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Abstract Transportation maps between probability measures are critical objects
in numerous areas of mathematics and applications such as PDE, fluid mechanics,
geometry, machine learning, computer science, and economics. Given a pair of
source and target measures, one searches for a map that has suitable properties and
transports the source measure to the target one. Here, we study maps that possess
the no-collision property; that is, particles simultaneously traveling from sources
to targets in a unit time with uniform velocities do not collide. These maps are
particularly relevant for applications in swarm control problems. We characterize
these no-collision maps in terms of half-space preserving property and establish
a direct connection between these maps and binary-space-partitioning (BSP) tree
structures. Based on this characterization, we provide explicit BSP algorithms, of
cost O(n logn), to construct no-collision maps. Moreover, interpreting these maps
as approximations of optimal transportation maps, we find that they succeed in
computing nearly optimal maps for q-Wasserstein metric (q = 1, 2). In some cases,
our maps yield costs that are just a few percent off from being optimal.
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1 Introduction

Given a probability measure µ ∈ P(Rd) and a Borel measurable map T : Rd → Rd
the push-forward of µ by T is a probability measure T]µ that is given by

T]µ(B) = µ(T−1(B)), ∀B Borel.

Furthermore, for probability measures µ, ν ∈ P(Rd) and a Borel measurable map-
ping T : Rd → Rd we say that T transports µ to ν if

ν = T]µ. (1)

Heuristically, T]µ is the measure obtained from µ by a rearrangement that sends
(transports) a point x to T (x). Therefore, one can think of (1) as a measure
respecting correspondence of µ and ν where a point x in the support of µ is being
matched with a point T (x) in the support of ν. This perspective readily yields
numerous applications of finding a suitable T for given µ, ν. However, T may not
exist in general and, if exists, may not be unique. Therefore, a natural problem is
to search for T with some useful properties.

Optimal transportation is a remarkably rich theory that addresses this problem
[25,26]. In this theory, one associates a cost, c(x, y), for transporting a unit of mass
from point x to y. Then, one searches for a transportation (correspondence) that
minimizes the cost of transporting µ into ν; that is,

min
ν=T]µ

∫
Rd

c(x, T (x))dµ(x). (2)

This setup of the transportation problem turns out to be incredibly fruitful
far beyond the question of finding a T such that (1) holds. Indeed, applications of
optimal transportation theory include PDE, fluid mechanics, geometry, machine
learning, computer science, economics, and so on [25,26,20]. However, together
with extremely useful theoretical properties (2) comes with a considerable compu-
tational cost. Hence, development of fast algorithms for solving or estimating (2)
is vital for the applications.

In this note, we are motivated by particular applications of the transportation
problem (1) in swarm control. Specifically, we aim at finding T that have no-
collision property; that is, for every x1 6= x2 ∈ supp(µ) one has that (1− λ)x1 +
λT (x1) 6= (1−λ)x2+λT (x2) for all λ ∈ (0, 1). In other words, if we transport mass
(particles) along straight lines with constant speeds in a unit time, the point-masses
will not collide on the way. Recall that ((1− λ)Id + λT ) ]µ is the displacement
interpolation measure between µ and ν that is often used as a shape combination or
interpolation technique in imaging. Thus, no-collision property can be interpreted
as no information loss in that context.

Optimal transportation maps corresponding to c(x, y) = h(x−y) with a strictly
convex and even h do have no-collision property [25,26,3]. However, these maps are
expensive to calculate and normally require global optimization. The Hungarian
algorithm for assignment problem [24] is O(n3). The transportation plan computed
by linear programming is potentially faster, but still requires optimization. The
entropic regularization [5] is explicit and fast, but has an additional regularization
parameter which affects both the quality (plan versus map) and the cost of the
solution.
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To the best of our knowledge, the only algorithms that achieve remarkable
near-linear complexity are the ones in [1] (see also [5,6,10,2,20,23] for preceding

work) and [15]. The algorithm in [1] achieves a complexity Õ

(
n
ε3

(
C logn
ε

)d)
for

c(x, y) = |x−y|2 , where ε is the additive approximation error for the optimal cost.
Bases of the algorithm are the entropic regularization of the optimal transporta-
tion problem [5] and low rank approximations of the Gaussian kernel matrices.
However, the algorithm returns an approximate transportation plan instead of a
map. Additionally, this plan is in an implicit factored form. Thus, calculation of
the corresponding transportation map will impose quadratic complexity. Finally,
the resulting map may not have the no-collision property due to an approximation
error.

In [15], the authors achieve a complexity O(n logn) based on a clever back-and-
forth H1 gradient ascent scheme on the dual formulation of (2) and a fast calcula-
tion of c-transforms (generalized Legendre transforms) for c(x, y) =

∑d
i=1 hi(xi −

yi). However, the algorithm requires a regular grid discretization.
We propose an explicit binary-space-partitioning (BSP) algorithm that con-

structs no-collision transportation maps in O(n logn) time in full generality with-
out any optimization. We achieve this goal in two steps. First, we provide a com-
plete characterization of no-collision maps in terms of half-space preserving prop-
erty. More precisely, in Theorem 1, we show that a map has no-collision property
iff for every pair of points in the source there exists a hyperplane that separates
these points together with a parallel hyperplane separating the images of these
points. In particular, any map that respects BSP tree structures on reference and
target measures induced by the same partitioning directions is a no-collision map.
This is a critical connection between BSP trees and no-collision maps that was
not observed previously.

Second, we build transportation maps induced by BSP tree structures on refer-
ence and target measures. More precisely, given µ, ν, we partition supp(µ), supp(ν)
and resulting subsets by a sequence of hyperplanes so that each resulting subset
has equal masses on two sides of the partitioning hyperplane. Furthermore, to
every point in supp(µ) and supp(ν), we assign a binary sequence that records
in which side of partitioning hyperplanes the point fell during the construction.
These binary sequences correspond to BSP tree structures on supp(µ), supp(ν)
where nodes correspond to partitioning hyperplanes. Finally, the transportation
map matches the leaves in supp(µ) and supp(ν).

Our analysis yields a flexible construction method since we allow for an ar-
bitrary sequence of partitioning directions as long as constituent subsets shrink
in diameter. A natural choice corresponds to successive partitions by hyperplanes
orthogonal to elements of a basis. In Theorem 3, we prove that such partitions
induce a well-defined transportation map. Moreover, in Theorem 4, we show that
these maps are a.e. continuous.

