Skip to main content
Log in

High Order Still-Water and Moving-Water Equilibria Preserving Discontinuous Galerkin Methods for the Ripa Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Shallow water equations with horizontal temperature gradients, also known as the Ripa system, are used to model flows when the temperature fluctuations play an important role. These equations admit steady state solutions where the fluxes and source terms balance each other. We present well-balanced discontinuous Galerkin methods for the Ripa model which can preserve the still-water or the general moving-water equilibria. The key ideas are the recovery of well-balanced states, separation of the solution into the equilibrium and fluctuation components, and appropriate approximations of the numerical fluxes and source terms. The same framework is also extended to design well-balanced methods for the constant height and isobaric steady state solutions of the Ripa model. Numerical examples are presented to verify the well-balanced property, high order accuracy, and good resolution for both smooth and discontinuous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bouchut, F., Morales, T.: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48, 1733–1758 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bouchut, F., Zeitlin, V.: A robust well-balanced scheme for multi-layer shallow water equations. Discrete Contin. Dyn. Syst. B 13, 739–758 (2010)

    Article  MathSciNet  Google Scholar 

  5. Castro, M.J., López-García, J.A., Paŕes, C.: High order exactly well-balanced numerical methods for shallow water systems. J. Comput. Phys. 246, 242–264 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme motivated by the wet–dry front. SIAM J. Numer. Anal. 55, 758–784 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cheng, Y., Chertock, A., Herty, M., Kurganov, A., Wu, T.: A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80, 538–554 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cheng, Y., Kurganov, A.: Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun. Math. Sci. 14, 1643–1663 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chertock, A., Kurganov, A., Liu, Y.: Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127, 595–639 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 3–50. Springer, Berlin (2000)

    Google Scholar 

  11. Dellar, P.: Common Hamiltonian structure of the shallow water equations with horizontal temperature gradients and magnetic fields. Phys. Fluids 15, 292–297 (2003)

    Article  MathSciNet  Google Scholar 

  12. Desveaux, V., Zenk, M., Berthon, C., Klingenberg, C.: Well-balanced schemes to capture non-explicit steady states: Ripa model. Math. Comput. 85, 1571–1602 (2016)

    Article  MathSciNet  Google Scholar 

  13. Han, X., Li, G.: Well-balanced finite difference WENO schemes for the Ripa model. Comput. Fluids 134–135, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hernandez-Duenas, G.: A hybrid method to solve shallow water flows with horizontal density gradients. J. Sci. Comput. 73, 753–782 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kurganov, A.: Finite-volume schemes for shallow-water equations. Acta Numer. 27, 289–351 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  Google Scholar 

  17. LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  18. Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. J. Comput. Phys. 352, 445–462 (2018)

    Article  MathSciNet  Google Scholar 

  19. Noelle, S., Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    Article  MathSciNet  Google Scholar 

  20. Qiu, J., Khoo, B.C., Shu, C.-W.: A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212(2), 540–565 (2006)

    Article  MathSciNet  Google Scholar 

  21. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ripa, P.: Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70, 85–111 (1993)

    Article  MathSciNet  Google Scholar 

  23. Ripa, P.: On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 16–201 (1995)

    Article  MathSciNet  Google Scholar 

  24. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends and Applications of Mathematics to Mechanics: STAMM 2002, pp. 225–246. Springer, Berlin (2005)

    Chapter  Google Scholar 

  25. Russo, G., Khe, A.: High order well balanced schemes for systems of balance laws. In: Hyperbolic Problems: Theory, Numerics and Applications, pp. 919–928. Proceedings of Symposia in Applied Mathematics 67, Part 2, American Mathematics Society, Providence, RI (2009)

  26. Sanchez-Linares, C., Morales de Luna, T., Castro, M.J.: A HLLC scheme for Ripa model. Appl. Math. Comput. 272, 369–384 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MathSciNet  Google Scholar 

  28. Touma, R., Klingenberg, C.: Well-balanced central finite volume methods for the Ripa system. Appl. Numer. Math. 97, 42–68 (2015)

    Article  MathSciNet  Google Scholar 

  29. Vazquez-Cendon, M.E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497–526 (1999)

    Article  MathSciNet  Google Scholar 

  30. Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014)

    Article  MathSciNet  Google Scholar 

  31. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MathSciNet  Google Scholar 

  32. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  Google Scholar 

  33. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

  34. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47, 221–249 (2014)

    Article  MathSciNet  Google Scholar 

  35. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48, 339–349 (2011)

    Article  MathSciNet  Google Scholar 

  36. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of this author was partially supported by the NSF Grant DMS-1753581 and ONR Grant N00014-16-1-2714.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britton, J., Xing, Y. High Order Still-Water and Moving-Water Equilibria Preserving Discontinuous Galerkin Methods for the Ripa Model. J Sci Comput 82, 30 (2020). https://doi.org/10.1007/s10915-020-01134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01134-y

Keywords

Navigation