Skip to main content
Log in

A Hierarchical Space-Time Spectral Element and Moment-of-Fluid Method for Improved Capturing of Vortical Structures in Incompressible Multi-phase/Multi-material Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel block structured adaptive space-time spectral element and moment-of-fluid method is described for computing solutions to incompressible multi-phase/multi-material flows. The new method implements a space-time spectrally accurate method in the bulk regions of a multi-phase/multi-material flow and implements the cell integrated semi-Lagrangian moment-of-fluid method in the vicinity of mixed material computational cells. In the new method, the space-time order can be prescribed to be \(2\le p_{\ell }^{(x)}\le 16\) (space) and \(2\le p^{(t)}\le 16\) (time) respectively. \(\ell \) represents the adaptive mesh refinement level. Regardless of the space-time order, only one ghost layer of cells is communicated between neighboring grid patches that are on different compute nodes or different adaptive levels \(\ell \). The new method is first tested on incompressible vortical flow benchmark tests, then the new method is tested on the following incompressible multi-phase/multi-material problems: (i) vortex shedding past a tilted cone and (ii) atomization and spray of a liquid jet in a gas cross-flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Comput. Fluids 98, 152–163 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Almgren, A.S., Aspden, A.J., Bell, J.B., Minion, M.L.: On the use of higher-order projection methods for incompressible turbulent flow. SIAM J. Sci. Comput. 35(1), B25–B42 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142(1), 1–46 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Arienti, M., Sussman, M.: An embedded level set method for sharp-interface multiphase simulations of diesel injectors. Int. J. Multiph. Flow 59, 1–14 (2014)

    MathSciNet  Google Scholar 

  5. Bao, W., Jin, S.: Weakly compressible high-order i-stable central difference schemes for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 190(37), 5009–5026 (2001)

    MATH  Google Scholar 

  6. Bell, J., Berger, M., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15(1), 127–138 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Berger, M., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cybern. 21(5), 1278–1286 (1991)

    Google Scholar 

  9. Bourlioux, A., Layton, A.T., Minion, M.L.: High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 189(2), 651–675 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Brown, R.E.: Rotor wake modeling for flight dynamic simulation of helicopters. AIAA J. 38(1), 57–63 (2000)

    Google Scholar 

  11. Brown, R.E., Line, A.J.: Efficient high-resolution wake modeling using the vorticity transport equation. AIAA J. 43(7), 1434–1443 (2005)

    Google Scholar 

  12. Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Eng. 197(13–16), 1296–1304 (2008)

    MATH  Google Scholar 

  13. Constantin, P., Titi, E.: On the evolution of nearly circular vortex patches. Commun. Math. Phys. 119(2), 177–198 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-weno finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), A691–A711 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Dou, H.S.: Stability of rotating viscous and inviscid flows. arXiv preprint physics/0503083 (2005)

  16. Dou, H.S.: Mechanism of flow instability and transition to turbulence. Int. J. Nonlinear Mech. 41(4), 512–517 (2006). https://doi.org/10.1016/j.ijnonlinmec.2005.12.002

    Article  MATH  Google Scholar 

  17. Dubey, A., Almgren, A., Bell, J., Berzins, M., Brandt, S., Bryan, G., Colella, P., Graves, D., Lijewski, M., Loffler, F., O’Shea, B., Schnetter, E., Straalen, B.V., Weide, K.: A survey of high level frameworks in block-structured adaptive mesh refinement packages. J. Parallel Distrib. Comput. 74(12), 3217–3227 (2014)

    Google Scholar 

  18. Duffy, A., Kuhnle, A., Sussman, M.: An improved variable density pressure projection solver for adaptive meshes (2012). https://www.math.fsu.edu/~sussman/MGAMR.pdf. Accessed 5 Apr 2011

  19. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: Ader-weno finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013). https://doi.org/10.1016/j.jcp.2013.04.017

    Article  MathSciNet  MATH  Google Scholar 

  20. Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27(4), 1471–1492 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Fambri, F., Dumbser, M.: Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016). https://doi.org/10.1016/j.apnum.2016.07.014

    Article  MathSciNet  MATH  Google Scholar 

  22. Garrick, D.P., Hagen, W.A., Regele, J.D.: An interface capturing scheme for modeling atomization in compressible flows. J. Comput. Phys. 344, 260–280 (2017)