Our method for constructing transportation maps depends on decomposing
each measure recursively, using the half-spaces with the same direction vectors at
each step of the recursion. In this case, the construction does not involve optimiza-
tion: only a median search. Therefore, our run-time is O(n logn) by using a O(n)
median-search algorithm [4,19].

This method can also be used to decompose a single measure, that corresponds
to a k−d tree decompositions. These are particular instances of BSP trees and are
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used for nearest neighbor search [12]. Typically, the setting is low dimensional, and
the direction vectors are standard basis vectors. An important recent application
of nearest neighbor search in high dimensions is image retrieval [16]. In this case,
modern methods use a deep neural network to output a feature vector from an
image. The cosine of the angle between feature vectors is used as a distance. Given a
new image, similar images are found by nearest neighbor search using the distance
on the feature vectors. However, k− d trees are less effective for high dimensional
data, since nearest neighbors can lie on different sides of the hyperplanes used to
bisect the data. An alternative in high dimensions is to use randomized vectors [7,
8]. A further improvement is high dimensions is to use multiple randomized k− d
trees, [18], since multiple tree reduce the possibility of an unfortunate splitting.

BSP and k − d trees are ubiquitous tools in computer science and image pro-
cessing [12,21,27]. Nevertheless, to the best of our knowledge, current work is the
first one to establish a direct connection between these structures and efficient
constructions of transportation maps.

One can also optimize for the partitioning directions. For instance, one can
search for directions that minimize transportation cost. Here, we do not address
this problem which is a subject of our future research.

Given partitioning directions, BSP trees induce a total order on supp(µ) and
supp(ν). Furthermore, the no-collision transportation map corresponding to this
partitioning sequence is the unique order-preserving or monotone map between
supp(µ) and supp(ν) that respects this order.

Maps that we obtain have several critical properties. Firstly, these are no-
collision maps; that is, point-masses do not collide when we perform the trans-
portation dynamically in a unit time. Secondly, these maps are scale-consistent.
More precisely, the map on a coarser scale is the concatenation of maps on a finer
scale: Proposition 1. Thirdly, these are transitive maps; that is, for a fixed sequence
of partitioning directions, the map from µ to ν is the composition of the maps from
µ to ρ and ρ to ν for any µ, ν, ρ: Proposition 2. The last two properties yield that
the calculations of these maps are amenable to decentralization and parallelization
techniques that can further enhance the speed and robustness of the calculations.

Since no-collision maps are closely related to optimal transportation maps,
a natural question is to test the performance of these maps as estimators for
the optimal maps. We perform tests in the two-dimensional case and successively
choose horizontal and vertical partitioning directions. Interestingly, we find that
these maps succeed in achieving nearly optimal costs for c(x, y) = ‖x − y‖qp for
p = 1, 2,∞ and q = 1, 2.

In our future research, we plan to investigate further these approximation re-
sults. Particularly interesting are the questions related to the characterization of
distortion and approximation errors of these no-collision maps. Recall that ap-
proximate transportation maps are critical in creating nearest neighbor databases
based on optimal transportation distances [14,11,13].

The paper is organized as follows. In Section 2, we fully characterize no-collision
transportation maps in terms of the half-space-preserving property: Theorem 1.
Furthermore, we prove our main existence and regularity results for half-space
preserving maps, Theorems 3 and 4. Next, in Section 3, we discuss further critical
properties of half-space-preserving transportation maps. In Section 4, we describe
the implementation of our algorithm and present the numerical experiments. Fi-
nally, in the Appendix, we present the proofs of Theorems 3 and 4.
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2 Half-space-preserving transportation maps

Here, we characterize the no-collision maps in terms of a half-space-preserving
property. Based on this characterization, we introduce a new class of transportation
maps that have the no-collision and other intriguing properties. In particular, the
construction of these maps is very quick because it requires only finding medians.

Definition 1 A map T : Ω ⊂ Rd → Rd is half-space-preserving if for every
x1 6= x2 ∈ Ω there exists a direction v ∈ Sd−1 such that

x2 · v − x1 · v ≥ 0, T (x2) · v − T (x1) · v ≥ 0,

and at least one of the inequalities is strict.

Geometrically, T is half-space-preserving if for every x1, x2 there exists a pair of
parallel hyperplanes that separate x1 from x2 and T (x1) from T (x2) in such a way
that xi and T (xi) are on the same side of the corresponding hyperplane for i = 1, 2.
It turns out that the half-space-preserving transportation maps are precisely the
ones with the no-collision property.

Theorem 1 A map T : Ω ⊂ Rd → Rd is half-space-preserving if and only if it
has the no-collision property.

Proof Assume that T is a half-space-preserving map, and x1 6= x2 ∈ Ω. Thus,
there exists v ∈ Sd−1 is such that

x2 · v − x1 · v ≥ 0, T (x2) · v − T (x1) · v ≥ 0,

and at least one of these inequalities is strict. Furthermore, assume by contradic-
tion that there exists λ ∈ (0, 1) such that

(1− λ)(x1 − x2) + λ(T (x1)− T (x2)) = 0,

or equivalently

T (x1)− T (x2) =
λ

1− λ (x2 − x1).

But then we have that

T (x2) · v − T (x1) · v = − λ

1− λ (x2 · v − x1 · v) ≤ 0,

and so
x2 · v − x1 · v = T (x2) · v − T (x1) · v = 0,

that is a contradiction. Therefore, half-space-preserving maps possess the no-
collision property.

For the converse implication, assume that T has the no-collision property, and,
by a contradiction, assume that there exist x1 6= x2 ∈ Ω for which the half-space-
preserving condition does not hold. Hence, for every v ∈ Sd−1 such that

x2 · v − x1 · v = 0

one has that
T (x2) · v − T (x1) · v = 0.
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Therefore, there exists κ ∈ R such that

T (x2)− T (x1) = κ(x2 − x1).

Next, take v = x2−x1

|x2−x1| . Then, we have that

x2 · v − x1 · v > 0.

Furthermore, since x1, x2 do not satisfy the half-space-preserving condition

T (x2) · v − T (x1) · v = κ|x2 − x1| < 0,

and so κ < 0. But then, we have that

(1− λ)(x1 − x2) + λ(T (x1)− T (x2)) = 0,

where

λ =
κ

κ− 1
∈ (0, 1).

