fast and accurate Dijkstra-like solvers for the
eikonal equation and factored eikonal equation which compute solutions on a reg-
ular grid by solving local variational minimization problems. Our methods con-
verge linearly but compute significantly more accurate solutions than competing
first order methods. In 3D, we present two different families of algorithms which
significantly reduce the number of FLOPs needed to obtain an accurate solution
to the eikonal equation. One method employs a fast search using local character-
istic directions to prune unnecessary updates, and the other uses the theory of
constrained optimization to achieve the same end. The proposed solvers are more
efficient than the standard fast marching method in terms of the relationship
between error and CPU time. We also modify our method for use with the addi-
tively factored eikonal equation, which can be solved locally around point sources
to maintain linear convergence. We conduct extensive numerical simulations and
provide theoretical justification for our approach. A library that implements the
proposed solvers is available on GitHub.
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1 Introduction

We develop fast, memory efficient, and accurate solvers for the eikonal equation,
a nonlinear hyperbolic PDE encountered in high-frequency wave propagation [18]
and the modeling of a wide variety of problems in computational and applied
science [48], such as photorealistic rendering [22], constructing signed distance
functions in the level set method [37], solving the shape from shading problem [28,
41,17], traveltime computations in numerical modeling of seismic wave propaga-
tion [49,38,26,59,61], and others. We are motivated primarily by problems in high-
frequency acoustics [42], which are key to enabling a higher degree of verisimilitude
in virtual reality simulations (see [44,45] for a cutting-edge time-domain approach
which is useful up to moderate frequencies). Current approaches to acoustics sim-
ulations rely on methods whose complexity depends on the highest frequency of
the sound being simulated. For moderately high-frequency wave propagation prob-
lems, the eikonal equation comes about as the first term in an asymptotic WKB
expansion of the Helmholtz equation and corresponds to the first arrival time
of rays propagating under geometric optics, although approaches for computing
multiple arrivals exist [20].

In this work, we develop direct solvers for the eikonal equation which are fast
and accurate, particularly in 3D. We develop a family of algorithms which approach
the problem of efficiently computing updates in 3D in different ways. This family
of algorithms is analyzed and extensive numerical studies are carried out. Our
algorithms are semi-Lagrangian, using information about local characteristics to
reduce the work necessary to get an accurate result. They are competitive with
existing direct solvers for the eikonal equation and generalize to higher dimensions
and related equations, such as the static Hamilton-Jacobi equation. In fact, this
research was done in tandem with research on the ordered line integral methods for
the quasipotential of nongradient stochastic differential equations (SDEs) [14,13,
62]. Due to the relative simplicity of the eikonal equation, the algorithms presented
here are more amenable to analysis, allowing us to obtain theoretical results that
justify our experimental findings.

1.1 Results

Different numerical methods have been proposed for the solution of the eikonal
equation; generally, there are direct solvers and iterative solvers. The most popular
direct solvers are based on Dijkstra’s algorithm (“Dijkstra-like” solvers) [57,47],
and the most popular iterative method is the fast sweeping method [56,65]. In
this work, we develop a family of Dijkstra-like solvers for the eikonal equation
in 2D and 3D, similar to the fast marching method (FMM) or ordered upwind
methods (OUMs) [47,51]. In constrast to the FMM and OUMs that use finite
difference schemes, our solvers come about by discretizing and minimizing the
action functional for the eikonal equation (see section A). The proposed family
of algorithms is parameterized by a choice of update algorithm (bottom-up or top-

down), quadrature rule (a righthand rule (rhr), a simplified midpoint rule (mp0),
and a midpoint rule (mp1)), and, in the case of bottom-up, a neighborhood size (6,
18, or 26 points in 3D). See figure 1.
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Fig. 1: The family of Dijkstra-like solvers designed and studied in this work. We re-
fer to these as ordered line integral methods (OLIMs). There are three ways of
parametrizing the family: by selecting an update algorithm, by selecting a quadra-
ture rule, and by (in the case of the top-down update algorithm, by selecting a
neighborhood size. Sections in the text that explain these choices in detail are
indicated. A shorthand notation for referring to each parametrized algorithms is
listed for each algorithm that is involved in numerical tests (e.g., olim3d mp0).

Our bottom-up and top-down update algorithms represent two separate ap-
proaches to minimizing the number of triangle and tetrahedron updates that need
to be done in 3D, while the quadrature rules represent a trade-off between speed
and accuracy of the solver. The simplified midpoint rule (mp0) is a sweet spot that
requires extra theoretical justification, which we provide. Overall, our goal is to
explore the relevant algorithm design trade-offs in 3D and find which solver per-
forms best. Our conclusion is that, in 3D, olim3d mp0 is the best overall, and our
results are oriented towards supporting this claim.

Additionally, we modify our algorithms to solve the additively factored eikonal
equation [30]: to enhance accuracy, we solve the locally factored eikonal equation
near point sources, which recovers the global O(h) error convergence expected from
a first-order method, where h > 0 is the uniform spacing between grid points. This
fixes the degraded O(h log h−1) convergence often associated with point source
eikonal problems [43] (see [65] for a proof of this error bound).

Our main results follow:

– For 3D problems, we develop two separate update algorithms: a bottom-

up (olim3d) algorithm, and a top-down algorithm (olimK , where K = 6, 18, 26 is
the size of neighborhood used). Each algorithm locally updates a grid point by
performing a minimal number of triangle or tetrahedron updates. Depending on
the quadrature rule, each update is calculated by solving a system of nonlinear
equations either directly (rhr and mp0) or iteratively (mp1).
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Fig. 2: Comparing the relative `∞ errors of olim3d mp0 and olim6 rhr. For the mul-
tiple point source problem in section 5.3 with the domain Ω = [0, 1]3 discretized
in each direction into N = 2p + 1 (where p = 5, . . . , 9), the total number of grid
points is N3.

– We prove theorems relating our quadrature rules, rigorously justifying

the mp0 rule. These results support our case that it is superior to the mp1 rule.
We note that this work was done in tandem with research on ordered line inte-
gral methods for computing the quasipotential 3D for nongradient SDEs [14,
62,13]. Unlike the quasipotential, the eikonal equation is simple enough to al-
low us to analyze and justify our algorithms. We are also able to obtain simpler
solution methods and established performance guarantees.

– We conduct numerical experiments on test problems with analytic solu-

tions. The test problems include point source problems for different slowness
(index of refraction) functions, and multiple point source problems with a lin-
ear speed function. All of these have analytical solutions, which we use as a
ground truth. We also test our

– We perform tests involving the Marmousi model in 2D and 3D. We
demonstrate that the improved directional coverage of olim26 and olim3d leads
to a gain in accuracy.

– We show that a significant improvement in accuracy is gained over the

equivalent of the standard fast marching method in 3D, olim6 rhr. Only
a modest slowdown is incurred using our general framework, indicating that
our approach is competitive. See figure 2 to see the improvement of olim3d mp0

over olim6 rhr, and see section 5 for more details.
– We use Valgrind [35] to profile our implementation. Our results indicate

that the time spent sorting the heap used to order nodes on the front is negli-
gible for all practical problem sizes. Since our solvers otherwise run in O(Nn)
time, where n is the dimension of the domain, we suggest that the O(Nn logN)
cost of the algorithm is pessimistic. Memory access patterns play a much more
significant role in scaling.
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1.2 Accessing our library

Our implementation is in C++ [54]. A link to a project website on GitHub can be
accessed from S. Potter’s website [39]. The GitHub site includes instructions for
downloading and running basic examples [1]. The code used to generate plots in
this paper is also available with instructions [2].

2 Background

In this section we provide a brief overview of the eikonal equation and its numerical
solution on a regular grid and sketch a generic Dijkstra-like algorithm which we
will refer to throughout the paper to organize our results.

2.1 The eikonal equation

With n ≥ 2, and given a domain Ω ∈ Rn, the eikonal equation is:

‖∇u(x)‖ = s(x), x ∈ Ω, (1)

where ‖ · ‖ denotes the `2 norm unless otherwise stated, and s : Ω → (0,∞) is
a fixed, positive slowness function, which forms part of the data. We solve for
u : Ω → R+. The boundary data is provided on a subset D ⊂ Ω where u has been
fixed; i.e., u|D = g for some g : D → R+. As an example, if s ≡ 1 and g ≡ 0, then
the solution of eq. 1 is:

u(x) = d(x,D) = min
y∈D
‖x− y‖ . (2)

That is, u is the distance to D at each point in Ω.
To numerically solve eq. 1, first let G = {pi} ⊆ Ω be the set or grid of nodes

where we would like to approximate the true solution u with a numerical solution
U : G → R+. Additionally, for each node p ∈ G, define a set of neighbors, nb(p) ⊆
G\ {p}. Typically—for the FMM, for instance—G is taken to be a subset of a lattice
in Rn and nb(p) to be each node’s 2n nearest neighbors. We also define the set of
boundary nodes, bd ⊆ G. It may happen that the set bd and D do not coincide
(e.g., D could be a curve which does not intersect any points in G); to reconcile
this difference, the initial value of U(p) for each p ∈ bd must take g = u|D into
account in the best way possible. This problem has been approached in different
ways, and is not the focus of the present work [11].

Throughout, we make several simplifying assumptions.

– All boundary nodes coincide with grid points: bd = D ⊆ G.
– The grid G is a regular, uniform grid (a subset of a regular, uniform square

lattice in 2D or cubic lattice in 3D). We denote grid nodes by x ∈ G.
– When numerically computing a new value at a grid point x̂ ∈ G, we transform

the neighborhood to the origin and scale the vertices so that they have integer
values. The transformed update node is labeled p̂. See section 3.1 for a detailed
explanation.
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far

trial (contained in front)

pnew

triangle
updates

line updates

valid

update
neighborhood
(nb(pnew))

Fig. 3: An overview of a Dijkstra-like algorithm for solving the eikonal equation (eq. 1)

in 2D. See alg. 1 for details. Nodes are labeled by state so that ◦ = far, � = trial,
and × = valid. In this diagram, the node pnew has been removed from front and
had its state set to valid. All far nodes in nb(pnew) are set to trial, and then all
trial nodes in nb(pnew) are updated. The updates are depicted: there are three
line updates and three triangles, since it is only necessary to perform updates
that involve pnew. The OLIM shown here is olim8. In 3D, there would also be
tetrahedron updates.

2.2 Dijkstra-like algorithms

If we order nodes in G so that new solution values are only computed using up-
wind nodes, the eikonal equation can be solved directly; i.e., without the use of
an iterative solver. This is done using a continuous version of Dijkstra’s algorithm
for finding shortest paths in a network. Other algorithms which solve similar net-
work flow problems can also be used, but have different complexity guarantees [9].
In particular, Dijkstra’s algorithm is a type of label-setting method for finding
shortest paths in a network; there are also label-correcting methods [5].

Using Dijkstra’s algorithm to solve a “continuous shortest path” problem has
been discovered in several contexts. The earliest such development is a theoretical
result in computational geometry due to Mitchell, Mount, and Papadimitriou, who
used this idea to compute exact polyhedral shortest paths (“discrete geodesics”)
on triangulated surfaces [34]. This was followed by Tsitsiklis who developed a
first-order semi-Lagrangian method for solving isotropic optimal control problems
on a uniform grid [57]. Finally, the fast marching method, which uses a first-
order upwind finite difference scheme was developed by Sethian to model isotropic
front propagation [47]. Many variations of these methods have since been devel-
oped [51,24]. Our own development resembles Tsitsisklis’s, but extends it past
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its original formulation. In particular, Tsitsiklis considers what we call olim8 rhr

and olim26 rhr, and does not treat the 3D case in depth. We generalize this ap-
proach, considering higher accuracy quadrature rules (mp0 and mp1) and algorithms
which make 3D solvers fast (our bottom-up and top-down algorithms). We also note
that Bornemann and Rasch have investigated the local variational approach (à la
Tsitsiklis), and have present detailed theoretical results—their approach is com-
plementary to our own, but has a much different emphasis [7].

