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Abstract

The two-parametric Mittag-Leffler function (MLF), Eα,β, is fundamental to the
study and simulation of fractional differential and integral equations. However, these
functions are computationally expensive and their numerical implementations are chal-
lenging. In this paper, we present a unified framework for developing global rational
approximants of Eα,β(−x), x > 0, with {(α, β) : 0 < α ≤ 1, β ≥ α, (α, β) 6= (1, 1)}.
This framework is based on the series definition and the asymptotic expansion at infin-
ity. In particular, we develop three types of fourth-order global rational approximations
and discuss how they could be used to approximate the inverse function. Unlike ex-
isting approximations which are either limited to MLF of one parameter or of low
accuracy for the two-parametric MLF, our rational approximants are of fourth order
accuracy and have low percentage error globally. For efficient utilization, we study the
partial fraction decomposition and use them to approximate the two-parametric MLF
with a matrix argument which arise in the solutions of fractional evolution differential
and integral equations.

Keywords: Mittag-Leffler functions; Fractional evolution equations; Rational
approximation; Global Padé approximation; Matrix function

1. Introduction

In this paper, we consider the two-parametric MLF

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
, Reα > 0, β ∈ C, z ∈ C. (1)

This entire function generalizes the MLF of one-parameter, Eα = Eα,1.
The function Eα,β plays a key role in the study and simulation of history-dependent

evolution models that arise in many engineering and science areas such as flow in porous
media, pattern recognition, rheology, anomalous diffusion, electric networks, etc. In
particular, it is the cornerstone of the development of generalized exponential time
differencing (GETD) schemes [7] which extend the notion of exponential integrator
[19] to time-fractional problems.
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Evaluation of Eα,β with scalar arguments is very expensive and challenging. Al-
though the series (1) converges analytically for all z ∈ C, it is not practical or may not
be valid to use it computationally for |z| ≥ 1. Consequently, different techniques for the
evaluation of Eα,β have been developed. Gorenflo, Loutchko and Luchko [11] proposed
an algorithm based on using appropriate techniques for different regions of C. For
small and large |z| values, they used the series definition (1) and the asymptotic series
at infinity, respectively. For the intermediate regions they used the integral representa-
tions. A similar approach has been followed by Hilfer and Seybold [13]. Garrappa [8]
provided an approach based on the numerical inversion of the Laplace transform. For
efficient implementation, he provided an algorithm for finding the optimal parabolic
contour on the basis of the distance and strength of the singularities of the Laplace
transform.

The evaluation of MLF with a matrix argument is still a tricky and tough task.
Garrappa [9] developed an algorithm based on the similarity transform. This approach
requires the evaluation of MLF and its derivatives for each eigenvalue, which is again
obtained using the Laplace transform. Clearly, massive calculations will be required
for large full matrices.

In summary, all existing algorithms for evaluating Eα,β suffer from some drawbacks
such as nontrivial software implementation, long CPU time especially when a fine
error tolerance is imposed, overflow numbers, and catastrophic cancellations. Due to
these computational complexities and the need for efficient matrix function evaluation,
accurate and efficient approximations are imperative.

To the best of authors’ knowledge, there have been few studies about rational ap-
proximations of MLF. Freed et al. [5] developed a piecewise approximant for Eα(−xα),
x > 0, based on the truncated series representation for small values, the asymptotic
expansion for large values, and a Padé type approximant for the intermediate values.
For Eα(−x), x > 0, Starovoitov and Starovoitova [23] analyzed Padé type approxi-
mants of the form pn/qm, m ≤ n, and discussed their asymptotic rate of convergence
on the compact unit disk as n → ∞. Borhanifar and Valizadeh [3] constructed a fourth
order Padé approximant and used it to develop a numerical scheme for the time-space
diffusion equation. Iyiola et al. [15] constructed a second order non-Padé type rational
approximation for Eα,β using real distinct poles (RDP). However, although the approx-
imants in [3] and [15] might be adequate for small values, they fail to account for the
asymptotic power law behavior.