Hence, we arrive at a contradiction with the no-collision property.

Theorem 1 is the starting point for the construction of our transportation maps;
that is, we incorporate the half-space-preserving property in the construction.
More precisely, assume that µ ∈ P(Rd) is absolutely continuous and {vk} is an
arbitrary sequence of directions. Denote by

Ω0 = {Rd}.

Since µ is absolutely continuous there exists h1 ∈ R such that

µ(x · v1 ≤ h1) = µ(x · v1 > h1).

Then we denote by

A0 = {x · v1 ≤ h1}, A1 = {x · v1 > h1}, Ω1 = {A0, A1}.

Furthermore, to every x ∈ A we assign a binary sequence, s(x), as follows

s(x) =

{
0, x ∈ A0,

1, x ∈ A1.

Then, we pick a set from Ω1, say A1, and find h2 such that

µ(A1 ∩ {x · v2 ≤ h2}) = µ(A1 ∩ {x · v2 > h2}),

and denote by

A10 = A1 ∩ {x · v2 ≤ h2}, A11 = A1 ∩ {x · v2 > h2}, Ω2 = {A0, A10, A11}.

Next, we update s(x) for x ∈ A1 as follows

s(x) =

{
10, x ∈ A10,

11, x ∈ A11.
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The process continues by picking a subset and dividing it into two pieces of equal
masses and updating the corresponding binary sequences. As a result, points in the
support of µ receive a binary sequence s(x). If directions {vk} are chosen appro-
priately, every two points in supp(µ) get separated at some step, and therefore the
sequence s(x) is a bijection between supp(µ) and {0, 1}∞. This procedure, with
the same choice of directions and subsets, can be performed for any absolutely
continuous measure ν. Suppose that the binary sequence of ν is r(x). Then, the
transportation map from µ to ν is

t = r−1 ◦ s.

Although clear intuitively, a rigorous construction of this previous map is a tech-
nically challenging task. Denote by

ŝ0(x) =0, x ∈ Rd,

ŝ1(x) =

{
0 · 13 , x ∈ A0,

1 · 13 , x ∈ A1,

ŝ2(x) =


0, x ∈ A0,

1 · 13 + 0 · 1
32 , x ∈ A10,

1 · 13 + 1 · 1
32 , x ∈ A11,

...

So ŝk(x), x ∈ A is the real number in the ternary system with digits s(x).

Lemma 1 The family {ŝk} is a bounded, non-decreasing, and uniformly-convergent
sequence of measurable step-functions with a limit

ŝ(x) = lim
k→∞

ŝk(x), x ∈ Rd. (3)

Moreover, if for some k ∈ N points x 6= x′ get separated by a hyperplane parallel
to vk, then

ŝ(x) 6= ŝ(x′).

Proof For all x, k we have that

0 ≤ ŝk(x) ≤
∞∑
i=1

1

3i
=

1

2
.

By construction, the value ŝk(x) at step k+ 1 can either stay the same or increase
by a power of 1

3 . Hence,

0 ≤ ŝk+1(x)− ŝk(x) ≤ C

k
, ∀x ∈ A,

for some universal constant C.
Furthermore, suppose that x 6= x′ and they get separated at step k for the first

time, and denote by l the length of s(x) = s(x′) right before step k. Then, we get
that

|ŝn(x)− ŝn(x′)| ≥ 1

3l
−

∞∑
i=l+1

1

3i
=

1

2 · 3l ,
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for all n ≥ k. Therefore, one has that

|ŝ(x)− ŝ(x′)| ≥ 1

2 · 3l > 0.

For a generic absolutely continuous ν ∈ P(Rd) we denote by ∆k the partition sets
at step k. Furthermore, we denote by {r̂k} and r̂ the corresponding step-functions
and the limiting function. We call a pair (A,B) ∈ Ωk ×∆k dual if ŝk(x) = r̂k(y)
for x ∈ A, y ∈ B. The following theorem is a technical result necessary for the
proof of our main existence theorem.

Theorem 2 Suppose that µ, ν are absolutely continuous probability measures, {vk}∞k=1

are some partitioning directions, and ŝ, r̂ are functions defined by (3) for µ, ν, re-
spectively. Furthermore, define a function

t̂ = r̂−1 ◦ ŝ : Rd → Rd,

where
Dom(t̂) ⊂ {x ∈ Rd s.t. r̂−1(ŝ(x)) is a singleton}.

Then one has that

t̂−1(B) = Dom(t̂) ∩A, ∀B ∈
∞⋃
k=1

∆k, (4)

where A ∈
⋃∞
k=1Ωk is the dual set of B.

Consequently, if points in Im(t̂) get eventually separated then t̂ is a half-space-
preserving map.

Proof Suppose that B ∈ ∆k, and k is the smallest such number. Furthermore,
assume that A ∈ Ωk be the dual set corresponding to B. Finally, suppose that
x0 ∈ A, y0 ∈ B. We first prove that

A =ŝ−1

([
ŝk(x0), ŝk(x0) +

1

2 · 3l

])
,

B =r̂−1

([
r̂k(y0), r̂k(y0) +

1

2 · 3l

])
,

(5)

where l is the length of the binary sequence assigned to the points of A and B at
step k. Recall that by construction we have that

ŝk(x) = r̂k(y), ∀x ∈ A, y ∈ B,

and

ŝk(x) ≤ ŝn(x) ≤ ŝk(x) +
∞∑

i=l+1

1

3i
= ŝk(x) +

1

2 · 3l

for any n ≥ k and x ∈ A. Therefore,

ŝk(x) ≤ ŝ(x) ≤ ŝk(x) +
1

2 · 3l , ∀x ∈ A,

and hence

A ⊂ ŝ−1

([
ŝk(x0), ŝk(x0) +

1

2 · 3l

])
.
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Now suppose that x /∈ A. This means that x ∈ A′ for some A′ ∈ Ωk, A′ 6= A, and
x, x0 got separated at a step before k. Therefore, from the proof of Lemma 1 we
have that

|ŝ(x′)− ŝ(x0)| ≥ 1

2 · 3l−1
,

and so

ŝ(x′) /∈
[
ŝk(x0), ŝk(x0) +

1

2 · 3l

]
,

which means that

A ⊃ ŝ−1

([
ŝk(x0), ŝk(x0) +

1

2 · 3l

])
.