To write down a generic Dijkstra-like algorithm, there are several pieces of
information which need to be kept track of. A data structure called front tracks
trial nodes while the solver runs (typically an array-based heap). For each node
p, apart from the current value of U(p), the most salient piece of information is its
state, written p.state ∈ {valid, trial, far}. To fix ideas, consider the following
high-level Dijkstra-like algorithm:

Algorithm 1 A generic Dijkstra-like algorithm for solving the eikonal equation.

1. For each p ∈ G, set p.state ← far and U(p)←∞.
2. For each p ∈ bd, set p.state ← trial, and set U(p) to a user-defined value.
3. While there are trial nodes left in G:

(a) Let pnew be the trial node in front with the smallest value U(pnew).
(b) Set pnew.state ← valid and remove pnew from front.
(c) For each p̂ ∈ nb(pnew), set p̂.state ← trial if p̂.state = far.

(d) For each p̂ ∈ nb(pnew) such that p̂.state = trial, update Û = U(p̂) and merge p̂ into
front.

Specifying how item 3d is to be performed is the crux of developing a Dijkstra-
like algorithm and is left intentionally vague here. This step involves indicating
how nodes in nb(p̂) are used to compute Û , and how they are organized into the
front data structure. The FMM uses an upwind finite difference scheme where only
valid nodes are used to compute Û , and where nodes on the front are sorted using
an array-based heap implementing a priority queue [47]. As an example, Tsitsiklis’s
algorithm combines nodes in valid into sets whose convex hulls approximate the
surface of the expanding wavefront and then solves local functional minimization
problems. The method presented here is more similar to Tsitsiklis’s algorithm (see
figure 3). For specific details, a general reference should be consulted [48].

In addition to item 3d, algorithm 1 is generic in the following ways:

– As we mentioned before, there are different ways of initializing the boundary
data bd if only off-grid boundary data is provided [11].

– How we keep track of the node with the smallest value is variable: most fre-
quently, as in Dijkstra’s algorithm, a heap storing pointers to the nodes is used,
leading to O(Nn logN) update operations overall, where Nn is the number of
nodes. In fact, there are O(Nn) variations using Dial’s algorithm (a bucketed
version of Dijkstra’s algorithm), but these have not been used as extensively
as Dijkstra-like algorithms [57,25,63].

– The arrangement of the nodes into a grid or otherwise varies, as do the neigh-
borhoods of each node. This affects the update procedure. A regular grid is
simple to deal with, but Dijkstra-like methods have been extended to manifolds
and unstructured meshes, where the situation is more involved [27,50,8].
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Other problems can be solved using Dijkstra-like algorithms: the static Hamilton-
Jacobi equation, an anisotropic generalization of the eikonal equation, can be
solved using the ordered upwind method [51] or other recently introduced meth-
ods [33,32]. The quasipotential of a nongradient stochastic differential equation
can also be computed using the ordered line integral method, although the con-
siderations are more involved [14,13,62].

2.3 Fast sweeping methods

Another approach to solving a discretized version of eq. 1 is the fast sweeping
method [56,65]. Unlike Dijkstra-like methods, which are direct solvers, the fast
sweeping method is an iterative solver using an upwind scheme and rotating sweep
directions, which obtains O(Nn) complexity—however, the constant in this asymp-
totic estimate depends heavily on how frequently the characteristics change direc-
tion, and how complicated the geometry of the domain is. Fast sweeping methods
have been extended to Hamilton-Jacobi equations [56,24], and hybrid methods
combining the fast sweeping method with a Dijkstra-like method have been intro-
duced recently [9,10]. Additionally, higher-order fast sweeping methods based on
ENO and WENO schemes have been developed [64]. Luo and Zhao also provide a
detailed investigation of the convergence properties of fast sweeping methods for
static convex Hamilton-Jacobi equations, but with a focus on the 2D case [31].

3 Ordered line integral methods for the eikonal equation

The fast marching method [47] solves a discretized eikonal equation (eq. 1) in an
upwind fashion. Throughout, we distinguish between the exact solution u and the
numerical solution U , where Û will always denote the current value to be computed;
likewise, any quantity with a hat (ˆ) will denote a quantity evaluated at the
node being updated. The ordered line integral method locally and approximately
minimizes the minimum action integral of eq. 1:

û = min
α

{
u0 +

∫
α

s(x)dl

}
, (3)

where α is a ray parametrized by arc length, x̂ is a target point, û = u(x̂), and
u0 = u(α(0)) (see section A for a derivation of eq. 3). By constrast, Lagrangian
methods (i.e., raytracing methods) trace a bundle of rays from a common locus
by integrating Hamilton’s equations for the eikonal equation for different initial
conditions.

In this section, we describe how we discretize and minimize an approximation of
eq. 3. As we mentioned in section 2.2, to compute Û = U(p̂) in item 3d of algorithm
1, we need to approximately minimize several instances of an approximation to
eq. 3; details of this procedure are discussed in section 4. In this section, we focus
on a single instance of the discretized version of eq. 3. We present our notation,
derive prelimary results, and describe the quadrature rules mp0, mp1, and rhr. We
also show how the functional minimization problem can be solved exactly using a
QR decomposition for the rhr and mp0 rules. Finally, we present theoretical results
justifying our approach.
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p̂

p1

p2
p0

δp1

δp2

pλ = p0 + δPλ

s
θ

s
θ

λ

ŝ = s(p̂)

s1 = s(p1)

s2 = s(p2)
s0 = s(p0)

sλ = s(pλ)

Fig. 4: Overview of a tetrahedron update, showing the notation in section 3. Left: a
point being updated, p̂, which is identified with the origin, and three neighboring
points p0, p1, and p2 that are assumed to be valid. The grid G, which contains
other points in the discretized domain, is sketched in light grey. The domain of
the minimization problem eq. 14 is the convex hull of p0, p1, and p2. The path
minimizing eq. 3 is assumed to be the line segment connecting p̂ and pλ. Not
pictured is the newly valid point pnew, although it is assumed that pnew equals one
of p0, p1, or p2. Right: the same update tetrahedron, but this time with quantities
related to the slowness function depicted.

3.1 Approximating the action functional

In this section we describe how we approximate eq. 3 and reformulate it as a
constrained optimization problem which we solve to update the trial nodes sur-
rounding a node pnew which has just become valid.

First, we assume that Ω ⊆ Rn, where n = 2, 3. The methods presented here
work for general n. We refer to each update as a “simplex update”, since for a
dimension n, we need to consider updates of dimensions d where 0 ≤ d < n. For
n = 3, we have line updates (d = 0), triangle updates (d = 1), and tetrahedron
updates (d = 2). So, d refers to the dimension of the base of each simplex, which is
the dimension of the domain of the optimization problem that we will formulate.

We assume that each update simplex is nondegenerate and that the convex
hull of the update point p̂ and d + 1 points p0, . . . , pd ∈ nb(p̂). Since we assume
that our grid G is uniform and rectilinear, we scale and translate G so that p̂ = 0
and ‖pi‖∞ = 1 for i = 0, . . . , d. Throughout the rest of the paper, we always shift the

node p̂ to the origin, as this simplifies our calculations.

Approximating the integration path with a straight line segment. To approximately
minimize eq. 3 we assume that the minimizing path is a straight line segment
connecting p̂ and a point in the convex hull of {p0, . . . , pd}, and numerically ap-
proximate the action over this integral path using quadrature. We discuss each
part of this approximation in turn. First, some notation.
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We parametrize the “base of the update simplex” (the convex hull of p0, . . . , pd)
over the set:

∆d =

{
λi ≥ 0 for i = 1, . . . , d and

d∑
i=1

λi ≤ 1

}
. (4)

If we let λ0 = 1−
∑d
i=1 λi, then (λ0, . . . , λd) is a vector of convex coefficients. We

let δpi = pi − p0 and define:

δP =
[
δp1 · · · δpd

]
∈ Rn×d. (5)

We write a point in the base of the update simplex as:

pλ = p0 +
d∑
i=1

(pi − p0)λi = p0 +
d∑
i=1

δpiλi = p0 + δPλ. (6)

We will use the “δ” notation for differences and λ as a subscript to denote
convex combinations in other contexts, as well. E.g., δU i = Ui−U0 = U(xi)−U(x0)
and Uλ = U0 + δU>λ. Likewise, δsi = si − s0 = s(xi) − s(x0). By an abuse of
notation, we will think of, e.g., si and s(xi) in the context of an update as “the
same”, preferring the notation si.

Quadrature rules. We consider a righthand rule (rhr), a simplified midpoint rule
(mp0), and a midpoint rule (mp1). Recall that ŝ = s(x̂). The cost functions being
minimized in eq. 3 are:

Frhr(λ) = Uλ + ŝh‖pλ‖, (7)

Fmp0(λ) = Uλ +

(
ŝ+ 1

d+1

∑d
i=0 si

2

)
h‖pλ‖, (8)

Fmp1(λ) = Uλ +

(
ŝ+ sλ

2

)
h‖pλ‖. (9)

The difference in the quadrature rules, of course, lies in how we incorporate the
slowness s. For Frhr, we evaluate s at the righthand side of the integral, yielding ŝ.
For Fmp1, we evaluate s at the midpoint of the integral, approximating s linearly
with the convex combination sλ on the base of the simplex. Finally, for Fmp0,
we approximate sλ itself with the arithmetic mean of the si’s. It will turn out
that Fmp0 will lead to an inconsistent numerical scheme unless extra care is taken,
which is discussed in the rest of the work.

Note that in the above we use sλ and not s(pλ) because we do not want to
assume that we have access to a continuous functional form for s; in most cases,
we assume that s will be provided as gridded data, and that interpolation will be
used to approximate s off-grid.
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More general quadrature rules. The quadrature rules above are specializations of the
following more general quadrature rules. With θ such that 0 ≤ θ ≤ 1, we define:

F0(λ) = Uλ +

[
(1− θ)ŝ+

θ

d+ 1

d∑
i=0

si

]
h‖pλ‖, (10)

F1(λ) = Uλ +

[
(1− θ)ŝ+ θsλ

]
h‖pλ‖. (11)

Then, Frhr = F0 = F1 with θ = 0, Fmp0 = F0 with θ = 1
2 , and Fmp1 = F1 with

θ = 1
2 . To simplify notation in our proofs, we also define:

sθ = (1− θ) +
θ

d+ 1

d∑
i=0

si, sθλ = (1− θ)ŝ+ θsλ. (12)

Then, the θ-rules can be written more compactly as:

F0(λ) = Uλ + sθh‖pλ‖, F1(λ) = Uλ + sθλh‖pλ‖. (13)

We introduce this more general “θ-rule” for two reasons:

– This is a natural geometric generalization, and we wish to contextualize our
results properly.

– Our proofs are written in terms of the θ-rules, which allows us to provide proofs
for F0 and proofs for F1, instead of separate proofs for each of Frhr, Fmp0, and
Fmp1. As a bonus, our proofs apply to other θ-rules not considered here. For
instance, schemes using θ = 1 or θ chosen adaptively may be of interest.

3.2 The minimization problem

With F0 and F1 so defined, the minimization problem which approximates eq. 3
is:

Û = min
λ∈∆d

F (λ), (14)

where F = Frhr, Fmp0, or Fmp1. This is a nonlinear, constrained optimization
problem with linear inequality constraints and no equality constraints. We require
the gradient and Hessian of F0 and F1 for our algorithms and analysis. These are
easy to compute, but we have found a particular form for them to be convenient
for both implementation and analysis. The proofs of all propositions and lemmas
in this section can be found in section C.