    MathSciNet  Google Scholar 

  23. Itoh, S., Namekawa, Y.: An improvement in DS-BICGstab (l) and its application for linear systems in lattice QCD. J. Comput. Appl. Math. 159(1), 65–75 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Jacobs, G.B., Kopriva, D.A., Mashayek, F.: A conservative isothermal wall boundary condition for the compressible Navier–Stokes equations. J. Sci. Comput. 30(2), 177–192 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Kadioglu, S.Y., Klein, R., Minion, M.L.: A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics. J. Comput. Phys. 227(3), 2012–2043 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Kadioglu, S.Y., Sussman, M.: Adaptive solution techniques for simulating underwater explosions and implosions. J. Comput. Phys. 227(3), 2083–2104 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Kamkar, S., Wissink, A., Sankaran, V., Jameson, A.: Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows. J. Comput. Phys. 230(16), 6271–6298 (2011). https://doi.org/10.1016/j.jcp.2011.04.024

    Article  MathSciNet  MATH  Google Scholar 

  29. Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Lakehal, D.: Status and future developments of large-Eddy simulation of turbulent multi-fluid flows (leis and less). Int. J. Multiph. Flow 104, 322–337 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.02.018

    Article  MathSciNet  Google Scholar 

  31. Lalanne, B., Rueda Villegas, L., Tanguy, S., Risso, F.: On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289–307 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Layton, A.T.: On the choice of correctors for semi-implicit Picard deferred correction methods. Appl. Numer. Math. 58(6), 845–858 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Layton, A.T.: On the efficiency of spectral deferred correction methods for time-dependent partial differential equations. Appl. Numer. Math. 59(7), 1629–1643 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004). https://doi.org/10.1016/j.jcp.2003.09.010

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, G., Lian, Y., Guo, Y., Jemison, M., Sussman, M., Helms, T., Arienti, M.: Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method. Int. J. Numer. Methods Fluids 79(9), 456–490 (2015). https://doi.org/10.1002/fld.4062

    Article  MathSciNet  Google Scholar 

  36. Li, X., Soteriou, M.C.: High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate weber numbers. Phys. Fluids 28(8), 082,101 (2016)

    Google Scholar 

  37. Liovic, P., Lakehal, D.: Interface-turbulence interactions in large-scale bubbling processes. Int. J. Heat Fluid Flow 28(1), 127–144 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.03.003

    Article  MATH  Google Scholar 

  38. Liovic, P., Rudman, M., Liow, J.L., Lakehal, D., Kothe, D.: A 3d unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction. Comput. Fluids 35(10), 1011–1032 (2006). https://doi.org/10.1016/j.compfluid.2005.09.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Liu, J.G., Wang, W.C.: Energy and helicity preserving schemes for hydro-and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200(1), 8–33 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Mcinnes, L.C., Smith, B., Zhang, H., Mills, R.T.: Hierarchical Krylov and nested Krylov methods for extreme-scale computing. Parallel Comput. 40(1), 17–31 (2014)

    MathSciNet  Google Scholar 

  42. Miyauchi, T., Itoh, S., Zhang, S.L., Natori, M.: Dynamic selection of l for BI-CGstab (l). Trans. Jpn. Soc. Ind. Appl. Math. 11(2), 49–62 (2001)

    Google Scholar 

  43. Montagnac, M., Chesneaux, J.M.: Dynamic control of a BiCGSTab algorithm. Appl. Numer. Math. 32(1), 103–117 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998). https://doi.org/10.1006/jcph.1998.5962

    Article  MathSciNet  MATH  Google Scholar 

  45. Nonaka, A., Bell, J., Day, M., Gilet, C., Almgren, A., Minion, M.: A deferred correction coupling strategy for low mach number flow with complex chemistry. Combust. Theory Model. 16, 1053–1088 (2012)

    Google Scholar 

  46. Palha, A., Gerritsma, M.: A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2d incompressible Navier–Stokes equations. J. Comput. Phys. 328, 200–220 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Pazner, W.E., Nonaka, A., Bell, J.B., Day, M.S., Minion, M.L.: A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry. Combust. Theory Model. 20(3), 521–547 (2016)

