Skip to main content
Log in

Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new type of local and parallel algorithm is proposed to solve nonlinear eigenvalue problem based on multigrid discretization. Instead of solving the nonlinear eigenvalue problem directly in each level mesh, our method converts the nonlinear eigenvalue problem in the finest mesh to a linear boundary value problem on each level mesh and some nonlinear eigenvalue problems on the coarsest mesh. Further, the involved linear boundary value problems are solved using the local and parallel strategy. As no nonlinear eigenvalue problem is being solved directly on the fine spaces, which is time-consuming, this new type of local and parallel multigrid method evidently improves the efficiency of nonlinear eigenvalue problem solving. We provide a rigorous theoretical analysis for our algorithm and present details on numerical simulations to support our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Rheinboldt, W.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  4. Bao, G., Hu, G., Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structures. J. Comput. Phys. 231(14), 4967–4979 (2012)

    Article  MATH  Google Scholar 

  5. Bao, W.: The nonlinear Schröinger equation and applications in Bose–Einstein condensation and plasma physics, Master Review, Lecture Note Series, vol. 9. IMS, NUS (2007)

  6. Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bi, H., Yang, Y., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15(6), A2575–A2597 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bornemann, F., Erdmann, B., Kornhuber, R.: A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal. 33(3), 1188–1204 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramble, J.H., Zhang, X.: The analysis of multigrid methods. In: Handbook of Numerical Analysis, pp. 173–415 (2000)

  11. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  12. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45, 90–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cascon, J., Kreuzer, C., Nochetto, R., Siebert, K.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, H., Dai, X., Gong, X., He, L., Yang, Z., Zhou, A.: Adaptive finite element approximations for Kohn–Sham models. Multiscale Model. Simul. 12(4), 1828–1869 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn–Sham models. Adv. Comput. Math. 38, 225–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, H., He, L., Zhou, A.: Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Eng. 200(21), 1846–1865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  19. Dong, X., He, Y., Wei, H., Zhang, Y.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv Comput. Math. 44(4), 1295–1319 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dórfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokesš–Darcy model. J. Math. Anal. Appl. 435(2), 1129–1145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  23. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  24. Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger–Newton equations. Nonlinearity 16, 101–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Hu, G., Xie, H., Xu, F.: A multilevel correction adaptive finite element method for Kohn–Sham equation. J. Comput. Phys. 355, 436–449 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Han, X., Xie, H., You, C.: Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. Model. 13(1), 73–89 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Lin, Q., Xie, H.: An observation on Aubin–Nitsche lemma and its applications. Math. Pract. Theory 41(17), 247–258 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84(291), 71–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, London (2004)

    Book  MATH  Google Scholar 

  32. Mekchay, K., Nochetto, R.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morin, P., Nochetto, R., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Parr, R., Yang, M.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1994)

    Google Scholar 

  35. Schatz, A., Wahlbin, L.: Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64, 907–928 (1995)

    MATH  Google Scholar 

  36. Scott, L., Zhang, S.: Higher dimensional non-nested multigrid methods. Math. Comput. 58, 457–466 (1992)

    Article  MATH  Google Scholar 

  37. Shaidurov, V.: Multigrid Methods for Finite Elements. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  38. Stevension, R.: Optimality of a standard adaptive finite element method. Found. Math. Comput. 7(2), 245–269 (2007)

    Article  MathSciNet  Google Scholar 

  39. Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  40. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, J., Zhou, A.: Local and parallel finite element algorithm for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18(2), 185–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yserentant, H.: On the regularity of the electronic Schrǒdinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98(4), 731–759 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, R., Yang, Y., Bi, H.: Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Partial Differ. Equ. 35(2), 851–869 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435(1), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (Grant Nos. 11801021, 11971047), Foundation for Fundamental Research of Beijing University of Technology (No. 006000546318504)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Huang, Q. Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems. J Sci Comput 82, 20 (2020). https://doi.org/10.1007/s10915-020-01128-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01128-w

Keywords

Navigation