In what follows, we will use the notation:

Projp =
pp>

p>p
, Proj

⊥
p = I − Projp = I − pp>

p>p
(15)

for orthogonal projection matrices. Here, Projp projects orthogonally onto span(p),

and Proj⊥p onto its orthogonal complement.
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Proposition 1 The gradient and Hessian of F0(λ) are given by:

∇F0(λ) = δU + sθhδP>νλ, (16)

∇2F0(λ) =
sθh

‖pλ‖
δP>Proj⊥pλδP , (17)

where νλ = pλ/‖pλ‖ is the unit vector in the direction of pλ.

Proposition 2 The gradient and Hessian of F1(λ) satisfy:

∇F1(λ) = δU + θh‖pλ‖δs+ sθλhδP
>νλ, (18)

∇2F1(λ) =
{
δP>νλ, θhδs

}
+

sθλh

‖pλ‖
δP>Proj⊥pλδP , (19)

where {a, b} = ab> + ba> is the anticommutator of two vectors.

Our task is to minimize F0 and F1 over the convex set ∆n; so, we need to
determine whether F0 and F1 are convex functions. The next two lemmas address
this point.

Lemma 1 Let p0, . . . , pd form a nondegenerate simplex (i.e., p0, . . . , pd are linearly

independent) together with p̂ and assume that s is positive. Then, ∇2F0 is positive

definite and F0 is strictly convex.

For F1, we can only obtain convexity (let alone strict convexity) for h suffi-
ciently small. For large enough h, we will encounter nonconvex updates. To obtain
convexity, we need to stipulate that the slowness function s is Lipschitz continuous
on Ω with a Lipschitz constant that is independent of h. In practice, we have not
found this to be a particularly stringent restriction.

Lemma 2 In the setting of lemma 1, additionally assume that s is Lipschitz continuous

with Lipschitz constant K ≤ C on Ω, for some constant C > 0 independent of h. Then,

∇2F1 is positive definite (hence, F1 is strictly convex) for h small enough.

We have found that all mp1 updates become strictly convex problems rapidly
as h→ 0. The reason for this is discussed at the end of section 3.6.

3.3 Validation of mp0

If we use Fmp0 directly, then we run into a situation where the cost function Fmp0

is not continuous between the bases of adjacent update simplices (see fig. 5). We
require F to be continuous across simplex boundaries to avoid an inconsistent or
divergent solver. Now, if we first use Fmp0 to compute the minimizer λ∗0 of eq.
14 with F = Fmp0, and then set Û = Fmp1(λ∗0), we will recover continuity, and
indeed, as we will show, the scheme is convergent. The motivation this is that eq.
14 can be solved exactly for the θ-rule F0 using a QR decomposition instead of an
iterative solver, making it very cheap. In the next section, we will show how this
can be done.
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p̂

p2

p2
p1

p0

Require continuity of F along [p0, p1]

Fig. 5: A problem with mp0 for which we provide a simple solution. The cost function F
must be continuous across the boundaries of adjacent update simplexes, otherwise
an inconsistent solver can come about. Here, the colorered level sets depict the
discontinuity of Fmp0 across the bases of the update simplexes. In this case, two
adjacent update simplexes share a common boundary on their base, shown here as
the line segment [p0, p1]. Two layers of surrounding grid points from G are shown.
The point p̂ is in the top layer and the points p0, p1, and p2 are in the bottom
layer.

Let λ∗0 and λ∗1, denote the optima of eq. 14, where F = F0 and F = F1 (the
general θ-rules), respectively. We could imagine using Newton’s method to mini-
mize F1, starting from λ∗0 (to be clear, this is not the approach we will ultimately
take numerically). This would allow us to use the convergence theory of Newton’s
method to bound the distance between λ∗0 and λ∗1, thereby bounding the error
incurred by using mp0 instead of mp1 to find the minimizing argument of eq. 14.
We follow this idea now.

Theorem 1 Using lemma 2, let h be sufficiently small so that F1 is strictly convex.

Then, the error δλ∗ = λ∗1 − λ∗0 satisfies ‖δλ∗‖ = O(h). Further, if we let λ0 = λ∗0 in

the following Newton iteration:

λk+1 ← λk −∇2F1(λk)−1∇F1(λk), k = 0, 1, . . . , (20)

then this iteration is well-defined, and converges quadratically to λ∗1. This immediately

implies that the error incurred by mp0 is O(h3) per update compared to mp1; i.e.:∣∣F1(λ∗1)− F1(λ∗0)
∣∣ = O(h3). (21)

Proof The proof of theorem 1 is detailed in appendix D.

We will show in the next section how λ∗0 can be computed directly using a QR
decomposition and without using an iterative solver.

We can provide some intuition for why this bound is satisfactory. If we assume
that our domain is spanned along a diameter by O(N) nodes, and that h ∼ N−1,
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then we can anticipate O(N) downwind updates, starting from bd and extending
to the boundary of G in any direction. Accumulating the error over these nodes,
we can expect the maximum pointwise error between a solution to eq. 1 computed
by using mp0 and mp1 to be O(h2), which is dominated by the O(h) discretization
error coming from the linear convergence of the method itself. Hence, using mp0

instead of mp1 only to find the parameter λ, and then evaluate Û using F1, should
introduce no significant extra error.

3.4 Exact solution for rhr and mp0 using a QR decomposition

Since F0 is strictly convex, ∇F0(λ) = 0 is sufficient for the optimality of λ, ignoring
the constraint λ ∈ ∆d. The unconstrained system of nonlinear equations defined
by ∇F0(λ) = 0 can be solved exactly without an iterative solver. We can compute
the solution using the reduced QR decomposition of δP and by considering the
problem’s geometry (see also figure 21, in the appendix). This is captured in the
following theorem. We will discuss how to use this theorem efficiently in a solver
in section 4.4.

Theorem 2 Let δP = QR be the reduced QR decomposition of δP ; i.e., where Q ∈
Rn×d, R ∈ Rd×d, Q>Q = Id, and with R upper triangular. For sθ, h, and U fixed, if

λ∗ = argminλ∈Rn F0(λ), then:

‖pλ∗‖ =

√√√√ p>0 (I −QQ>)p0

1−
∥∥R−> δU

sθh

∥∥2 , (22)

λ∗ = −R−1

(
Q>p0 + ‖pλ∗‖R−>

δU

sθh

)
, (23)

Û = U0 +
sθh

‖pλ∗‖
p>0 pλ∗ . (24)

Proof See section E.

3.5 Equivalence of the upwind finite difference scheme and F0

If we linearly approximate U near p̂, then for i = 0, . . . , n − 1, we find that Û
satisfies:

Ui − Û = ∇Û>pi. (25)

This finite difference approximation to eq. 1 can be solved exactly and is a known
generalization of the upwind finite difference scheme used in the fast marching
method on an unstructured mesh [27,50]. Computing Û using this approximation
is equivalent to solving:

Û = min
λ∈∆n

F0(λ) (26)

in a sense made precise by the following theorem. As we have pointed out, this
theorem is not new, but we present it here for the sake of continuity and because
it dovetails with our other theorems, providing context.
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Theorem 3 (Equivalence of upwind finite difference scheme and F0) Let Û

by the solution of eq. 25 and let Û ′ = minλ∈Rn F0(λ). Then, Û exists if and only if

‖R−>δU‖ ≤ sθh, and can be computed from:

Û = Ui − p>i QR−>δU + ‖pmin‖
√

(sθh)
2 −

∥∥R−>δU∥∥2, (27)

where pmin = (I − QQ>)pi (for all i = 0, . . . , n − 1—see figure 21 in section E).

Additionally, the following hold:

1. The finite difference solution and line integral solution coincide: i.e., Û = Û ′ can

be computed from:

Û = Ui + sθhp>i νλ∗ , (28)

where λ∗ = argminλ∈Rn F0(λ) and νλ∗ = pλ∗/‖pλ∗‖.
2. The characteristics found by solving the finite difference problem and minimizing

F0 coincide and are given by [pλ∗ , p̂] = [pλ∗ , 0].
3. The approximated characteristic passes through conv({p0, . . . , pn−1}) if and only

if λ∗ ∈ ∆n.

Proof See section F.

3.6 Causality

Dijkstra-like methods are based on the idea of monotone causality, similar to Di-
jkstra’s method itself. To compute shortest paths in a network, Dijkstra’s method
uses dynamic programming to compute globally optimal shortest paths using lo-
cal information [16]. In this way, the distance to each downwind vertex must be
greater than its upwind neighboring vertices. To ensure convergence to the correct
viscosity solution, our scheme must be consistent and monotone [12]. Our OLIMs
using the rhr quadrature rule inherit the consistency and causality of the finite
difference methods which they are equivalent to if they use the same 4 (in 2D) or
6 (in 3D) point neighborhoods. Since we consider many different update neighbor-
hoods involving distinct simplexes, we provide a simple way of checking whether
each simplex is causal.

The causality of an update depends on the underlying simplex and the problem
data. In particular, an update is causal for Fi if:

Û = Fi(λ
∗
i ) ≥ max

i
Ui. (29)

It is enough to determine whether or not each type of update simplex admits only
causal updates, which relates to whether the simplex is acute.

We also consider something we refer to here as the “update gap”: the difference
Û − maxi Ui. As discussed in Tsitsiklis’s original paper [57], an alternative to
Dijkstra’s algorithm is Dial’s algorithm—a bucketed version of Dijkstra’s algorithm
which runs in O(Nn) time, where the constant depends on the bucket size [15,
25]. In this case, the size of the buckets is determined by the update gap. It is
unclear whether there is any real advantage of a Dial-like solver (see [23] for a
discussion), although a new numerical study suggests that there may indeed be
some advantage in using a Dial-like solver [25,21]. Despite this, the update gap is
of fundamental importance and limits the number of nodes that can be processed
in parallel without violating causality.
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Theorem 4 For νi = pi/‖pi‖, an update simplex is causal for F0 if and only if ν>i νj ≥
0 for all i and j such that 0 ≤ i < n and 0 ≤ j < n. The update gap is given explicitly

by:

Û −max
i
Ui = sθhmin

i,j

ν>i νj
‖pi‖

. (30)

If we assume that s is Lipschitz continuous, then for h small enough, the simplex is also

causal for F1, and the term in F1 which prevents an update from being causal decays

with order O(h2).

Proof See section G.

In section 4.2 we present a table of update gaps for all update simplices con-
sidered in this paper.

The fact that our methods are causal for all practical problem sizes follows
from the fact that the term preventing causality decays rapidly—see eq. 99. This
can be seen easily by rewriting F1(λ) as F0(λ) plus a small perturbation (which is
O(h2)) and using the Lipschitz continuity of s.

3.7 Local factoring

Near rarefaction fans, for example if D is a point source or the domain contains ob-
stacles with corners, the rate of convergence of the eikonal equation is diminished.
For the eikonal equation with point source data and constant slowness, this de-
grades the rate of convergence to O(h log h−1) [43,65]. Fast sweeping methods for
the factored eikonal equations have been developed [19,30]; likewise, fast marching
methods have been developed, and have also been used in the context of travel
time tomography [43,55].

In this section, we show how the ordered line integral method can be easily
adapted to additive factoring, and provide numerical tests that show that it re-
covers the expected linear rate of convergence for factored point source problems.
Our focus is locally factored point sources, but this approach can be applied to the
globally factored equation and other types of rarefaction fans occuring at corners
or discontinuities [43].