Thus, (5) is proven. Furthermore, denote by

I =

[
ŝk(x0), ŝk(x0) +

1

2 · 3l

]
=

[
r̂k(y0), r̂k(y0) +

1

2 · 3l

]
.

Then we have shown that

A = ŝ−1(I), B = r̂−1(I).

Next, we have that x ∈ t̂−1(B) if and only if x ∈ Dom(t̂) and t̂(x) = r̂−1(ŝ(x)) ∈
B = r̂−1(I). Latter is equivalent to ŝ(x) ∈ I or x ∈ ŝ−1(I) = A. Hence we arrive
at (4).

Finally, assume that x1 6= x2 ∈ Dom(t̂). If t̂(x1) = t̂(x2) then we can take
v = x2−x1

|x2−x1| and obtain

x2 · v − x1 · v = |x2 − x1| > 0, t̂(x2) · v − t̂(x1) · v = 0.

If t̂(x1) 6= t̂(x2) we have that they get separated at some step. Suppose that one
step before separating they both belong to some B, and we cut B in direction v.
Then, we get that B gets partitioned into B′, B′′, where

B′ = B ∩ {y · v ≤ η}, B′′ = B ∩ {y · v > η},

for some η ∈ R. Without loss of generality assume that

t̂(x1) ∈ B′, t̂(x2) ∈ B′′.

Denote by A,A′, A′′ the dual sets of B,B′, B′′, respectively. Then we have that

B′ = B ∩ {x · v ≤ h}, A′′ = B ∩ {x · v > h}.

Furthermore, from (4) we have that

x1 ∈ A′, x2 ∈ A′′.

Thus,
x2 · v − x1 · v > 0, t̂(x2) · v − t̂(x1) · v > 0.

Now we are in the position to state and prove our main existence result for
no-collision transportation maps.
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Theorem 3 Suppose that

µ = fdx, ν = gdx,

are probability measures with compact supports such that

µ (∂(supp(µ))) = ν (∂(supp(ν))) = 0.

Furthermore, assume that

c ≤ f(x) ≤ C, µ a.e., c ≤ g(x) ≤ C, ν a.e.,

for some constants c, C > 0.
Finally, suppose that {vk}∞k=1 ⊂ {ei}di=1, where latter is an arbitrary basis in

Rd. Moreover, suppose that each set appearing during the partition gets partitioned
in each of {ei}di=1 directions infinitely many times.

Then, we have that:
1. points inside int(supp(µ)) and int(supp(ν)) get separated,
2. there exists F0 ∈ B(Rd) such that µ(F0) = 0, and for every x ∈ int(supp(µ))\F0

there exits a unique y ∈ int(supp(ν)) such that ŝ(x) = r̂(y),
3. the map t̂ : int(supp(µ))\F0 → int(supp(ν)), x 7→ r̂−1(ŝ(x)) is Borel measurable
and t̂]µ = ν.

Next, we prove a regularity result for these maps.

Theorem 4 Under the assumptions of Theorem 3 one has that t̂ is a.e. continu-
ous.

We postpone the proofs of these related and rather technical theorems to the
Appendix.

3 Further properties of half-space-preserving transportation maps

Here, we discuss further critical properties of half-space-preserving maps con-
structed in Theorem 3.

Proposition 1 (Synthesis) Suppose that µ, ν ∈ P(Rd), {vk}∞k=1 are some parti-
tioning directions, and k ∈ N. Furthermore, assume that for all dual pairs (A,B) ∈
Ωk×∆k there exists a Borel measurable half-space-preserving map tA,B : A\FA →
B such that

tA,B](µ|A\FA
) = νB ,

where FA are some Borel sets such that µ(FA) = 0. Then the map t : Rd \⋃
A∈Ωk

FA → Rd given by

t =
∑
A∈Ωk

1AtA,B ,

is a half-space-preserving map such that

t]µ = ν.
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This previous proposition asserts that the calculation of half-space-preserving
transportation maps on partition sets are mutually independent. Thus, the global-
map calculation is decentralized and stable under local perturbations.

Proposition 2 (Transitivity) Suppose that µ1, µ2, · · · , µn ∈ P(Rd), and {vk}∞k=1

are some partitioning directions. Furthermore, assume that

tk : Rd \ Fk → Rd, 1 ≤ k ≤ n− 1,

are half-space-preserving maps generated by {vk}∞k=1 such that

µk(Fk) = 0, tk]µk = µk+1, 1 ≤ k ≤ n− 1.

Then, the mapping

t = tn−1 ◦ tn−2 ◦ · · · ◦ t1 : Rd \ F1 → Rd,

is a half-space-preserving mapping corresponding to directions {vk}∞k=1, and

t]µ1 = µn.

4 Numerical Results

Our algorithm proceeds by successively partitioning the source and target mea-
sures. These partitions generate BSP tree decompositions of these measures: see
Figures 2 and 3 for uniform and Gaussian measures illustrated in Figure 1.

The algorithm has a run-time of O(n logn) [4,19]: the points are divided into
halves or cells, along a horizontal cut, and then each half is divided into vertical
halves. The algorithm is applied recursively until each cell has one point in it or
until a stopping criterion is reached. Thus, the algorithm does not involve explicit
optimization.

We compare transportation costs of maps generated by our algorithm with op-
timal ones for various transportation metrics. As a reference point, we also compute
transportation costs of lexicographical-order-preserving or Knothe-Rosenblatt maps
[17,22]: these are fair candidates with the same run-time and without any opti-
mization of the transportation cost.

We conducted our experiments on an Intel i7 2.9 GHz CPU with 8 GB of
DDR3 RAM for n = 22N , N = 2, 3, . . . , 6 number of points in the source and
target measures.

To compare transportation costs generated by our algorithm, we implemented

(i) the Hungarian algorithm for the assignment problem that has a run-time of
order n3,

(ii) the linear programming (LP) algorithm for the Kantorovich relaxation of the
optimal transportation problem,

(iii) our algorithm with horizontal-vertical partitioning (HV),
(iv) the Sinkhorn (SH) algorithm [5] for the entropic regularization (ER) of the

optimal transportation problem as implemented in [9],
(v) the lexicographical sorting algorithm (LEX) to generate the Knothe-Rosenblatt

map,
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(ii) Equally spaced source points within a grid
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(iii) Normally distributed

Fig. 1 Visualization of computational examples.