The global Padé approximation technique introduced by Winitzki [24] has been
applied recently to construct rational approximations for the Mittag-Leffler function
and its generalization. In this technique, rational approximations are constructed by
matching them with selected combinations of the series definition and the asymptotic
expansion. Atkinson and Osseiran [1] used this technique to construct a second-order
rational approximation for Eα. Later, Ingo et al. [14] showed that the rational approx-
imant in [1] is not satisfactory for α close to one. Alternatively, they constructed a
fourth-order global approximation for Eα that behaves reasonably well for all values of
α ∈ (0, 1). Zeng [25] extended this technique to construct a second-order global Padé
approximant for Eα,β . However, this approximation is not satisfactory for α close to
one, especially when β = 1 and it is malfunctioning for β = α, 0.5 ≤ α < 1.

As for the inverse of MLF, Hilfer and Seybold [13] introduced the inverse of Eα,β(z)
as the solution of the equation

Lα,β(Eα,β(z)) = z, z ∈ C, (2)

where Lα,β(z) is evaluated by solving the functional equation (2) numerically. They
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discussed the principal branch of the function and showed that it reduces to the princi-
pal branch of the logarithm function as α → 1 when β = 1. Hanneken and Achar [12]
proposed a finite series representation for Lα,β but only for some values of α ∈ (0, 1

2
)

and β = 1, 2. Lately, approximations of Lα,β have been introduced to overcome the
difficulty of solving the functional equation (2). Atkinson and Osseiran [1]; and Ingo
et al. [14] discussed the approximation of (−Lα,1) based on the inversion of their global
Padé approximants. Similarly, Zeng and Chen [25]; and Iyiola et al. [15] inverted their
second order approximants of Eα,β to obtain an approximation of (−Lα,β).

Consequently, based on the current state of the literature, more accurate rational
approximations of Eα,β and its inverse are needed. Such approximations are expected to
ease computation cost and yield accurate values globally. In this paper, we introduce a
framework that unifies the notion of global Padé approximation for the two-parametric
MLF. Moreover, we develop different types of fourth-order global rational approxi-
mations for Eα,β(−x), x > 0, for {(α, β) : 0 < α ≤ 1, β ≥ α, (α, β) 6= (1, 1)}. We
also discuss analytically and numerically the approximation errors. Furthermore, we
present the partial fraction decomposition of the rational approximants together with
its advantage in efficient implementation for matrix arguments. An algorithm for com-
puting (−Lα,β) based on the inversion of our fourth order approximants is presented.
All along, we demonstrate through numerical experiments and comparisons, that the
new developed fourth-order approximants provide superior global approximations for
Eα,β and its special case Eα.

This paper is organized as follows. Section 2 contains the unified framework for the
global Padé approximation and the error analysis. In section 3, we discuss the second
order global Padé approximant constructed by Zeng and Chen in [25] and the need for
more accurate approximants. Section 4 contains the construction of our fourth order
approximants. The partial fraction decomposition and the algorithms to compute the
poles and weights are discussed in section 5. In section 6 we discuss the inverse MLF
and its approximation through the inversion of our rational approximants. Graphical
and numerical demonstrations of the performance of our approximants are presented
in section 7. In section 8, we apply our approximants to the solutions of fractional
differential and integral equations and systems.

The computations in this paper are performed using Matlab software on a dell
laptop with a core i5 processor.

2. Global rational approximation for Eα,β(−x), x > 0

In this section, we introduce and outline the construction of the global Padé ap-
proximation for Eα,β(−x), x > 0, for the cases

A = {(α, β) : 0 < α ≤ 1, β ≥ α, (α, β) 6= (1, 1)}. (3)

Our approach is based on the technique proposed by Winitzki in [24]. This technique
relies on the asymptotic expansion given by the following theorem ([20], Theorem 1.4).

Theorem 2.1. Let α ∈ (0, 2), β ∈ C and µ ∈ R, πα
2

< µ < min{π, πα}. Then for
µ ≤ |arg z| ≤ π,

Eα,β(z) = −
n

∑

k=1

(z)−k

Γ(β − αk)
+O(|z|−(n+1)), as |z| → ∞, n ≥ 1. (4)

3



In particular, when β = α, the series in (4) takes the form

Eα,α(z) = −
n−1
∑

k=1

z−(k+1)

Γ(−αk)
+O(|z|−(n+1)), as |z| → ∞, n ≥ 2. (5)

As an abbreviation for the rest of the paper, the cases β > α and β = α are to be
understood as sub-cases of (3).

