Skip to main content
Log in

Fast Construction of Forward Flow Maps using Eulerian Based Interpolation Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a modification to a recently developed Eulerian interpolation scheme for constructing the flow map for autonomous, periodic and aperiodic dynamical systems. We show that the proposed methods significantly improve the computational efficiency when a large number of flow maps are needed, yet retain second-order accuracy as in the original approach. The idea is to pre-compute and to store a carefully selected set of intermediate flow maps. When the initial and the final time of a required flow map are known, our proposed methods can simply load these pre-processed short-time flow maps for flow map construction. Numerical examples are included to validate our theoretical prediction, and demonstrate the effectiveness of these proposed Eulerian interpolation schemes as a simple numerical tool for other applications such as the finite-time Lyapunov exponent in determining the Lagrangian coherent structure of dynamical systems and the geometrical optics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Allshouse, M.R., Peacock, T.: Lagrangian based methods for coherent structure detection. Chaos 25, 097617 (2015)

    MathSciNet  Google Scholar 

  2. Artale, V., Boffetta, G., Celani, A., Cencini, M., Vulpiani, A.: Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys. Fluids 9(11), 3162–3171 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A Math. Gen. 30, 1–26 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton–Jacobi reachability: a brief overview and recent advances. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017)

  5. Brunton, S.L., Rowley, C.W.: Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20, 017503 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Cardwell, B.M., Mohseni, K.: Vortex shedding over two-dimensional airfoil: where do the particles come from? AIAA J. 46, 545–547 (2008)

    Google Scholar 

  7. Cencini, M., Vulpiani, A.: Finite size Lyapunov exponent: review on applications. J. Phys. A Math. Theor. 46, 254019 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Cerveny, V., Molotkov, I .A., Psencik, I.: Ray Method in Seismology. Univerzita Karlova press, Prague (1977)

    Google Scholar 

  9. Farazmand, M., Haller, G.: Computing Lagrangian coherent structures from their variational theory. Chaos 22, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Green, M.A., Rowley, C.W., Smiths, A.J.: Using hyperbolic Lagrangian coherent structures to investigate vortices in biospired fluid flows. Chaos 20, 017510 (2010)

    MathSciNet  Google Scholar 

  11. Guo, H., He, W., Peterka, T., Shen, H.-W., Collis, S.M., Helmus, J.J.: Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows. IEEE Trans. Vis. Comput. Gr. 22(6), 1672–2016 (2016)

    Google Scholar 

  12. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids A 13, 3368–3385 (2001)

    MathSciNet  Google Scholar 

  14. Haller, G., Sapsis, T.: Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos 21, 023115 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352–370 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Hermandez-Carrasco, I., Lopex, C., Hernansez-Garcia, E., Turiel, A.: How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36(3–4), 208–218 (2011)

    Google Scholar 

  17. Lekien, F., Leonard, N.: Dynamically consistent Lagrangian coherent structures. In: Experimental Chaos: 8-th Experimental Chaos Conference, pp. 132–139 (2004)

  18. Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in \(n\)-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Letz, T., Kantz, H.: Characterization of sensitivity to finite perturbations. Phys. Rev. E. 61, 2533 (2000)

    Google Scholar 

  20. Leung, S.: An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230, 3500–3524 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Leung, S.: A backward phase flow method for the finite time Lyapunov exponent. Chaos 23, 043132 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Leung, S., Qian, J.: Transmission traveltime tomography based on paraxial liouville equations and level set formulations. Inverse Probl. 23, 799–821 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228, 2951–2977 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Leung, S., Qian, J.: The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 8888–8917 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high frequency wave propagation. Geophysics 72, SM61–SM76 (2007)

    Google Scholar 

  26. Leung, S., You, G., Wong, T., Ng, Y.K.: Recent developments in Eulerian approaches for visualizing continuous dynamical systems. In: Proceedings of the Seventh International Congress of Chinese Mathematicians, vol. 2, pp. 579–622 (2019)

  27. Lipinski, D., Mohseni, K.: Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol. 212, 2436–2447 (2009)

    Google Scholar 

  28. Lukens, S., Yang, X., Fauci, L.: Using Lagrangian coherent structures to analyze fluid mixing by cillia. Chaos 20, 017511 (2010)

    MathSciNet  Google Scholar 

  29. Mills, P.: Following the vapour trail: a study of chaotic mixing of water vapour in the upper troposphere. Thesis, University of Breman, Germany (2004)

  30. Mills, P.: Isoline retrieval: an optimal sounding method for validation of advected contours. Comput. Geosci. 35, 2020–2031 (2009)

    Google Scholar 

  31. Mitchell, I., Tomlin, C.J.: Overapproximating reachable Sets by Hamilton–Jacobi projections. J. Sci. Comput. 19(1–3), 323–346 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  33. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Osher, S.J., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Num. Anal. 28, 907–922 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Qian, J., Leung, S.: A level set based Eulerian method for paraxial multivalued traveltimes. J. Comput. Phys. 197, 711–736 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Qian, J., Leung, S.: A local level set method for paraxial multivalued geometric optics. SIAM J. Sci. Comput. 28, 206–223 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Qian, J., Symes, W.W.: Adaptive finite difference method for traveltime and amplitude. Geophysics 67, 167–176 (2002)

    Google Scholar 

  38. Sapsis, T., Haller, G.: Inertial particle dynamics in a hurricane. J. Atmos. Sci. 66, 2481–2492 (2009)

    Google Scholar 

  39. Sethian, J.A.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  40. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric model—a review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Google Scholar 

  42. Tang, W., Chan, P.W., Haller, G.: Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong international airport. Chaos 20, 017502 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Tang, W., Peacock, T.: Lagrangian coherent structures and internal wave attractors. Chaos 20, 017508 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Tsai, Y.-H., Cheng, L.T., Osher, S., Burchard, P., Sapiro, G.: Visibility and its dynamics in a PDE based implicit framework. J. Comput. Phys. 199(1), 260–290 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Ying, L., Candès, E.J.: The phase flow method. J. Comput. Phys. 220, 184–215 (2006)

    MathSciNet  MATH  Google Scholar 

  46. You, G., Leung, S.: An Eulerian method for computing the coherent ergodic partition of continuous dynamical systems. J. Comput. Phys. 264, 112–132 (2014)

    MathSciNet  MATH  Google Scholar 

  47. You, G., Leung, S.: Eulerian based interpolation schemes for flow map construction and line integral computation with applications to coherent structures extraction. J. Sci. Comput. 74(1), 70–96 (2018)

    MathSciNet  MATH  Google Scholar 

  48. You, G., Leung, S.: An improved Eulerian approach for the finite time Lyapunov exponent. J. Sci. Comput. 76(3), 1407–1435 (2018)

    MathSciNet  MATH  Google Scholar 

  49. You, G., Wong, T., Leung, S.: Eulerian methods for visualizing continuous dynamical systems using Lyapunov exponents. SIAM J. Sci. Comput. 39(2), A415–A437 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of You was supported in part by the Natural Science Foundation of Jiangsu Province (BK20171071, BK20161053) and the National Natural Science Foundation of China (11701287). The second author’s work was supported by the Hong Kong RGC under Grant 16309316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiao You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, G., Leung, S. Fast Construction of Forward Flow Maps using Eulerian Based Interpolation Schemes. J Sci Comput 82, 32 (2020). https://doi.org/10.1007/s10915-020-01141-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01141-z

Keywords

Navigation