Let x◦ ∈ Ω be the location of a point source so that bd = {x◦}, define p◦

to be the image of x◦ under the same transformation that takes x̂ to p̂, and let
s◦ = s(x◦). The additive factorization of U around x◦ is [30,43]:

U(x) = T (x) + τ(x), where T (x) = s◦
∥∥x− x◦∥∥ , (31)

i.e. uλ = Tλ + τλ where Tλ = s◦h‖pλ − p◦‖. Our original definition of Fi was such
that Û = Fi(λ

∗). We will define Gi analogously. Letting τλ = τ0 + δτ>λ, where τi
and Ti are the values of τ and T at pi for each i, we define:

G0(λ) = τλ + Tλ + sθh‖pλ‖, (32)

G1(λ) = τλ + Tλ + sθλh‖pλ‖. (33)

Like with F0 and F1, the only difference between G0 and G1 is between the terms
containing sθ and sθλ. We do not explicitly refer to them in the rest of this paper,
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U1,0 ← 0
U1,1 ← 1 U0,0 ← 1

U0,1 ←
√
2

(0, 0) (0, 1)

(1, 0) (1, 1)

Step 1: Step 2: Step 3: Step 4:

Fig. 6: An example of running olim4 rhr with local factoring for three steps. Note
that olim4 rhr is equivalent to the standard 2D fast marching method. We assume
s ≡ 1. Initially, p◦ = p1,0 is the only node in bd and is factored. The first two steps
proceed exactly the same as for the unfactored method, since the steps between
the source nodes and the updated nodes lie along characteristics. In the third step,
the unfactored method would set U0,1 ← 1+

√
2/2. However, for the factored solver,

we find that U0,1 ←
√
2/2 +

√
2/2 =

√
2.

but the cost functions Grhr, Gmp0, and Gmp1 are defined analogously to Frhr, Fmp0,
and Fmp1 from the θ-rules G0 and G1.

To solve the factored eikonal equation, we choose a factoring radius r◦, replac-
ing Fi with Gi in eq. 14 for nodes which lie within a distance r◦ of x◦. For constant
slowness, the effect of this is to solve eq. 1 exactly inside of the locally factored
region. For clarity, this is depicted in figure 6. Algorithm 2 can be applied to solve
eq. 14 for factored nodes. The gradient and Hessian of Gi are simple modifications
of the gradient and Hessian for Fi.

Lemma 3 The gradient and Hessian of Gi for i = 0, 1 are given by:

∇Gi(λ) = ∇Fi(λ)− δτ +
s◦h

‖pλ − p◦‖
δP>(pλ − p◦), (34)

∇2Gi(λ) = ∇2Fi(λ) +
s◦h

‖pλ − p◦‖
δP>Proj⊥pλ−p◦δP . (35)

4 Implementation of the ordered line integral method

In this section, we describe our bottom-up and top-down algorithms (see fig. 1). We
focus on 3D solvers, since in 2D the distinction between the two is less important.
Each algorithm reduces the number of updates that are done without degrading
solution accuracy by using an efficient enumeration or search for update simplexes.
The primary difference between the two algorithms is the ordering of the updates’
dimensions: top-down proceeds from d = n − 1 down to d = 0, skipping lower-
dimensional updates when possible, and bottom-up proceeds from d = 0 up to
d = n− 1, skipping higher-dimensional updates when it can.
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olim6

olim18

olim26

olim4 olim8

Fig. 7: Neighborhoods for the top-down family of algorithms. Algorithms olim4 and
olim8 are 2D solvers and the rest are 3D solvers. The color coding of tetrahedron
updates is the same for this figure and figure 8 below.

I II III IVa

IVbV VIa VIb

0 1

2

34

5
6

p̂

Fig. 8: Numbering scheme for update groups for the top-down solvers. In this diagram,
p̂ is being updated. The diagonally opposite node is the sixth (last) node, with the
other six nodes numbered 0–5 cyclically.

0 • • • • • • • • • •
1 • • • • • • • • • •
2 • • • • • • • • • •
3 • • • • • • • • • •
4 • • • • • • • • • •
5 • • • • • • • • • •

I II III IV

0 • • • • •
1 • • • • •
2 • • • • •
3 • • • • •
4 • • • • •
5 • • • • •
6 • • • • • • • • • • • • • • •

V VI VII

Fig. 9: Tables of update groups. These tables should be scanned columnwise: each
column of dots selects a different tetrahedron. Tetrahedra (0, 1, 2), (2, 3, 4), and
(4, 5, 0) in group I and all tetrahedra in group VII are degenerate and can be
omitted.
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4.1 Simplex enumeration for the top-down algorithm

When a node is first removed from front and has just become valid (item 3a
in algorithm 1), an isotropic solver must do updates involving, at the very least,
the node’s 2n nearest neighbors. We can use larger neighborhoods to improve
the accuracy of the result. Doing so does not necessarily improve the order of
convergence of the solver, but can significantly improve the error constant of the
solution. For all of the solvers considered in this paper, in 3D, we only consider
neighborhoods with at most 26 neighbors. See fig. 7 for neighborhoods for the
top-down solver.

For the top-down solver, we simplify things by only doing updates which have
pi = pnew for some i. To iterate over all update simplexes, by symmetry, we enu-
merate all simplexes in a single octant. This means enumerating, e.g., (73) = 35
tetrahedra. Some choices lead to degenerate tetrahedra, so the number of nonde-
generate update tetrahedra is fewer than 35 per octant. This makes it reasonable
to write out the update procedure as straight-line code.

We enumerate the tetrahedra in a type of “shift-order” (see, e.g., [4])—that
is, we start with an unseen bit pattern, and group this pattern together with all
of its shifts (with rotation). This groups the tetrahedra into sets that are rota-
tionally symmetric about the diagonal of the octant. In our implementation, we
conditionally compile different groups so that no unnecessary branching is done.
This is done using C++ templates [54]. Example stencils for the versions of olim6,
olim18, and olim26 that are used for our numerical test are shown in figure 7. The
tetrahedron groups are shown in figures 8 and 9.

4.2 Update gaps for tetrahedron groups

If we apply theorem 4 to the tetrahedron groups enumerated in figures 8 and 9,
we get the following update gaps, enumerated in the same order as fig. 8 (ignoring
the sθh factor):

Group I 1/
√
2 Group II 1/

√
2 Group III 1/

√
2 Group IVa 0

Group V 1/
√
3 Group VIa 0 Group VIb 2/

√
3 Group IVb 1/

√
2

The update gap is first explored in Tsitsiklis’s original paper [57]; in this work,
the fact that Group IVa has no update gap and that the update gap of Group V
is 1/

√
3 is noted and an O(Nn) algorithm based on Dial’s algorithm is presented

using Group V for the update tetrahedra. This same observation is made in a more
recent paper about a method based on Dial’s algorithm [25]. A method based on
a combination of tetrahedra groups will have an update gap that is the minimum
of each of the individual groups’ gaps. We note here that a solver based on a
combination of Groups I and VIb has a larger update gap than a solver based on
Group V. This should have a positive impact on the performance of any parallel
Dijkstra-like method.
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p0

p0

p0

Fig. 10: The three types of neighborhoods for the bottom-up algorithm. The yellow and
blue regions indicate where triangle and tetrahedron updates may be performed,
respectively. For instance, with p0 the minimizing line update vertex, candiates for
p1 consist of the yellow nodes: triangle updates involving these candidates and p0
will be performed. Once a yellow node (p1) has been selected, tetrahedron updates
involving the neighboring blue nodes (candidates for p2) will be performed. Note
that the updates performed correspond roughly to a combination of groups I, V,
VIa, and VIb.

∆
2
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1
1

1

λ1

λ2
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λ
∗

0

p0 p1

p2

Fig. 11: Skipping lower-dimensional updates when solving the unconstrained minimiza-

tion problem. For d = 2, if λ∗0 ∈ ∆2, all three triangle updates can be skipped. On
the other hand, when minimizing F0 using theorem 2, if λ∗0 /∈ ∆2 and depending
on where λ∗0 lies, it is possible to skip one or two triangle updates. In this case, we
label the different regions by the number of updates that it is possible to skip: λ∗

here lies in “zone 2”, since it is possible to skip the two triangle updates on the
opposite side of ∆2. Along the same lines, if λ∗ were to lie in “zone 1”, two triangle
updates would be “visible”, and it would only be possible to skip one update.

4.3 The search procedure used by the bottom-up algorithm

Another approach is to use local characteristic information obtained by perform-
ing lower-dimensional updates to help us avoid performing unnecessary higher-
dimensional updates. Intuitively, if we find the minimum line update (d = 0), then
we can avoid triangle updates (d = 1) that don’t include the minimizing line up-
date. Since we only perform updates for d > 0 that include the newly valid node
pnew, we can start our search with d = 1.
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After doing an update of dimension d, we find neighboring updates of dimension
d+1. For n = 3 and d = 1, for each p0, we find points p1 that satisfy ‖p0−p1‖1 ≤ 1.
For d = 2, for each pair (p0, p1), we find points p2 that satisfy ‖p0 − p2‖1 ≤ 2 and
‖p1 − p2‖1 ≤ 2 simultaneously. In practice, we only find these neighbors once and
precompute an array of indices to be used later. The neighborhoods computed in
this way are shown in fig. 10.

4.4 Minimization algorithms and skipping updates

When Fi = F0, we can use theorem 2 or 3 to compute λ∗0. If Fi = F1, we need to
use an algorithm that can solve the constrained optimization problem defined by
eq. 14. Our approach has been to use sequential quadratic programming (SQP),
although there are many other options [6,36]. It is possible to skip some updates;
and, indeed, the performance of our algorithms comes about largely because of
this happening.

We skip updates in three different ways. The first two approaches are used by
the top-down algorithms, and the third by the bottom-up algorithms.

Top-down constrained skipping. When computing an update using a constrained
solver, we can rule out all incident lower-dimensional updates, since we have com-
puted the global constrained optimum on ∆d.

Top-down unconstrained skipping. If we do an update using an unconstrained solver,
then depending on where the optimum λ∗0 lies, we can skip some or all lower-
dimensional updates. The idea is simple and is best depicted visually, see fig. 11.

Bottom-up KKT skipping. We can also skip higher-dimensional updates. For exam-
ple, if we do the three triangle updates on the boundary of a tetrahedron update,
we can use the Karush-Kuhn-Tucker necessary conditions for optimality of a con-
strained optimization problem [36] to determine if the minimizer on the boundary
is also a global minimizer for the constrained minimization problem given by eq.
14. See appendix B. We note that a modified version of this strategy for skipping
updates was used in the work on computing the quasipotential for nongradient
SDEs in 3D [62].

4.5 The bottom-up and top-down algorithms

In this section, we describe our bottom-up and top-down algorithms. We note for
clarity that these algorithms correspond to the “compute Û” part of item 3d of
alg. 1.

To describe our top-down algorithm (see algorithm 2), we define the set of
admissible d-dimensional updates neighboring the point p̂ by:

Vd =
{
{p0, . . . , pd} : pi.state = valid for i = 0, . . . , d,

and {p0, . . . , pd} are in a selected update group,

and pnew ∈ {p0, . . . , pd}
} (36)
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Algorithm 2 The top-down algorithm.

1. Set Û ←∞.
2. Initialize Vd according to eq. 36 for each d = 0, . . . , n− 1.
3. For d = n− 1 down to 0:

(a) For each (p0, . . . , pd) ∈ Vd:
i. If Fi = F0 (mp0 or rhr):

A. Compute U for (p0, . . . , pd) using theorem 2 or 3.
B. Remove updates from V0, . . . ,Vd−1 by visibility (see figure 11).

ii. Otherwise, if Fi = F1 (mp1):
A. Compute U by solving eq. 14 numerically (we use SQP).
B. Remove all lower-dimensional updates from V0, . . . ,Vd−1.

iii. Set Û ← min(Û , U).

Algorithm 3 The bottom-up algorithm.

