Skip to main content
Log in

Asymptotic Analysis and Numerical Methods for Oscillatory Infinite Generalized Bessel Transforms with an Irregular Oscillator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we perform a complete asymptotic analysis and the construction of affordable quadrature rules for a class of oscillatory infinite Bessel transform with a general oscillator. Especially in the presence of critical points, e.g., endpoints, zeros and stationary points, we first derive a series of useful asymptotic expansions in inverse powers of the frequency parameter \(\omega \). The resulting asymptotic expansions clarify the large \(\omega \) behavior of the transform and provide powerful tools for designing quadrature rules and conducting error analysis. As a consequence, efficient and affordable new modified Filon-type methods for computing the transform numerically are proposed. Particularly, we carry out the rigorous error analysis and obtain asymptotic error estimates in inverse powers of \(\omega \). Numerical examples can confirm our analysis. The accuracy can be improved greatly by either adding more derivatives interpolation at endpoints or adding more interior nodes. Moreover, only using a small number of nodes and multiplicities, we can obtain the required accuracy level. For fixed number of nodes and multiplicities, the higher accuracy can be achieved with the larger values of \(\omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1964)

    MATH  Google Scholar 

  2. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  3. Bateman, H., Erdélyi, A.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  4. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27, 553–574 (2005)

    Article  MathSciNet  Google Scholar 

  5. Blakemore, M., Evans, G.A., Hyslop, J.: Comparison of some methods for evaluating infinite range oscillatory integrals. J. Comput. Phys. 22, 352–376 (1976)

    Article  MathSciNet  Google Scholar 

  6. Brunner, H.: Open problems in the computational solution of Volterra functional equations with highly oscillatory kernels. In: Effective Computational Methods for Highly Oscillatory Solutions, HOP. Isaac Newton Institute (2007)

  7. Brunner, H.: On the numerical solution of first-kind Volterra integral equations with highly oscillatory kernels. HOP: Highly Oscillatory Problems: From Theory to Applications, pp. 13–17. Isaac Newton Institute, September (2010)

  8. Chen, R.: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 62, 636–648 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chen, R.: On the implementation of the asymptotic Filon-type method for infinite integrals with oscillatory Bessel kernels. Appl. Math. Comput. 228, 477–488 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Chen, R., An, C.: On the evaluation of infinite integrals involving Bessel functions. Appl. Math. Comput. 235, 212–220 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, R., Xiang, S., Kuang, X.: On evaluation of oscillatory transforms from position to momentum space. Appl. Math. Comput. 344, 183–190 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Davies, P.J., Duncan, D.B.: Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42, 1167–1188 (2004)

    Article  MathSciNet  Google Scholar 

  13. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471–510 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  15. Hascelik, A.: An asymptotic Filon-type method for infinite range highly oscillatory integrals with exponential kernel. Appl. Numer. Math. 63, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  16. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/17/01/02/0001/

  17. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/07/0002/

  18. Huybrechs, D., Olver, S.: Superinterpolation in highly oscillatory quadrature. Found. Comput. Math. 12(2), 203–228 (2012)

    Article  MathSciNet  Google Scholar 

  19. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math. 44, 755–772 (2004)

    Article  MathSciNet  Google Scholar 

  20. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kang, H., Ling, C.: Computation of integrals with oscillatory singular factors of algebraic and logarithmic type. J. Comput. Appl. Math. 285, 72–85 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kang, H., Ma, J.: Quadrature rules and asymptotic expansions for two classes of oscillatory Bessel integrals with singularities of algebraic or logarithmic type. Appl. Numer. Math. 118, 277–291 (2017)

    Article  MathSciNet  Google Scholar 

  23. Kang, H.: Numerical integration of oscillatory Airy integrals with singularities on an infinite interval. J. Comput. Appl. Math. 333, 314–326 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kang, H.: Efficient calculation and asymptotic expansions of many different oscillatory infinite integrals. Appl. Math. Comput. 346, 305–318 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)

    Article  MathSciNet  Google Scholar 

  26. Lewanowicz, S.: Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37, 101–112 (1991)

    Article  MathSciNet  Google Scholar 

  27. Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  28. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST digital library of mathematical functions. http://dlmf.nist.gov/10.7

  29. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST digital library of mathematical functions. http://dlmf.nist.gov/10.14

  30. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST digital library of mathematical functions. https://dlmf.nist.gov/10.22

  31. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST digital library of mathematical functions. https://dlmf.nist.gov/16.19

  32. Piessens, R., Branders, M.: Modified Clenshaw–Curtis method for the computation of Bessel function integrals. BIT Numer. Math. 23, 370–381 (1983)

    Article  MathSciNet  Google Scholar 

  33. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  34. Wang, H., Zhang, L., Huybrechs, D.: Asymptotic expansions and fast computation of oscillatory Hilbert transforms. Numer. Math. 123, 709–743 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wang, H.: A unified framework for asymptotic analysis and computation of finite Hankel transform. J. Math. Anal. Appl. 483, Article ID 123640 (2019)

  36. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  37. Xiang, S.: On quadrature of Bessel transformations. J. Comput. Appl. Math. 177, 231–239 (2005)

    Article  MathSciNet  Google Scholar 

  38. Xiang, S.: Numerical analysis of a fast integration method for highly oscillatory functions. BIT Numer. Math. 47, 469–482 (2007)

    Article  MathSciNet  Google Scholar 

  39. Xiang, S., Gui, W., Mo, P.: Numerical quadrature for Bessel transformation. Appl. Numer. Math. 28, 1247–1261 (2008)

    Article  MathSciNet  Google Scholar 

  40. Xiang, S., Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comput. 79, 829–844 (2010)

    Article  MathSciNet  Google Scholar 

  41. Xiang, S., Cho, Y., Wang, H., Brunner, H.: Clenshaw–Curtis–Filon-type methods for highly oscillatory bessel transforms and applications. IMA J. Numer. Anal. 31(4), 1281–1314 (2011)

    Article  MathSciNet  Google Scholar 

  42. Xu, Z., Xiang, S., He, G.: Efficient evaluation of oscillatory Bessel Hilbert transforms. J. Comput. Appl. Math. 258, 57–66 (2014)

    Article  MathSciNet  Google Scholar 

  43. Xu, Z., Xiang, S.: Computation of highly oscillatory Bessel transforms with algebraic singularities (2016). arXiv:1605.08568

  44. Xu, Z., Milovanovic, G.: Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform. J. Comput. Appl. Math. 308, 117–137 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LY18A010009, LY17A010029, National Natural Science Foundation of China (Grant Nos. 11301125, 11971138, 11571087, 11701133), Research Foundation of Hangzhou Dianzi University (Grant No. KYS075613017). The authors would like to express their most sincere thanks to the referees and editors for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LY18A010009, LY17A010029, National Natural Science Foundation of China (Grant Nos. 11301125, 11971138, 11571087, 11701133), Research Foundation of Hangzhou Dianzi University (Grant No. KYS075613017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Wang, H. Asymptotic Analysis and Numerical Methods for Oscillatory Infinite Generalized Bessel Transforms with an Irregular Oscillator. J Sci Comput 82, 29 (2020). https://doi.org/10.1007/s10915-020-01132-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01132-0

Keywords

Mathematics Subject Classification

Navigation