The Hungarian and LP algorithms yielded the same cost with former breaking
down for N = 3, so we report only the LP cost. In our experiments, we consider
transportation costs of the form c(x, y) = ‖x− y‖qp for p = 1, 2,∞ and q = 1, 2.

In the first set of examples, we consider empirical measures of quasi-uniformly
spaced points in an ellipse, uniformly spaced points on a grid, and normally dis-
tributed points with zero mean and an identity covariance matrix, Figure 1, as
source measures. As target measures, we consider their rotated versions by 45◦

counter-clockwise.

We summarize the results in Tables 1, 2, and 3. Note that only the Hungarian,
HV, and LEX algorithms return a map. In practice, however, the LP solution yields
a plan that is nearly a map. The SH solution is a plan that can have large support,
depending on the ER regularization parameter. We found that the algorithm was
faster with a regularization parameter 0.01 that led to quite wide plans. We report



No-collision Transportation Maps 13

Fig. 2 Bisection on equally spaced points within a grid (source)

Fig. 3 Bisection on points sampled from N (0, 1) (target)

the costs of maps or plans as appropriate. The conversion of plans to maps imposes
extra costs associated with the projection that we also include.

From Tables 1, 2, and 3 we find that the accuracy of HV costs are comparable
to those of SH. However, HV algorithm yields a map directly. Furthermore, HV
maps perform much better than Knothe-Rosenblatt maps.

In the second set of examples, we map the uniform distribution on the unit
square to the standard Gaussian, Table 4, and the latter to a rotated Gaussian
with a 3 : 1 aspect ration, Table 5. We again observe that HV maps consistently
estimate the optimal cost within a factor of 2 and in some cases, achieve remarkable
accuracy of a few percent.

Finally, in Figure 4, we use HV maps to construct barycenters or displacement
interpolations of various shapes. The results clearly indicate that HV maps are
shape-sensitive and encode geometric information.

Appendix

Proof (Theorem 3) We assume that {ei}di=1 is the standard basis in Rd because
the proof for a general basis is identical up to a multiplication by a suitable volume
element.
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Fig. 4 Barycenters of four starting shapes (shown in corners of image) at various weights

n

Cost Method 64 256 1024 4096

‖ · ‖22

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.32
0.38 (1.18×)
0.34 (1.07×)
0.85 (2.66×)

0.26
0.30 (1.16×)
0.30 (1.15×)
0.78 (3.02×)

0.24
0.28 (1.15×)
0.29 (1.18×)
0.76 (3.09×)

0.25
0.27 (1.08×)
0.29 (1.12×)
0.74 (2.92×)

‖ · ‖2

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.49
0.58 (1.17×)
0.52 (1.05×)
0.85 (1.72×)

0.44
0.51 (1.17×)
0.48 (1.08×)
0.81 (1.84×)

0.43
0.50 (1.18×)
0.47 (1.10×)
0.80 (1.88×)

0.42
0.50 (1.18×)
0.46 (1.11×)
0.79 (1.89×)

‖ · ‖21

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.49
0.64 (1.30×)
0.51 (1.04×)
1.40 (2.86×)

0.39
0.48 (1.23×)
0.42 (1.09×)
1.28 (3.33×)

0.36
0.43 (1.20×)
0.40 (1.11×)
1.24 (3.45×)

0.38
0.42 (1.11×)
0.40 (1.05×)
1.22 (3.24×)

‖ · ‖2∞

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.23
0.30 (1.28×)
0.26 (1.11×)
0.70 (2.97×)

0.19
0.25 (1.31×)
0.23 (1.20×)
0.64 (3.34×)

0.18
0.24 (1.32×)
0.22 (1.24×)
0.62 (3.45×)

0.18
0.23 (1.26×)
0.22 (1.20×)
0.61 (3.31×)

Table 1 Average costs of set of quasi-equally spaced points within an ellipse to the same set
of points rotated 45◦ counter-clockwise measured in various cost functions

1. Suppose that x ∈ int (supp(µ)), and x′ ∈ Rd, x 6= x′, but they never get sepa-
rated by a hyperplane. Therefore, whenever a common subset containing x, x′ gets
partitioned they always stay in the same side. Suppose that {Ak} is the sequence
of subsets that they both belong during the cutting process. By construction, we
have that

Ak+1 ⊂ Ak, µ(Ak+1) =
µ(Ak)

2
.

Since {vk}∞k=1 ⊂ {e1, e2, · · · , ed} we have that

Ak = (αk1 , β
k
1 ]× (αk2 , β

k
2 ] · · · × (αkd, β

k
d ],
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n

Cost Method 64 256 1024 4096

‖ · ‖22

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.31
0.31 (1.01×)
0.35 (1.12×)
0.42 (1.36×)

0.30
0.31 (1.01×)
0.34 (1.14×)
0.40 (1.33×)

0.30
0.30 (1.01×)
0.34 (1.14×)
0.40 (1.32×)

0.31
0.30 (0.98×)
0.34 (1.11×)
0.39 (1.27×)

‖ · ‖2

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.54
0.55 (1.01×)
0.57 (1.05×)
0.60 (1.11×)

0.54
0.54 (1.01×)
0.57 (1.05×)
0.59 (1.09×)

0.54
0.54 (1.01×)
0.57 (1.05×)
0.59 (1.09×)

0.54
0.54 (1.01×)
0.57 (1.05×)
0.59 (1.08×)

‖ · ‖21

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.51
0.52 (1.02×)
0.53 (1.04×)
0.69 (1.35×)

0.51
0.52 (1.02×)
0.53 (1.05×)
0.67 (1.32×)

0.50
0.51 (1.02×)
0.53 (1.05×)
0.65 (1.30×)

0.50
0.51 (1.01×)
0.53 (1.05×)
0.65 (1.29×)

‖ · ‖2∞

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.26
0.26 (1.03×)
0.28 (1.09×)
0.35 (1.35×)

0.25
0.26 (1.02×)
0.28 (1.10×)
0.33 (1.32×)

0.25
0.26 (1.02×)
0.28 (1.10×)
0.33 (1.30×)

0.25
0.26 (1.02×)
0.28 (1.10×)
0.32 (1.28×)

Table 2 Average costs of set of points equally spaced within the unit grid to the same set of
points rotated 45◦ counter-clockwise measured in various cost functions

n

Cost Method 64 256 1024 4096

‖ · ‖22

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.23
0.49 (2.15×)
0.24 (1.08×)
1.14 (5.05×)