1. Set Û ←∞ and p0 ← pnew.
2. For i = 1, . . . , n− 1:

(a) For each valid pi close enough to p0, . . . , pi−1 (see section 4.3), do the update cor-
responding to (p0, . . . , pi) and keep track of the minimizing λ∗ ∈ ∆i. This update
can optionally be skipped by first computing µ∗ corresponding to the optimum of the
incident lower-dimensional update (p0, . . . , pi−1) and checking if µ∗ ≥ 0.

(b) Let pi be the node which forms the update with the minimum value.
(c) If Fi = F0 (mp0 or rhr), compute U for (p0, . . . , pi) using theorem 2 or 3.
(d) Otherwise, if Fi = F1 (mp1), compute U for (p0, . . . , pi) by solving eq. 14.

(e) Set Û ← min(Û , U).

for d = 0, . . . , n− 1. The update set Vd collects all admissible simplex updates of a
given dimension: i.e., updates which both belong to a group as defined in section
4.1 and are valid. The third condition is an important optimization. To see why
it is correct, fix an update set Vd. If {p0, . . . , pd} satisfies the first two conditions
but not the third, we can see that p̂ would have already been updated from it in a
previous iteration. All new information affecting Û during this iteration must be
computed from an update involving pnew.

The bottom-up algorithm (algorithm 3) builds up each update (p0, . . . , pd) one
vector at a time by searching for adjacent minimizing updates of higher dimension.
The optimization involving pnew described above can be incorporated by initially
setting p0 ← pnew.

5 Numerical Results

We do tests involving several different slowness functions with analytic solutions
for point source data, and a linear speed function (i.e., 1/s) which has been shown
to be amenable to local factoring. For each quadrature rule described in section
3.1 (mp0, mp1, or rhr), we have two 2D algorithms, olim4 and olim8, corresponding
to 4- and 8-point stencils, respectively. Since there is no advantage in 2D, we
don’t apply the top-down or bottom-up approaches. In 3D, we have three top-down

algorithms: olim6 (group IVa), olim18 (groups I, IVa, and IVb), and olim26 (group
V). We also test the bottom-up algorithm olim3d (see figure 10).
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Fig. 12: Slowdown incurred by using olim6 rhr instead of the FMM. From left to
right: 1) the ratio of runtimes versus N , 2) the total CPU runtime of each solver.
We compare results on two different computers: “2.2 GHz” is a 2015 MacBook Air
with a 2.2 GHz Intel Core i7 CPU, 8 GB of 1600 MHz DDR3 RAM, a 256 KiB
L2 cache, and a 4 MiB L3 cache; “4.6 GHz” is a custom built workstation running
Linux with a 4.6 GHz Intel Core i7 CPU, 64 GB of 2133 MHz DDR4 RAM, a 1536
KiB L2 cache, and 12 MiB L3 cache. Both computers have 32 KiB L1 instruction
caches and data caches. The plots here use our standard Ω = [−1, 1]3 domain
discretized into N = 2p + 1 nodes in each direction, with s ≡ 1 and a point source
at the origin.

5.1 Implementation Notes

Before describing our numerical tests, we briefly comment on our implementation
and make some observations about its performance. A discussion of some of the
choices that we made in our implementation follows:

– We precompute and cache all values of s on the grid G, as opposed to reevalu-
ating s, because we assume that s will be provided as gridded data (consider,
e.g., the shape from shading problem [28], where the input data is an image).

– We maintain front using a priority queue implemented using an array-based
binary heap, which is updated using the sink and swim functions described in
Sedgewick and Wayne [46].

– We store front as a dense grid of states: for each node in p ∈ G, we track
p.state for all time for every node. We could implement a sparse front using
a hash map or a quadtree or octree, which would save space, but would also
be much slower to update.

We use a policy-based design [3] written in C++. This allows us to condition-
ally compile different features and reuse logic to implement different Dijkstra-like
algorithms. In particular, we implement the standard FMM [47] and make a direct
comparison between it and the ordered line integral method which it is equivalent
to, olim6 rhr (see figure 12). We have found that only a modest slowdown is in-
curred by using olim6 rhr for problems of moderate size. The disparity between
the two is greater for smaller problem sizes, which is due to cache effects. In gen-
eral, the difference in speed is due to the fact that the FMM’s update is extremely
simple since it requires only the solution of quadratic equations.
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Fig. 13: Percentage of time spent on different tasks as determined by profiling. The
“update” tasks and “heap” tasks are clearly defined, while the “logic” task con-
tains a variety of things related to control-flow, finding neighbors, and memory
movement—basically, the parts of algorithm 1 that don’t clearly pertain to com-
puting new Û values or keeping front updated. From these plots, it is clear that
memory speed plays a large role in determining efficiency. To some extent, even
though the more complicated update procedures are slower, their slowness is hid-
den somewhat by memory latency as problem sizes grow. For large N and some
solvers (the middle and right plots), “heap” takes too little time, and is not picked
up by the profiler.

Using Valgrind [35], we profiled running our solver on the numerical tests below
for different problem sizes and categorized the resulting profile data. See figure 13.
The “update” task corresponds to time spent actually computing updates, the
“logic” task is a grab bag category for time spent on program logic, and “heap”
corresponds to updating the array-based heap which implements front. Since the
asymptotic complexity of the “update” and “logic” sections is O(Nn), and since
“heap” is O(Nn logN), we can see from figure 13 that since so little time is spent
updating the heap, the algorithm’s runtime is better thought of as O(Nn) for practical

problem sizes (although this obviously not technically correct!). This is a consequence
of using an array-based heap whose updates are cheap and cache friendly, and a
dense grid of states, which can be read from and written to in O(1) time.

As an aside, we mention that thorough numerical studies of eikonal solvers in
the literature have been scarce, but we can point out a recent study which seeks
to close this gap [21]. Our studies profiling our implementation using Valgrind are
carried out in the same spirit as this work.

5.2 Slowness functions with an analytic solution for a point source

Using eq. 1 directly, a simple recipe to create pairs of slowness functions and
solutions is to prescribe a continuous function u whose level sets are each homeo-
morphic to a ball and compute s(x) = ‖∇u(x)‖2 analytically, which is valid for a
single point source at the origin. Such tests allow us to observe the effect of local
factoring, and to see how mp0, mp1, and rhr compare. The following table lists our
test functions:
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Fig. 14: Relative `∞ error plotted against CPU runtime in seconds. The domain is
Ω = [−1, 1]3 discretized uniformly in each direction into N = 2p + 1 points, where
p = 3, . . . , 9, so that there are N3 points overall. The slowness functions used are
listed in section 5.2. We note that the horizontal and vertical axes of each subplot
are the same.

Name u(x) s(x)

s1 cos(r) + r − 1 1− sin(r)
s2 r2/2 r

s3 S(x)>AS(x) α
∥∥∥diag(C(x))(A+A>)S(x)

∥∥∥
s4 1

2x
>A1/2x ‖x‖A =

√
x>Ax

We assume that x ∈ Ω = [−1, 1]3. We also define r = ‖x‖, and vector fields
S(x) = (sin(αxi))

3
i=1 and C(x) = (cos(αxi))

3
i=1; we take α = π/5. For s3 and s4,

we assume that A is symmetric positive definite. In 3D, the matrices we use for
s3 and s4 are:

As3 =

 1 1/4 1/8
1/4 1 1/4
1/8 1/4 1

 = A
1/2
s4 (37)
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Fig. 15: Relative `∞ error plotted versus N . The setup is the same as in figure 14,
except that p = 3, . . . , 8, so that the largest N is 257 instead of 513. For olim26 and
olim3d, we can see that mp0 is initially less accurate than mp1 but quickly attains
parity, in accordance with theorem 1. For olim6 and olim18, the error is the same
between mp0 and mp1 for all slowness functions, so these plots overlap.

Our results are displayed in figures 14 and 15. We include the relative `∞ error
versus problem size and time, as well as the `∞ error versus N . We summarize our
observations:

– Using either of the midpoint rules (mp0 or mp1) allows improved directional
coverage to translate into an improved error constant. See figs. 15 and 14.

– For rhr, increased directional coverage (olim6 rhr→ olim18 rhr→ olim26 rhr)
does not lead to an improved error. In fact, for s1, s3, and s4, increasing the
directional coverages causes the accuracy to deteriorate (see figure 15). This
may be due to the fact that quadrature error and linear interpolation error
have different signs, and may partially compensate each other (e.g., in olim6).
This effect may get worse with increased directional coverage.
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– If we scan each graph horizontally, focusing on the plot markers, we can see that
the difference in error between mp0 and mp1 is minimal. For each mp1 graph, the
corresponding mp0 graph has the same error, but is shifted to the left, reflecting
the fact that the mp0 OLIMs are substantially faster. This is consistent with
theorem 1, which justifies the use of mp0. See fig. 14.

– With respect to the choice of neighborhood, olim6 is the fastest; and, for each
choice of neighborhood, mp0 provides the best combination of speed and accu-
racy. See fig. 14. If we are willing to pay somewhat in speed, we can dramat-
ically improve the error constant by improving the directional coverage and
using a solver like olim3d mp0. This tradeoff is more pronounced for smaller
problem sizes. A theme running through this work is that, as the problem size
increases, memory access patterns come to dominate the runtime, and the dis-
parity in runtimes between the faster and slower neighborhoods becomes less
pronounced. To see this, compare the start of each graph in the top-left of the
plots, and their ends in the bottom-right (again, see fig. 14). We can observe,
e.g., that the maximum horizontal distance between starting points and ending
points has decreased significantly, which confirms this observation.

– Our high accuracy algorithms allow us to obtain a better solution on rough
grids: this is helpful since opportunities to refine the mesh are limited in 3D.
Discretizing Ω = [−1, 1]2 in each direction into N = 214 + 1 nodes requires
about as much memory as discretizing Ω = [−1, 1]3 with N = 29 + 1, which
leads to h being 32 times smaller in 2D than in 3D.

– In general, olim26 and olim3d are significantly more accurate than olim6 and
olim18.

5.3 A linear speed function

We consider a problem that has a known analytical solution and has been used as
a test problem for other factored eikonal equation solvers before1 [52,19,43]. For
a single point source at xi and a vector v, we define:

1

s(x)
=

1

s(xi)
+ v>(x− xi), , (38)

where si = s(xi). The analytic solution to eq. 1 for a single source and slowness
function given by eq. 38 is [52]:

ui(x) =
1

‖v‖ cosh−1
(

1 +
si
2
s(x) ‖v‖2 ‖x− xi‖2

)
. (39)

If we shift the point source from xi to another location xj , we find:

1

si
+v>(x− xj + xj − xi) =

1

si
+v>(xj − xi)+v>(x− xj) =

1

sj
+v>(x− xj). (40)

That is, the slowness function s remains unchanged as it is rewritten with respect
to a different source.

1 We thank D. Qi for helpful discussions regarding this problem.
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Fig. 16: Comparing different ways of selecting factored nodes. For the test problem,
Ω = [−1, 1]n, with n = 2 (left) and n = 3 (right). The domain is descretized
into N3 nodes, where N = 2p + 1, so that h = 2/(N − 1). The slowness function
is constant (s ≡ 1). For the 2D problem, olim8 rhr is used; olim26 rhr is used
for the 3D problem. Solutions for the unfactored problem are plotted, along with
solutions using a disk/sphere neighborhood with constant factoring radius given
by r◦ = 0.05, 0.1, 0.15, 0.2. We note that for this problem the choice r◦ =

√
n results

in an exact solution. This only applies to the constant slowness function, s ≡ 1.