    MathSciNet  Google Scholar 

  48. Pei, C., Sussman, M., Hussaini, M.Y.: A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete Contin. Dyn. Syst. B 23(9), 3595–3622 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Pei, C., Sussman, M., Hussaini, M.Y.: New multi-implicit space-time spectral element methods for advection–diffusion–reaction problems. J. Sci. Comput. 78(2), 653–686 (2019). https://doi.org/10.1007/s10915-018-0654-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Pei, C., Sussman, M., Hussaini, M.Y.: A space-time discontinuous galerkin spectral element method for nonlinear hyperbolic problems. Int. J. Comput. Methods 16(01), 1850,093 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    MathSciNet  MATH  Google Scholar 

  53. Saye, R.: Implicit mesh discontinuous galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: part I. J. Comput. Phys. 344, 647–682 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Saye, R.: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part II. J. Comput. Phys. 344, 683–723 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Scardovelli, R., Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection. Int. J. Numer. Methods Fluids 41(3), 251–274 (2003)

    MATH  Google Scholar 

  56. Sleijpen, G.L., Fokkema, D.R.: BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)

    MathSciNet  MATH  Google Scholar 

  57. Sleijpen, G.L., Van der Vorst, H.A.: Maintaining convergence properties of BiCGStab methods in finite precision arithmetic. Numer. Algorithms 10(2), 203–223 (1995)

    MathSciNet  MATH  Google Scholar 

  58. Sollie, W.E.H., Bokhove, O., van der Vegt, J.J.W.: Space-time discontinuous Galerkin finite element method for two-fluid flows. J. Comput. Phys. 230(3), 789–817 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Srinivasan, G., McCroskey, W., Baeder, J., Edwards, T.: Numerical simulation of tip vortices of wings in subsonic and transonic flows. AIAA J. 26(10), 1153–1162 (1988)

    Google Scholar 

  60. Steinhoff, J., Underhill, D.: Modification of the euler equations for “vorticity confinement”: application to the computation of interacting vortex rings. Phys. Fluids 6(8), 2738–2744 (1994)

    MATH  Google Scholar 

  61. Stewart, P., Lay, N., Sussman, M., Ohta, M.: An improved sharp interface method for viscoelastic and viscous two-phase flows. J. Sci. Comput. 35(1), 43–61 (2008)

    MathSciNet  MATH  Google Scholar 

  62. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148(1), 81–124 (1999)

    MathSciNet  MATH  Google Scholar 

  63. Tan, F.J., Wen Wang, H.: Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method. Aerosp. Sci. Technol. 30(1), 255–268 (2013). https://doi.org/10.1016/j.ast.2013.08.010

    Article  Google Scholar 

  64. van der Vegt, J.J.W., Sudirham, J.J.: A space-time discontinuous Galerkin method for the time-dependent Oseen equations. Appl. Numer. Math. 58(12), 1892–1917 (2008)

    MathSciNet  MATH  Google Scholar 

  65. Van der Vorst, H.A.: Bi-CGStab: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    MathSciNet  MATH  Google Scholar 

  66. Van der Vorst, H.A., Vuik, C.: GMRESR: a family of nested GMRES methods. Numer. Linear Algebra Appl. 1(4), 369–386 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Zhang, Q.: Gepup: Generic projection and unconstrained ppe for fourth-order solutions of the incompressible Navier–Stokes equations with no-slip boundary conditions. J. Sci. Comput. 67(3), 1134–1180 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Zhang, W., Almgren, A., Day, M., Nguyen, T., Shalf, J., Unat, D.: Boxlib with tiling: an adaptive mesh refinement software framework. SIAM J. Sci. Comput. 38(5), S156–S172 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work and the authors were supported in part by the National Science Foundation under Contract DMS 1418983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sussman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, C., Vahab, M., Sussman, M. et al. A Hierarchical Space-Time Spectral Element and Moment-of-Fluid Method for Improved Capturing of Vortical Structures in Incompressible Multi-phase/Multi-material Flows. J Sci Comput 81, 1527–1566 (2019). https://doi.org/10.1007/s10915-019-01087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01087-x

Keywords

Mathematics Subject Classification

Navigation