0.10
0.22 (2.20×)
0.13 (1.30×)
1.14 (11.23×)

0.04
0.09 (2.49×)
0.08 (2.12×)
1.20 (32.91×)

0.01
0.04 (3.08×)
0.06 (4.55×)
1.18 (91.63×)

‖ · ‖2

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.39
0.49 (1.25×)
0.41 (1.06×)
0.86 (2.19×)

0.19
0.32 (1.63×)
0.22 (1.15×)
0.86 (4.44×)

0.15
0.24 (1.64×)
0.19 (1.28×)
0.97 (6.68×)

0.07
0.13 (1.69×)
0.13 (1.76×)
0.95 (12.85×)

‖ · ‖21

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.41
0.74 (1.78×)
0.43 (1.05×)
1.60 (3.86×)

0.14
0.27 (1.94×)
0.16 (1.19×)
1.98 (14.39×)

0.06
0.16 (2.49×)
0.10 (1.61×)
1.92 (30.63×)

0.02
0.05 (3.06×)
0.06 (3.80×)
1.86 (117.01×)

‖ · ‖2∞

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.17
0.31 (1.81×)
0.19 (1.13×)
0.97 (5.66×)

0.09
0.21 (2.33×)
0.12 (1.37×)
0.96 (10.92×)

0.03
0.08 (3.28×)
0.07 (2.64×)
0.97 (38.32×)

0.01
0.04 (3.95×)
0.06 (5.77×)
0.96 (99.29×)

Table 3 Average costs of sets of points sampled from N (0, 1) to the same set of points rotated
45◦ counter-clockwise measured in various cost functions

where −∞ ≤ αki < βki ≤ +∞. Denote by

x = (x1, x2, · · · , xd), x′ = (x′1, x
′
2, · · · , x′d).

Without loss of generality, assume that

xi 6= x′i, 1 ≤ i ≤ l, xi = x′i, i > l.

Since {Ak} are rectangles we have that

R =
⋂
k

Ak,
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n

Cost Method 64 256 1024 4096

‖ · ‖22

OT
HV (ratio)
SH (ratio)

LEX (ratio)

1.56
1.58 (1.01×)
1.60 (1.02×)
2.86 (1.83×)

1.76
1.76 (1.00×)
1.80 (1.02×)
3.02 (1.72×)

1.53
1.53 (1.00×)
1.57 (1.03×)
2.65 (1.73×)

1.55
1.54 (0.99×)
1.59 (1.02×)
2.68 (1.73×)

‖ · ‖2

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.96
0.98 (1.01×)
0.99 (1.03×)
1.42 (1.47×)

1.07
1.08 (1.01×)
1.10 (1.03×)
1.46 (1.36×)

1.05
1.05 (1.00×)
1.08 (1.03×)
1.42 (1.35×)

1.09
1.09 (1.00×)
1.12 (1.03×)
1.45 (1.33×)

‖ · ‖21

OT
HV (ratio)
SH (ratio)

LEX (ratio)

3.23
3.31 (1.03×)
3.25 (1.01×)
5.44 (1.69×)

2.42
2.46 (1.02×)
2.45 (1.01×)
4.26 (1.76×)

2.53
2.56 (1.01×)
2.56 (1.01×)
4.43 (1.75×)

2.52
2.53 (1.01×)
2.54 (1.01×)
4.41 (1.75×)

‖ · ‖2∞

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.97
1.01 (1.04×)
0.99 (1.02×)
2.15 (2.22×)

1.34
1.35 (1.01×)
1.36 (1.02×)
2.27 (1.70×)

1.25
1.25 (1.00×)
1.28 (1.02×)
2.16 (1.73×)

1.28
1.29 (1.00×)
1.31 (1.02×)
2.23 (1.74×)

Table 4 Average costs of set of points equally spaced within a grid to a set of points sampled
from N (0, 1) measured in various cost functions

n

Cost Method 64 256 1024 4096

‖ · ‖22

OT
HV (ratio)
SH (ratio)

LEX (ratio)

0.97
1.49 (1.54×)
0.98 (1.02×)
6.52 (6.72×)

1.02
1.23 (1.21×)
1.05 (1.03×)
6.59 (6.46×)

1.23
1.32 (1.07×)
1.26 (1.03×)
7.00 (5.72×)

1.14
1.16 (1.02×)
1.16 (1.02×)
7.13 (6.27×)

‖ · ‖2

OT
HV (ratio)
SH (ratio)

LEX (ratio)

1.01
1.15 (1.13×)
1.04 (1.02×)
2.25 (2.22×)

0.77
0.83 (1.08×)
0.80 (1.03×)
2.18 (2.83×)

0.78
0.81 (1.04×)
0.81 (1.04×)
2.27 (2.92×)

0.84
0.85 (1.02×)
0.87 (1.04×)
2.31 (2.75×)

‖ · ‖21

OT
HV (ratio)
SH (ratio)

LEX (ratio)

1.27
1.74 (1.38×)
1.28 (1.01×)
9.42 (7.44×)

1.47
1.75 (1.19×)
1.49 (1.01×)
10.37 (7.07×)

1.22
1.37 (1.13×)
1.25 (1.03×)
11.27 (9.27×)

1.09
1.15 (1.05×)
1.10 (1.01×)
11.13 (10.21×)

‖ · ‖2∞

OT
HV (ratio)
SH (ratio)

LEX (ratio)

1.39
1.79 (1.29×)
1.41 (1.01×)
6.58 (4.75×)

1.23
1.49 (1.21×)
1.26 (1.02×)
5.97 (4.85×)

1.06
1.19 (1.12×)
1.08 (1.03×)
5.89 (5.57×)

1.00
1.05 (1.05×)
1.03 (1.02×)
5.97 (5.94×)

Table 5 Average costs of sets of points sampled from N (0, 1) to a new set of points sampled
from N (0, 1) (then scaled to a 3:1 aspect ratio and rotated 90◦ counter-clockwise) measured
in various cost functions

is also a rectangle, and we denote by

R = [α1, β1]× [α2, β2]× · · · [αd, βd],

and we have that

lim
k→∞

αki = αi, lim
k→∞

βki = βi, 1 ≤ i ≤ d.