If {xi} is a set of point sources and ui(x) is the solution of the eikonal equation
for the single point source problem with point source given by xi, then the solution
for the multiple point source problem with sources {xi} is:

u(x) = min
i
ui(x). (41)

We use this formula to compare relative `∞ errors for each of our OLIMs in 2D and
olim26 and olim3d in 3D for this slowness function with a pair of point sources,
x1 = (0, 0) and x2 = (0.8, 0) in 2D, and x1 = (0, 0, 0) and x2 = (0.8, 0, 0) in 3D. We
set the domain of the problem to be Ω = [0, 1]n and discretize it into N = 2p + 1
points, so that h = (N − 1)−1.

For this choice of slowness function, we plot the CPU runtime versus N (see
figure 17), along with the relative `∞ error versus N (see figure 17). We also do
least squares fits for these plots to get an overall sense of the accuracy and speed
(see 1).

We can see that our conclusions from section 5.2 also hold for the multiple
point source problem. Additionally, our least-squares fits (table 1) indicate to us
that our algorithms’ runtimes are accurately described by the fit TN ∼ CTN

α

with α ≈ n, and the error by EN ∼ CEh
β , with β ≈ 1 (here, EN is the relative

`∞ error). In fact, for olim26 and olim3d with mp0 or mp1, the power β is improved
beyond 1 to β ≈ 1.3.
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Fig. 17: Numerical results for the linear speed function of section 5.3. Problem sizes
are N = 2p + 1, where p = 3, . . . , 14 in 2D and p = 3, . . . , 9 in 3D. The total
number of nodes is Nn, where n = 2, 3. See section 5.3 for least squares fits. Top
row: relative `∞ error plotted versus N in 2D (left) and 3D (right). Bottom row:
wall clock time plotted versus N in 2D (left) and 3D (right).

Neighborhood CT α

olim4 7.779× 10−8 1.0785
olim8 1.971× 10−7 1.0515

olim6 2.968× 10−7 1.085
olim18 2.984× 10−6 1.018
olim26 4.649× 10−6 1.0103
olim3d 3.923× 10−6 1.013

(a) TN ∼ CTNαn

Neighborhood CE β

olim8 mp0 0.4077 0.98744
olim8 mp1 0.3683 0.993
olim8 rhr 1.511 0.9728

olim26 mp0 2.328 1.3135
olim26 mp1 1.949 1.2888
olim26 rhr 1.772 0.90394

olim3d mp0 2.268 1.3141
olim3d mp1 1.865 1.2885
olim3d rhr 1.77 0.90353

(b) EN ∼ CEhβ

Table 1: Least-squares fits of the runtime and relative `∞ error for OLIMs in 2D and

3D. We denote the time for a given N by TN ; likewise, EN denotes the relative
`∞ error for a specific N . We fit TN to a power CTN

α. In 2D, we expect α ≈ 2;
in 3D, α ≈ 3. In 3D, we fit EN to CEh

β , and expect β ≈ −1 in all cases, due to
the use of local factoring. In fact, for olim26 and olim3d using either mp0 or mp1,
we find that the situation is better than expected, with β ≈ −1.3.
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Fig. 18: Marmousi slowness model. The original Marmousi model is given as a
velocity model c. We work with s = 1/c, so we plot this here. We also extrude this
slowness model in the y direction to create a 3D model.
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Fig. 19: Level sets of U (first arrival time) for t = 1s, 2s, 3s for the extruded 3D
Marmousi slowness model computed on a 94 × 288 × 288 grid using olim3d mp0.
Distances are in km. The level sets were computed using Lewiner’s version of the
marching cubes algorithm [29] as implemented in scikit-image [58].

5.4 Marmousi velocity model tests

A standard test problem in exploration geophysics is the Marmousi velocity model,
which is a synthetic velocity model based on the North Quenguela Trough—see the
following citation for more background information [60]. The model consists of a
number of stratified layers in the downward z direction that are roughly piecewise
constant. This model has been used frequently as a stress test for eikonal solvers,
since the solution of the eikonal equation estimates the first arrival time of a seismic
P-wave.

For 2D tests, if cm(x, z) is the standard Marmousi velocity model in m/s, we
first convert to km/s and set s(x, z) = 1/ckm(x, z) = 1000/cm. For the 3D tests, we
just extrude the model in the z direction, setting s(x, y, z) ≡ s(x, z). We plot our
slowness model in fig. 18. The domain used for 2D problems is Ω = [0, 9.2]× [0, 3],
and for 3D problems we set Ω = [0, 9.2] × [0, 9.2] × [0, 3] (all distances in km).
For each test, we set bd = {0}. To get a sense of how a P-wave propagates in
the extruded model, see fig. 19, where we plot several level sets at one second
increments.
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Fig. 20: Relative `∞ errors for (unsmoothed) Marmousi point source problems in

2D and 3D using Frhr. The horizontal axis for each plot is the total number of
grid nodes, |G|. Left: 2D plots for olim4 rhr and olim8 rhr. Right: 3D plots for
olim6 rhr, olim26 rhr, and olim3d rhr. The 3D slowness model is obtained by ex-
truding the original model in the y direction. 2D Note that the plots for olim26 rhr

and olim3d rhr overlap.

If we compare the quadrature rules defined in eq. 7, we can see that if:

ŝ = s0 = · · · = sd = constant, (42)

i.e., if an update is performed in a region that is locally constant, then Frhr ≡
Fmp0 ≡ Fmp1. For the Marmousi model, we can expect this to occur in most
regions, with the exception of updates that straddle two adjacent (approximately)
piecewise constant regions. Naturally, our assumption that s is Lipschitz breaks
down for the Marmousi model.

In our numerical experiments, we have found Frhr to handle this situation
better than Fmp0 or Fmp1, although all of our solvers converge reasonably well for
this model. We found that increased directional coverage does lead to signficantly
improved accuracy. To demonstrate this phenomenon, we create a sequence of
scaled Marmousi slowness models in 2D and 3D. In 2D, we used the sizes (288,
94), (575, 188), (1150, 376), (2301, 751), (4602, 1502), (9204, 3004), and (18408,
6008); in 3D, we used the sizes (144, 5, 47), (288, 10, 94), (575, 20, 188), (1150, 40,
376), (2301, 80, 751). In 2D, for our “ground truth” solution, we solve the problem
at the finest resolution using olim8 rhr; for each of the smaller problem sizes, we
downsample the groundtruth solution and compare with the solution computed
using the smaller size to estimate the relative `∞ error. We do the same in 3D,
but using olim3d rhr. See fig. 20.

Additionally, we have included supplemental numerical experiments examining
the behavior of different choices of quadrature rules on our solvers’ performance
in 2D online [40].
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6 Conclusion

We have presented a family of fast and accurate direct solvers for the eikonal
equation. The top-down algorithm relies on enumerating valid update simplexes,
while the bottom-up algorithm employs a fast search for the first arrival character-
istic. For each of these solvers, one can use different quadrature rules: a simplified
midpoint rule (mp0), a midpoint rule (mp1), and a righthand rule (rhr).

We have analyzed the relationship between these quadrature rules, showing
that the mp0 rule can be used to compute an approximate local characteristic
direction, and Û evaluated using this direction, while incurring only O(h3) error
per update, which justifies its use.

We have conducted extensive numerical experiments that show that olim3d mp0

provides the best overall trade-off between runtime and error. We also compare the
speed of the standard fast marching method in 3D with the equivalent olim6 rhr

(equivalent in the sense that they compute the same solution to machine precision).
We demonstrate that olim6 rhr incurs only a very modest overhead, suggesting
that the top-down approach is an efficient way of generalizing the fast march-
ing method; it also suggests that the bottom-up approach is a viable approach to
speeding up Dijkstra-like algorithms in 3D, and should be viable for other types
of algorithms that solve related equations (indeed, this has already been demon-
strated for the quasipotential [62]).

To determine the relative time spent on different tasks, we have profiled our
C++ implementation using Valgrind, separating time spent into several coarse-
grained categories. From this, we show that for practical problem sizes, the runtime
of Dijkstra-like algorithms behaves like CNn, where n = 2, 3, and Nn is the total
number of gridpoints (even if this is not strictly true from a computational com-
plexity viewpoint); we also emphasize that memory access patterns play a large
role in algorithm runtime, especially for large N .

We conclude that ordered line integral methods are a powerful approach to
obtaining a higher degree of accuracy when solving the eikonal equation in 3D.
With an appropriate choice of quadrature rule, we are able to exploit improved
directional coverage to drive down the error constant. The improved accuracy more
than makes up for the modest price paid in speed, and we fully expect it to be
possible to find ways to optimize this family of algorithms further. We have also
attempted to demonstrate that memory access patterns dominate both update
time and time spent maintaining the front data structure, from which we can
conclude two things: 1) the exact time spent updating a node is important but
not paramount (improving accuracy is more important than improving speed), 2)
using memory optimally will lead to a substantial speed-up for large problems.
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A Minimum actional integral for the eikonal equation

The eikonal equation (eq. 1) is a Hamilton-Jacobi equation for u. If we let each fixed character-
istic (ray) of the eikonal equation be parametrized by some parameter σ and denote p ≡ ∇u,
the corresponding Hamiltonian is:

H(p, x) =
‖p‖2

2
−
s(x)2

2
= 0. (43)

Since H = 0, eq. 43 implies L = supp(〈p, x′〉 − H) = s(x) ‖x′‖. Since x′ = ∂pH = p and
‖p‖ = s(x) can be expressed as:

L(x, x′) = 〈p, x′〉 = 〈x′, x′〉 = 〈∇u, x′〉 =
du

dσ
. (44)

Let x(σ) be a characteristic arriving at x̂ = x(σ̂) from x0 = x(0), which lies on the
expanding front. Integrating from 0 to σ̂ and letting û = u(x̂) and u0 = u(x0):

û− u0 =

∫ σ̂

0
L(x, x′)dσ =

∫ σ̂

0
s(x)

∥∥x′∥∥ dσ =

∫ L

0
s(x)dl, (45)

where L is the length of the characteristic from x0 to x̂ and dl is the length element. A
characteristic of eq. 1 minimizes eq. 45 over admissible paths. Then, if x̂ is fixed and α is an
arc-length parametrized curve with α(L) = x̂, eq. 45 is equivalent to:

û = u(x̂) = min
α

{
u(α(0)) +

∫
α
s(x)dl

}
. (46)

Our update procedure is based on eq. 46. This problem may have multiple local minima—û
above corresponds to the first arrival, which is what interests us primarily in this work.

B Skipping updates in the bottom-up family of algorithms

In this section, we describe how to use the KKT conditions to skip updates in the bottom-up
algorithms. In this section, we write:

A =


−1

. . .

−1
1 · · · 1

 ∈ Rd+1×d, b =


0
...
0
1

 ∈ Rd+1 (47)

Using these, the set ∆d can be written as a linear matrix inequality:

λ ∈ ∆d ⇐⇒ Aλ ≤ b (48)

Let µ ∈ Rd+1 be the vector of Lagrange multipliers. Then, the Lagrangian function for eq. 14
is:

L(λ, µ) = F (λ) + (Aλ− b)>µ. (49)

Since F0 is strictly convex and since we assume h is small enough for F1 to be strictly convex,
if λ∗ lies on the boundary of ∆d, we only need to check that the optimum Lagrange multi-
pliers µ∗ are dual feasible; i.e., whether µ∗ ≥ 0 (this follows directly from the standard KKT
conditions [6,36]). For a fixed λ ∈ ∆d, define the set of indices of active constraints:

I = {i : (Aλ− b)i = 0} (50)

That is, i ∈ I if the ith inequality holds with equality (“is active”). Stationarity then requires:

A>I µ
∗
I = ∇Fi(λ). (51)

If i /∈ I, we set µ∗i = 0. If µ∗i ≥ 0 for all i, then the update may be skipped.
When implementing this, since A is sparse, it is simplest and most efficient to write out

the system given by eq. 51 and write a specialized function to solve it. Note that since we
always start with a lower-dimensional interior point solution lying on the boundary of a higher-
dimensional problem, we only have to compute one Lagrange multiplier.
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C Proofs for section 3.2

Proof (Proof of proposition 1) For the gradient, we have:

∇F0(λ) = δU +
sθh

2‖pλ‖
∇p>λ pλ = δU +

sθh

‖pλ‖
δP>pλ,

since ∇p>λ pλ = 2δP>pλ. For the Hessian:

∇2
λF0(λ) = ∇

(
sθh

‖pλ‖
p>λ δP

)
= sθh

(
∇

1

‖pλ‖
p>λ δP +

1

‖pλ‖
∇p>λ δP

)
=

sθh

‖pλ‖

(
δP>δP −

δP>pλp>λ δP

p>λ pλ

)
=

sθh

‖pλ‖
δP>

(
I −

pλp
>
λ

p>λ pλ

)
δP ,

from which the result follows.