2.1. Definition

We proceed by considering the function

Eα,β(x) = sα,β(x)Eα,β(−x), (6)

with sα,β(x) chosen so that the first term in the asymptotic expansion of Eα,β is 1. It
follows from (4) and (5) that

sα,β(x) =











Γ(β − α)x, β > α,

−Γ(−α)x2, β = α.

(7)

This function admits the following behavior:

Eα,β(x) =































a(x) +O(xm), as x → 0, m ≥
{

2, β > α,

3, β = α,

b(x−1) +O(x−n), as x → ∞, n ≥
{

1, β > α,

2, β = α,

(8)

where, from (1),

a(x) =































Γ(β − α) x

m−2
∑

k=0

(−x)k

Γ(β + αk)
, β > α,

−Γ(−α) x2
m−3
∑

k=0

(−x)k

Γ(αk + α)
, β = α,

(9)

and from (4)–(5),

b(x−1) =































−Γ(β − α) x
n

∑

k=1

(−x)−k

Γ(β − αk)
, β > α,

Γ(−α) x2
n

∑

k=1

(−x)−(k+1)

Γ(−αk)
, β = α.

(10)

Note that when n = 1, then b(x−1) = 1. We will see later (equation (18)) that in this
case the asymptotic expansion in (8) does not contribute to the rational approximation
of Eα,β. Therefore, for our purposes, we always take n > 1.

Next, we introduce the following definition.
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Definition 2.2. Consider Eα,β with (α, β) ∈ A. Let m and n be positive integers such
that

n > 1, m ≥
{

2, if β > α,

3, if β = α,
, m+ n is odd. (11)

Then, the global Padé approximation, Rm,n
α,β (x), of type (m,n) for Eα,β(−x) is defined

as

Rm,n
α,β (x) =

1

sα,β(x)

p(x)

q(x)
, 0 < α ≤ 1, β ≥ α, (α, β) 6= (1, 1), (12)

where p and q are polynomials of degree ν,

ν :=
m+ n− 1

2
≥ 1, (13)

such that q(x) 6= 0 for x > 0 and

p(x)

q(x)
=











a(x) +O(xm−ν), as x → 0,

b(x−1) +O(x−n), as x → ∞.

(14)

Next, we present the procedure for constructing Rm,n
α,β (x).

2.2. Construction of Rm,n
α,β (x)

Let m and n be as in (11). We seek a rational approximation of the form

Eα,β(x) ≈
p(x)

q(x)
=

p0 + p1x+ · · ·+ pνx
ν

q0 + q1x+ · · ·+ qνxν
, (15)

where ν is as in (13). This means that 2ν + 1 coefficients are to be determined.
Since Eα,β(x) → 1 as x → ∞ and limx→∞ p(x)/q(x) = pν/qν , we can set

pν = qν = 1.

To find the other 2ν unknowns {pi, qi}ν−1
i=0 , we solve the system of linear equations

obtained by satisfying the requirement (14) which takes the form

p(x)− q(x)a(x) = O(xm), as x → 0, (16)

x−νp(x)− x−νq(x)b(x−1) = O(x−n), as x → ∞. (17)

By expanding the left-hand side of (16), it follows that the coefficients of xk, k =
0, 1, . . . , m − 1, must vanish. As such, we obtain m linear equations. Similarly, by
expanding the left hand side of (17), the coefficients of

x−1, x−2, . . . , x−(n−1) (18)

must vanish and we obtain another system of n− 1 linear equations. Collectively, (16)
and (17) yield a linear system of m+ n− 1 (= 2ν) equations which are then solved for
the 2ν unknowns. By inspection, we have

{

p0 = 0, β > α,

p0 = p1 = 0, β = α.
(19)

Hence, for β > α we solve 2ν − 1 (= m+ n− 2) equations with m+ n− 2 unknowns,
while for β = α we solve 2ν − 2 (= m+ n− 3) equations with m+ n− 3 unknowns.