Since x, x′ ∈ R we have that

βi − αi ≥ |xi − x′i| > 0, 1 ≤ i ≤ l.
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Furthermore, we have that

µ(R) = lim
k→∞

µ(Ak) = 0.

If Ld(R) > 0 then we have that int(R) 6= ∅ and int(R) ∩ supp(µ) = ∅ which
contradicts to the fact that x ∈ int (supp(µ)). Therefore, we have that Ld(R) = 0
which means that αi = βi for some i > l. Without loss of generality assume that

αi < βi, 1 ≤ i ≤ q, αi = βi, i > q.

We have that q ≥ l. Moreover, αi = βi = xi = x′i, and −∞ < αki < βki <∞ for all
i > q and k large enough. Additionally, if −∞ < αi < βi <∞ for some 1 ≤ i ≤ q
then −∞ < αki < βki < ∞ for k large enough. In what follows we assume that k
is so large that this previous statements hold.

Furthermore, assume that M > 0 is such that

supp(µ) ⊂ [−M,M ]d.

Since µ = fdx, by construction we have that∫
Ak\Ak+1

fdx =

∫
Ak+1

fdx, ∀k.

Therefore, using c ≤ f ≤ C, µ a.e. we get that

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≥ c

C
> 0, ∀k. (6)

Now, suppose that for some k the set Ak gets partitioned in the direction e1.
There are three possibilities: a) −∞ < α1 < β1 <∞, b) −∞ < α1 < β1 = ∞, c)
−∞ = α1 < β1 <∞.
a) −∞ < α1 < β1 <∞. In this case, we have that −∞ < αk1 < βk1 <∞ since k is
large enough.Therefore, either

Ak+1 = (αk1 , γ]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

Ak \Ak+1 = (γ, βk1 ]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

or

Ak+1 = (γ, βk1 ]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

Ak \Ak+1 = (αk1 , γ]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

for some αk1 < γ < βk1 . Suppose that we are in the former case.
Since x ∈ int(supp(µ)) we have that there exists a σ > 0 such that

×di=1[xi − σ, xi + σ] ⊂ supp(µ).

We have that

Ak \Ak+1 ∩ supp(µ) ⊂ Ak \Ak+1 ∩ [−M,M ]d,
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and therefore

Ld(Ak \Ak+1 ∩ supp(µ))

≤Ld(Ak \Ak+1 ∩ [−M,M ]d) ≤ (βk1 − γ)
d∏
i=2

min{βki − αki , 2M}

≤(βk1 − β1)(2M)q−1
∏
i>q

(βki − αki ),

where we used the fact that β1 ≤ γ < βk1 and

lim
k→∞

αki = lim
k→∞

βki = xi, i > q.

On the other hand, we have that

Ak+1 ∩ supp(µ) ⊃ Ak+1 ∩ ×di=1[xi − σ, xi + σ],

therefore

Ld(Ak+1 ∩ supp(µ))

≥Ld(Ak+1 ∩ ×di=1[xi − σ, xi + σ]) ≥ min{γ − αk1 , σ}
d∏
i=2

min{βki − αki , σ}

≥
q∏
i=1

min{βi − αi, σ}
∏
i>q

(βki − αki ).

Hence, we obtain that

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≤ (βk1 − β1)

(2M)q−1∏q
i=1 min{βi − αi, σ}

.

Similarly, if x, x′ fall in the upper (in e1 direction) half of Ak we get that

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≤ (α1 − αk1)

(2M)q−1∏q
i=1 min{βi − αi, σ}

.

b) −∞ < α1 < β1 =∞. In this case we have that −∞ < αk1 < βk1 =∞, and

Ak+1 = (γ,∞]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

Ak \Ak+1 = (αk1 , γ]× (αk2 , β
k
2 ] · · · × (αkd, β

k
d ],

for some αk1 < γ <∞. As before, we have that

Ld(Ak \Ak+1 ∩ supp(µ))

≤ (γ − αk1)(2M)q−1
∏
i>q

(βki − αki ) ≤ (α1 − αk1)(2M)q−1
∏
i>q

(βki − αki ).

Similarly, we have that

Ld(Ak+1 ∩ supp(µ)) ≥
q∏
i=1

min{βi − αi, σ}
∏
i>q

(βki − αki ),
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and thus

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≤ (α1 − αk1)

(2M)q−1∏q
i=1 min{βi − αi, σ}

.

c) −∞ = α1 < β1 <∞. In this case, we have that −∞ = αk1 < βk1 <∞, and

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≤ (βk1 − β1)

(2M)q−1∏q
i=1 min{βi − αi, σ}

.

Summarizing, we get whenever Ak gets partitioned in e1 we have that

Ld(Ak \Ak+1 ∩ supp(µ))

Ld(Ak+1 ∩ supp(µ))
≤ o(1).

We get similar estimates for partitions in any of the directions {ei}qi=1. Thus, if
we take a subsequence {Akm

} that get partitioned in one of these directions we
get that

lim
m→∞

Ld(Akm
\Akm+1 ∩ supp(µ))

Ld(Akm+1 ∩ supp(µ))
= 0,

which contradicts to (6). Thus, the first item is proven.
2. Firstly, we will show that for every x ∈ int(supp(µ)) there exists y ∈ supp(ν)
such that

ŝ(x) = r̂(y).

Assume that {Ak} is the sequence of partition sets that contain x. Again, we have
that

Ak+1 ⊂ Ak, µ(Ak+1) =
µ(Ak)

2
,

and
Ak = (αk1 , β

k
1 ]× (αk2 , β

k
2 ] · · · × (αkd, β

k
d ],

for some −∞ ≤ αki < βki ≤ +∞. Moreover, from the previous item we obtain that⋂
k

Ak = {x},

because x ∈ int(supp(µ)), and the intersection cannot contain any other point.
Therefore, we have that −∞ < αki < βki < +∞, and

αki ↗ xi, βki ↘ xi, as k →∞,

where x = (x1, x2, · · · , xd).
Denote by {Bk} the dual sequence of {Ak} that partition ν. Again, we have

that
Bk = (γk1 , δ

k
1 ]× (γk2 , δ

k
2 ] · · · × (γkd , δ

k
d ],

for some −∞ < γki < δki < +∞. Thus, our first task is to show that⋂
k

Bk ∩ supp(ν) 6= ∅.