Proof (Proof of proposition 2) Since F1(λ) = uλ + hsθλ‖pλ‖, for the gradient we have:

∇F1(λ) = δU + h

(
θ‖pλ‖δs+

sθλ
2‖pλ‖

∇p>λ pλ

)
= δU +

h

‖pλ‖

(
θp>λ pλδs+ sθδP>pλ

)
,

and for the Hessian:

∇2F1(λ) =
h

2‖pλ‖

(
θ
(
∇p>λ pλδs

> + δs(∇p>λ pλ)
>)

+

sθλ

(
1

2p>λ pλ
∇p>λ pλ(∇p>λ pλ)

> −∇2
λp
>
λ pλ

))
.

Simplifying this gives us the result.

Proof (Proof of lemma 1)
Let νλ = pλ/‖pλ‖ ∈ Rn be the unit vector in the direction of pλ, and assume that

Q =
[
νλ U

]
∈ Rn×n is orthonormal. Then:

δP>Proj⊥pλδP = δP>(I − νλν>λ )δP = δP>(QQ> − νλν>λ )δP = δP>UU>δP . (52)

Hence, δP>Proj⊥δP is a Gram matrix and positive semidefinite.
Next, since ∆n is nondegenerate, the vectors pi for i = 0, . . . , n−1 are linearly independent.

Since the ith column of δP is δpi = pi − p0, we can see that the vector p0 is not in the range
of δP ; hence, there is no vector µ such that δPµ = αpλ, for any α 6= 0. What’s more, by
definition, ker(Proj⊥pλ ) = 〈pλ〉. So, we can see that Proj⊥pλδPµ = 0 only if µ = 0, from which

we can conclude δP>Proj⊥pλδP � 0. Altogether, bearing in mind that smin is assumed to be

positive, we conclude that ∇2F0 is positive definite.

Proof (Proof of lemma 2) To show that ∇2F1 is positive definite for h small enough, note
from eq. 19 that ∇2F1 = A + B, where A is positive definite and B is small relative to A
and indefinite. To use this fact, note that since δP>Proj⊥λ δP is symmetric positive definite, it

has an eigenvalue decomposition QΛQ> where Λii > 0 for all i. Since δP>Proj⊥λ δP doesn’t
depend on h, for a fixed set of vectors p0, . . . , pn, its eigenvalues are constant with respect to
h. So, defining:

A =
sθλh

‖pλ‖
δP>Proj⊥λ δP = Q

(
sθλh

‖pλ‖
Λ

)
Q> (53)

we can expect this matrix’s eigenvalues to be Θ(h); in particular, λmin ≥ Ch for some constant
C, provided that s > smin > 0, as assumed. This gives us a bound for the positive definite
part of ∇F 2

1 .
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The perturbation B =
{
δP>νλ, θhδs

}
is indefinite. Since ‖δs‖ = O(h), we find that:

|λmax(B)| =
∥∥∥{δP>νλ, θhδs}∥∥∥

2
≤ θh

√
n
∥∥∥{δP>νλ, δs}∥∥∥∞ = O(h2), (54)

where we use the fact that the Lipschitz constant of s is K ≤ C, so that:

|δsi| = |si − s0| ≤ K|xi − x0| ≤ Kh
√
n ≤ Ch

√
n, (55)

for each i. Letting z 6= 0, we compute:

z>∇2F1z = z>Az + z>Bz ≥ λmin(A)z>z + z>Bz ≥ Chz>z + z>Bz. (56)

Now, since
∣∣z>Bz∣∣ ≤ |λmax(B)| z>z ≤ Dh2z>z, where D is some positive constant, we can

see that for h small enough, it must be the case that Chz>z + z>Bz > 0; i.e., that ∇2F1 is
positive definite; consequently, F1 is strictly convex in this case.

D Proofs for section 3.3

In this section, we establish some technical lemmas that we will use to validate the use of mp0.
Lemmas 4, 5, and 6 set up the conditions for theorem 5 of Stoer and Bulirsch [53], from which
theorem 1 readily follows.

Lemma 4 There exists β = O(h−1) s.t.
∥∥∇2F1(λ)−1

∥∥ ≤ β for all λ ∈ ∆n.

Proof (Proof of lemma 4) To simplify eq. 19, we temporarily define:

A =
sθλh

‖pλ‖
δP>Proj⊥λ δP and B =

θh

‖pλ‖

{
δP>pλ, δs

}
. (57)

Observe that ‖A‖ = O(h) and ‖B‖ = O(h2), since ‖δs‖ = O(h) and since all other factors
involved in A and B (excluding h itself) are independent of h. Hence:

∥∥A−1B
∥∥ =

θ

sθλ

∥∥∥∥(δP>Proj⊥λ δP)−1 {
δP>pλ, δs

}∥∥∥∥ = O(h), (58)

since ‖δs‖ = O(h). Hence,
∥∥A−1B

∥∥ < 1 for h small enough, and we can Taylor expand:

∇2F1(λ)−1 = (A+B)−1 = (I +A−1B)
−1
A−1

=
(
I −A−1B + (A−1B)

2 − · · ·
)
A−1

= A−1 −A−1BA−1 + (A−1B)
2
A−1 − · · · ,

(59)

which implies
∥∥∇2F1(λ)−1

∥∥ = O(h−1). Note that when we Taylor expand, ‖A−1B‖ = O(h),

so that ‖A−1B‖ < 1 for h small enough. To define β, let:

β = max
λ∈∆n

∥∥∇2F1(λ)−1
∥∥ = O(h−1), (60)

completing the proof.

Lemma 5 There exists α = O(h) s.t.
∥∥∇2F1(λ∗0)−1∇F1(λ∗0)

∥∥ ≤ α.

Proof (Proof of lemma 5) From lemma 4 we have
∥∥F1(λ∗0)−1

∥∥ = O(h−1), so to establish the

result we only need to show that
∥∥∇F1(λ∗0)

∥∥ = O(h2). To this end, let λ = (n+ 1)−11n×1
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(i.e., the centroid of ∆n, where sθ is evaluated). Then, recalling figure 4, sθλ = sθ + δs>(λ−λ)
so that, for a general λ:

∇F1(λ) = ‖pλ‖hδs+ δU +
sθ + δs>(λ− λ)

‖pλ‖
hδP>pλ

= ‖pλ‖hδs+∇F0(λ) +
δs>(λ− λ)

‖pλ‖
hδP>pλ.

(61)

Since ∇F0(λ∗0) = 0 by optimality, we can conclude using eq. 61 and ‖δs‖ = O(h) that:

‖∇F1(λ∗0)‖ = h

∥∥∥∥∥‖pλ∗0 ‖δs+
δs>(λ− λ)

‖pλ∗0 ‖
δP>pλ

∥∥∥∥∥ = O(h2), (62)

which proves the result.

Lemma 6 The Hessian ∇2F1 is Lipschitz continuous with O(h) Lipschitz constant. That is,
there is some constant γ = O(h) so that for two points λ and λ′:∥∥∇2F1(λ)−∇2F1(λ′)

∥∥ ≤ γ ∥∥λ− λ′∥∥ .
Proof (Proof of lemma 6) If we restrict our attention to ∆n, we see that ‖pλ‖−1δP>Proj⊥λ δP
is Lipschitz continuous function of λ with O(1) Lipschitz constant and θ{δP>pλ, δs}/‖pλ‖ is
Lipschitz continuous with O(h) Lipschitz constant since ‖δs‖ = O(h). Then, since sθλ is O(1)
Lipschitz, it follows that:

A(λ) =
sθλh

‖pλ‖ δP
>Proj⊥λ δP (63)

has a Lipschitz constant that is O(h) for λ ∈ ∆n, using the notation of lemma 4. Likewise,

B(λ) = θh
‖pλ‖

{
δP>pλ, δs

}
= O(h2), (64)

since it is a sum of two terms involving products of h and δs. Since ∇2F1(λ) = A(λ) + B(λ),
we can see immediately that it is also Lipschitz on ∆n with a constant that is O(h).

Proof (Proof of theorem 1) Our proof of theorem 1 relies on the following theorem on the
convergence of Newton’s method, which we present for convenience.

Theorem 5 (Theorem 5.3.2, Stoer and Bulirsch) Let C ⊆ Rn be an open set, let C0 be

a convex set with C0 ⊆ C, and let f : C → Rn be differentiable for x ∈ C0 and continuous
for x ∈ C. For x0 ∈ C0, let r, α, β, γ satisfy Sr(x0) = {x : ‖x− x0‖ < r} ⊆ C0, µ = αβγ < 2,
r = α(1− µ)−1, and let f satisfy:

(a) for all x, y ∈ C0, ‖Df(x)−Df(y)‖ ≤ γ ‖x− y‖,
(b) for all x ∈ C0, (Df(x))−1 exists and satisfies

∥∥(Df(x))−1
∥∥ ≤ β,

(c) and
∥∥(Df(x0))−1f(x0)

∥∥ ≤ α.

Then, beginning at x0, each iterate:

xk+1 = xk −Df(xk)−1f(xk), k = 0, 1, . . . , (65)

is well-defined and satisfies ‖xk − x0‖ < r for all k ≥ 0. Furthermore, limk→∞ xk = ξ exists
and satisfies ‖ξ − x0‖ ≤ r and f(ξ) = 0.

For our situation, Theorem 5.3.2 of Stoer and Bulirsch [53] indicates that if:

‖∇F1(λ)−1‖ ≤ β,where β = O(h−1), (66)

‖∇F1(λ∗0)−1∇F1(λ∗0)‖ ≤ α,where α = O(h), and (67)

‖∇F1(λ)−∇F1(λ′)‖ ≤ γ
∥∥λ− λ′∥∥ for each λ, λ′ ∈ ∆n,where γ = O(h), (68)

then with λ0 = λ∗0, the iteration eq. 20 is well-defined, with each iterate satisfying ‖λk − λ0‖ ≤
r, where r = α/(1 − αβγ/2). Additionally, the limit of this iteration exists, and the iteration
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pmin

pi

p0

pλ∗

νλ∗
p0 + range(δP )

range(δP )

range(δP )?

PδP νλ∗

P?