Since αki < xi we have that {αki }k is not an eventually constant sequence.
Therefore, {γki }k is also not an eventually constant sequence. Besides, {γki }k and
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{δki }k are, respectively, nondecreasing and nonincreasing sequences. Therefore, we
have that

Wx =
⋂
k

Bk = [γ1, δ1]× [γ2, δ2] · · · × [γd, δd],

where

γi = sup
k
γki , δi = inf

k
δki , 1 ≤ i ≤ d.

In fact, we have that

Wx =
⋂
k

cl(Bk).

Since ν(Bk) > 0 we have that cl(Bk) ∩ supp(ν) 6= ∅. Thus,

{cl(Bk) ∩ supp(ν)}k

is a nested family of nonempty compact sets. Therefore, we have that

Wx ∩ supp(ν) =
⋂
k

cl(Bk) ∩ supp(ν) 6= ∅.

If Wx ∩ int(supp(ν)) 6= ∅ then by item 1, we get that

Wx = {y},

for some y ∈ int(supp(ν)). Hence, to complete the proof of item 1, we need to
show that there exists a F0 ∈ B(Rd) such that µ(F0) = 0, and

Wx ∩ int(supp(ν)) 6= ∅, ∀x /∈ int(supp(µ)) \ F0.

For every k denote by

∆′k = {B ∈ ∆k s,t. B ∩ ∂(supp(ν)) 6= ∅},

and

∆′′k = ∆k \∆′k.

Since ⋃
∆k

B = Rd,

we obtain that

∂(supp(ν)) ⊂
⋃
∆′

k

B = Hk.

Furthermore, for everyB ∈ ∆′′k we have that ν(B) > 0, and thereforeB∩supp(ν) 6=
∅. On the other hand, B ∩ ∂(supp(ν)) = ∅, and B is connected. Hence, B ⊂
int(supp(ν)), and

Gk =
⋃
∆′′

k

B ⊂ int(supp(ν)).

Note that

Hk ⊃ Hk+1, Gk ⊂ Gk+1, ∀k.
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By item 1 we have that for every y ∈ int(supp(ν)) there exists a partition rectangle
B such that y ∈ B ⊂ int(supp(ν)). Hence, B ∈ ∆′′k for some k, and y ∈ Gk.
Therefore, we obtain that ⋃

k

Gk = int(supp(ν)).

Consequently, ⋂
k

Hk = Rd \ int(supp(ν)) ⊃ ∂(supp(ν)).

Since ν(int(supp(ν))) = 1 we get that

ν

(⋃
k

Gk

)
= 1, ν

(⋂
k

Hk

)
= 0.

Denote by Ω′k and Ω′′k the families dual to ∆′k and ∆′′k . Furthermore, denote by

Fk =
⋃
Ω′

k

A, Ek =
⋃
Ω′′

k

A.

By construction, we have that

Fk ⊃ Fk+1, Ek ⊂ Ek+1, ∀k.

Moreover,
µ(Fk) = ν(Hk), µ(Ek) = ν(Gk).

Denote by

F0 =
⋂
k

Fk.

Then, we have that F0 ∈ B(Rd), and

µ(F0) = lim
k→∞

µ(Fk) = lim
k→∞

ν(Hk) = ν

(⋂
k

Hk

)
= 0.

Finally, note that if Wx ∩ int(supp(ν)) = ∅ then x ∈ F0.
3. From items 1, 2 we have that the map t̂ : int(supp(µ))\F0 → int(supp(ν)) given
by

t̂(x) = r̂−1(ŝ(x)),

is well defined. Our first task is to show that t̂ is Borel measurable. For that,
we need to show that t̂−1(G) ∈ B(Rd) for any open set G ⊂ Rd. Since Im(t̂) ⊂
int(supp(ν)) we have that

t̂−1(G) = t̂−1 (G ∩ int(supp(ν))) .

Therefore, we may assume that G ⊂ int(supp(ν)). Furthermore, denote by

∆′′k = {B ∈ ∆k s.t. B ⊂ G} , ∆′k = ∆k \∆′′k .

Next, define

Gk =
⋃
∆′′

k

B.
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Then we have that
Gk ⊂ Gk+1, Gk ⊂ G, ∀k.

From item 1, we have that for every y ∈ G there exists a partition set B such that
y ∈ B ⊂ G. Hence, we get that ⋃

k

Gk = G.

This means that
t̂−1(G) =

⋃
k

t̂−1(Gk) =
⋃
k

⋃
∆′′

k

t̂−1(B).

On the other hand, from equation (4) in Theorem 2 we have that

t̂−1(G) =
⋃
k

⋃
Ω′′

k

(A ∩ int(supp(µ)) \ F0),

where Ω′k, Ω
′′
k are the dual families of ∆′k,∆

′′
k . Therefore, we have that t̂−1(G) ∈

B(Rd). Furthermore, denote by

Fk =
⋃
Ω′′

k

(A \ F0), ∀k.

By construction, we have that

Fk ⊂ Fk+1, ∀k,

and hence
µ
(
t̂−1(G)

)
= lim
k→∞

µ(Fk).

On the other hand, from construction and equations µ(F0) = 0, µ(int(supp(µ))) =
1, we have that

µ(Fk) =
∑
Ω′′

k

µ(A) =
∑
∆′′

k

ν(B) = ν(Gk).

Therefore, we obtain that

µ
(
t̂−1(G)

)
= lim
k→∞

µ(Fk) = lim
k→∞

ν(Gk) = ν(G).

Thus, t̂ is Borel measurable and t̂]µ = ν. Finally, from item 1 we have that points
in Im(t̂) ⊂ int(supp(ν)) get eventually separated. Therefore, by Theorem 2 we
obtain that t̂ is half-space-preserving.

Proof (Theorem 4) Denote by H the union of all the hyperplanes that partition
µ. Then we have that Ld(H) = µ(H) = 0. We prove that t̂ is continuous on
Dom(t̂) \H.

Suppose x ∈ Dom(t̂) \ H, and y = t̂(x). Furthermore, denote by {Ak} and
{Bk} the rectangles that contain x and y, respectively. We have that⋂

k

Ak = {x},
⋂
k

Bk = {y}.

Moreover, since x /∈ H we have that x ∈ int(Ak) for all k. Therefore, by construc-
tion, we have that y ∈ int(Bk) for all k. Thus, we obtain that⋂

k

int(Ak) = {x},
⋂
k

int(Bk) = {y},

which yields the continuity.
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