δP
νλ∗

p̂ = 0

r = 1

νmin

Fig. 21: A schematic depiction of the proof of theorem 2.

converges to it quadratically; we note that since F1 is strictly convex for h small enough, the
limit of the iteration must be λ∗1, so the theorem also gives us ‖δλ∗‖ =

∥∥λ∗1 − λ∗0∥∥ ≤ r.
Now, we note that items 66, 67, and 68 correspond exactly to lemma 4, 5, and 6, re-

spectively which gave us values for α, β, and γ. All that remains is to compute r. Since the
preceding lemmas imply αβγ = O(h), hence αβγ/2 < 1 for h small enough. We have:

r =
α

1− αβγ
2

= α

(
1 +

αβγ

2
+
α2β2γ2

4
+ · · ·

)
= O(h), (69)

so that ‖δλ∗‖ = O(h), and the result follows.
To obtain the O(h3) error bound, from theorem 1, we have ‖δλ∗‖ = O(h). Then, Taylor

expanding F1(λ∗0), we get:

F1(λ∗0) = F1(λ∗1 − δλ∗) = F1(λ∗1)−∇F1(λ∗1)>δλ∗ +
1

2
δλ∗∇F 2

1 (λ∗1)δλ∗ +R,

where |R| = O(‖δλ∗‖3). Since λ∗1 is optimum, ∇F1(λ∗1) = 0. Hence:

|F1(λ∗1)− F1(λ∗0)| ≤
1

2

∥∥∇F 2
1 (λ∗1)

∥∥ ‖δλ∗‖2 +O(‖δλ∗‖3) = O(h3),

which proves the result.

E Proofs for section 3.4

Proof (Proof of theorem 2) We proceed by reasoning geometrically; figure 21 depicts the
geometric setup. First, letting δP = QR be the reduced QR decomposition of δP , and writing
νλ∗ = pλ∗/‖pλ∗‖, we note that since:

∇F0(λ∗) = δU + sθhδP>νλ∗ = 0, (70)
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the optimum λ∗ satisfies:

−R−>
δU

sθh
= Q>νλ∗ (71)

Let ProjδP = QQ> denote the orthogonal projector onto range(δP ), and Proj⊥δP = I −QQ>
the projector onto its orthogonal complement. We can try to write pλ∗ by splitting it into a
component that lies in range(δP ) and one that lies in range(δP )⊥. Letting pmin be the point
in p0 + range(δP ) with the smallest 2-norm, we write:

pλ∗ = (pλ∗ − pmin) + pmin, (72)

where pλ∗ − pmin ∈ range(δP ) and pmin ∈ range(δP )⊥. The vector pmin corresponds to pλmin

where λmin satisfies:

0 = δP>(δPλmin + p0) = R>Rλmin +R>Q>p0, (73)

hence λmin = −R−1Q>p0, giving us:

pmin = p0 + δPλmin = Proj⊥δP p0. (74)

This vector is easily obtained. For pλ∗ − pmin, we note that ProjδP νλ∗ is proportional to
pλ∗ − pmin, suggesting that we determine the ratio α satisfying pλ∗ − pmin = αProjδP νλ∗ . In

particular, from the similarity of the triangles (p̂, νλ∗ , Proj
⊥
δP νλ∗ ) and (p̂, pλ∗ , pmin) in figure

21, we have, using eqs. 71 and 74:

α =
‖pmin‖∥∥Proj⊥δP νλ∗∥∥ =

√√√√ p>0 Proj⊥δP p0

1−
∥∥Q>νλ∗∥∥2 =

√√√√√ p>0 Proj⊥δP p0

1−
∥∥∥R−> δU

sθh

∥∥∥2 . (75)

At the same time, since:

ν>λ∗Proj
⊥
δP νλ∗ =

(Proj⊥δP pλ∗ )
>

(Proj⊥δP pλ∗ )

‖pλ∗‖2
=
p>minpmin

‖pλ∗‖2
=
p>0 Proj⊥δP p0
‖pλ∗‖2

(76)

we can conclude that:

‖pλ∗‖ = α =

√√√√√ p>0 Proj⊥δP p0

1−
∥∥∥R−> δU

sθh

∥∥∥2 , (77)

giving us eq. 22, proving the first part of theorem 2.
Next, combining eqs. 71, 72, 74, and 75, we get:

pλ∗ = Proj⊥δP p0 −

√√√√√ p>0 Proj⊥δP p0

1−
∥∥∥R−> δU

sθh

∥∥∥2QR−>
δU

sθh
. (78)

This expression for pλ∗ can be computed from our problem data and δP . Now, note that
pλ∗ = p0 + δPλ∗ implies:

λ∗ = R−1Q>(pλ∗ − p0). (79)

Substituting eq. 78 into eq. 79, we obtain eq. 23 after making appropriate cancellations, es-
tablishing the second part of theorem 2.

To establish eq. 24, we note that by optimality of λ∗, our expression for ∇F0 (eq. 16 of
proposition 1) gives:

δU = −sθh
δP>pλ∗

‖pλ∗‖
. (80)

This lets us write:

δU>λ∗ = −
sθh

‖pλ∗‖
p>λ∗δP

>λ∗ =
sθh

‖pλ∗‖
p>λ∗ (p0 − pλ∗ ). (81)

Combining eq. 81 with our definition of F0 yields:

Û = F0(λ∗) = U0 + δU>λ∗ + sθh‖pλ∗‖ = U0 +
sθh

‖pλ∗‖
p>λ∗ (p0 − pλ∗ ) +

sθh

‖pλ∗‖
p>λ∗pλ∗ , (82)

which gives eq. 24, completing the final part of the proof.
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F Proofs for section 3.5

Proof (Proof of theorem 3) We assume that U is a linear function in the update simplex;
hence, ∇U is constant. By stacking and subtracting eq. 25 for different values of i, we obtain,
for i = 0, . . . , n− 1: [

δP>

p>i

]
∇U =

[
δU

U0 − Û

]
. (83)

The inverse of the matrix in the left-hand side of eq. 83 is:[(
I − νminp

>
i

ν>minpi

)
QR−>, νmin

ν>minpi

]
, (84)

which can be checked. This gives us:

∇U =

(
I −

νminp
>
i

ν>minpi

)
QR−>δU +

Ui − Û
ν>minpi

νmin. (85)

Hence, ‖∇U‖2 is a quadratic equation in Û−Ui. Expanding ‖∇U‖2, a number of cancellations
occur since Q>νmin = 0. We have:

δU>R−1Q>
(
I −

νminp
>
i

ν>minpi

)>(
I −

νminp
>
i

ν>minpi

)
QR−>δU =

∥∥∥R−>δU∥∥∥2 +

(
p>i QR

−>δU
)2

‖pmin‖2
, (86)

so that, written in standard form:

(Û − Ui)
2

+ 2p>i QR
−>δU(Û − Ui) +

(
p>i QR

−>δU
)2

+

‖pmin‖2
(∥∥∥R−>δU∥∥∥2 − (sθh)2) = 0.

(87)

Solving for Û − Ui gives:

Û = Ui − p>i QR−>δU + ‖pmin‖
√(

sθh
)
− ‖R−>δU‖2, (88)

establishing eq. 27.
Next, to show that Û ′ = Û , we compute:

Û ′ = U0 + δU>λ∗ + sθh‖pλ∗‖

= U0 −
(
Q>p0 + ‖pλ∗‖R−>

δU

sθh

)>
R−>δU + sθh‖pλ∗‖ (eq. 23)

= U0 − p>0 QR−>δU + sθh‖pλ∗‖
(

1−
∥∥∥∥R−> δU

sθh

∥∥∥∥2
)

= U0 − p>0 QR−>δU + ‖pmin‖
√(

sθh
)2 − ∥∥R>δU∥∥2 = Û . (eq. 22)

To establish eq. 28, first note that −R−>δU = sθhQ>νλ∗ by optimality. Substituting this into
eq. 27, we first obtain:

Û = Ui +
sθh

‖pλ∗‖

(
p>i ProjδP pλ∗ + ‖pmin‖

√
p>λ∗Proj

⊥
δP pλ∗

)
. (89)

Now, using the notation for weighted norms and inner products, we have:

p>i ProjδP pλ∗ + ‖pmin‖
√
p>λ∗Proj

⊥
δP pλ∗ = 〈pi, pλ∗ 〉ProjδP + ‖pi‖Proj⊥

δP
‖pλ∗‖Proj⊥

δP
. (90)

Since Proj⊥δP orthogonally projects onto range(δP )⊥, and since the dimension of this subspace

is 1, Proj⊥δP pi and Proj⊥δP pλ∗ are multiples of one another and their directions coincide (see
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figure 21); furthermore, the angle between them is since our simplex is nondegenerate. So, by
Cauchy-Schwarz:

‖pi‖Proj⊥
δP
‖pλ∗‖Proj⊥

δP
= 〈pi, pλ∗ 〉Proj⊥

δP
. (91)

Combining eq. 91 with eq. 90 and cancelling terms yields:

p>i ProjδP pλ∗ + ‖pmin‖
√
p>λ∗ProjδP pλ∗ = p>i pλ∗ . (92)

Eq. 28 follows.
To parametrize the characteristic found by solving the finite difference problem, first note

that the characteristic arriving at p̂ is colinear with ∇Û . If we let ν̃ be the normal pointing
from p̂ in the direction of the arriving characteristic, let p̃ be the point of intersection between
p0 + range(δP ) and span(ν̃), and let l̃ = ‖p̃‖, then, since p̃− p0 ∈ range(δP ):

ν>min(p̃− p0) = 0. (93)

Rearranging this and substituting p̃ = l̃ν̃, we get:

l̃ =
ν>minp0

ν>minν̃
. (94)

Now, if we assume that we can write p̃ = δP λ̃+ p0 for some λ̃, then:

λ̃ = R−1Q> (p̃− p0) = −R−1Q>
(
I −

ν̃ν>min

ν̃>νmin

)
p0. (95)

To see that p̃ = pλ∗ , note that since ν̃ = −∇Û/
∥∥∥∇Û∥∥∥ = −∇Û/(sθh):

ProjδP ν̃ =
−ProjδP∇Û

sθh
=
−QR−>δU

sθh
= ProjδP νλ∗ . (96)

Since ν̃ and νλ∗ each lie in the unit sphere on the same side of the hyperplane spanned by
δP , and since ProjδP orthogonally projects onto range(δP ), we can see that in fact ν̃ = νλ∗ .
Hence, p̃ = pλ∗ ∈ p0 + range(δP ). The second and third parts of theorem 3 follow.

G Proofs for section 3.6

Proof (Proof of theorem 4) For causality of F0, we want Û ≥ maxi Ui, which is equivalent to

mini(Û − Ui) ≥ 0. From eq. 27, we have:

min
i

(
Û − Ui

)
= sθhmin

i
min
λ∈∆n

ν>i νλ
‖pλ‖

= sθhmin
i,j

ν>i νj
‖pi‖

≥ 0. (97)

The last equality follows because minimizing the cosine between two unit vectors is equivalent
to maximizing the angle between them; since λ is restricted to lie in ∆n, this clearly happens
at a vertex since the minimization problem is a linear program.

For F1, first rewrite sθλ as follows:

sθλ = sθ + θ(s0 + δs>λ− s), (98)

where s = n−1
∑n−1
i=0 si. If λ?0 and λ?1 are the minimizing arguments for F0 and F1, respectively,

and if δλ∗ = λ∗1 − λ∗0, then we have:

F1(λ∗1) = F0(λ∗1) + θ
(
s0 + δs>λ∗1 − s

)
h‖pλ?1 ‖. (99)

By the optimality of λ∗0 and strict convexity of F0 (lemma 2), we can Taylor expand and write:

F0(λ∗1) = F0(λ∗0) +∇F0(λ∗0)>δλ∗ +
1

2
δλ∗>∇2F0(λ∗0)δλ∗ +R ≥ R, (100)
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where |R| = O(h3) by theorem 1. Let Û = F1(λ∗1). Since F0 is causal, we can write:

Û ≥ max
i
Ui +R+ θ

(
s0 + δs>λ∗1 − s

)
h‖pλ∗1 ‖. (101)

Since s is Lipschitz, the last term is O(h2)—in particular, ‖δs‖ = O(h) and ‖s0 − s‖ = O(h)

since s0 and s lie in the same simplex. So, because the gap mini(Û − Ui) is O(h), we can see

that Û ≥ maxi Ui for h sufficiently small.
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