We will see later (Remark 2.3) that for controlling the approximation error we must
have m > n. Table (1) provides the order of approximations for the types (m,n) with
m > n > 1 and m+ n is odd.
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Table 1: Order of approximations for different types (m,n)

n 2 3 4 5
m

3 2
4 · 3
5 3 · 4
6 · 4 · 5
7 4 · 5 ·
8 · 5 · 6

2.3. Approximation error

Consider the pointwise error

em,n
α,β (x) := Eα,β(−x)−Rm,n

α,β (x), x > 0. (20)

Equations (6), (7), (8), (12), and (14) yield the following orders. As x → 0, we have

em,n
α,β (x) = Eα,β(−x)−Rm,n

α,β (x) =
1

sα,β(x)

{

Eα,β(x)−
p(x)

q(x)

}

=
1

sα,β(x)

{

a(x) +O(xm)− a(x)−O(xm−ν)
}

=
1

sα,β(x)

{

O(xm) +O(xm−ν)
}

=

{

O(xm−ν−1), β > α,

O(xm−ν−2), β = α.
(21)

As x → ∞, we have

em,n
α,β (x) = Eα,β(−x)− Rm,n

α,β (x) =
1

sα,β(x)

{

Eα,β(x)−
p(x)

q(x)

}

=
1

sα,β(x)

{

b(x−1) +O(x−n)− b(x−1)−O(x−n)
}

=
1

sα,β(x)
O(x−n)

=

{

O(x−n−1), n > 1, β > α,

O(x−n−2), n > 1, β = α.
(22)

Remark 2.3. By inspection of (21) and (22), one can observe the following.

• For reliable approximations of Rm,n
α,β at small values, one should considerm ≥ n+1

when β 6= α and m ≥ n + 3 when β = α. This is why, for example, R5,4
α,β is not

a good approximation when β = α.
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• For large values of x, the approximation error can be made arbitrary small by
taking n sufficiently large. However, this may not be the case since the asymptotic
series (4) of the Mittag-Leffler function is divergent.

Remark 2.4. In all the numerical experiments and comparisons throughout this pa-
per, the term ”exact” values of MLF refers to the values computed using the routines
discussed in [8] and [9].

3. Second-order global Padé approximant R
3,2

α,β

For completeness, we provide here an overview of the second order global Padé
approximant R3,2

α,β(x) constructed by Zeng and Chen in [25]. The approximant is given
by

R3,2
α,β(x) =

1

Γ(β − α)

p1 + x

q0 + q1x+ x2
, β > α, (23)

with

p1 = cα,β

[

Γ(β)Γ(β + α)− Γ(β + α)Γ2(β − α)

Γ(β − 2α)

]

,

q0 = cα,β

[

Γ2(β)Γ(β + α)

Γ(β − α)
− Γ(β)Γ(β + α)Γ(β − α)

Γ(β − 2α)

]

,

q1 = cα,β

[

Γ(β)Γ(β + α)− Γ2(β)Γ(β − α)

Γ(β − 2α)

]

,

cα,β =
1

Γ(β + α)Γ(β − α)− Γ2(β)
,

(24)

and
R3,2

α,α(x) =
α

Γ(1 + α) + 2Γ(1−α)2

Γ(1−2α)
x+ Γ(1− α) x2

, 0 < α < 1. (25)

As shown in Figures 1 and 2, the approximation R3,2
α,β could be reasonable for small

values of α, however, it is not adequate otherwise.

4. Fourth-order global Padé approximants

Fourth order global Padé approximants (ν = 4) correspond to the types (m,n) with
m+ n = 9. They include the types (5, 4), (6, 3), and (7, 2). As discussed in subsection
2.2, the approximation Rm,n

α,β for ν = 4 takes the form

Rm,n
α,β (x) =























1

Γ(β − α)

p1 + p2x+ p3x
2 + x3

q0 + q1x+ q2x2 + q3x3 + x4
, β > α,

−1

Γ(−α)

p̂2 + p̂3x+ x2

q̂0 + q̂1x+ q̂2x2 + q̂3x3 + x4
, β = α.

(26)

The unknown coefficients are obtained by applying (16) and (17). Below we present
the systems for these coefficients for the different types.
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Figure 1: Plots of R3,2
α,1 for different values of α
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Figure 2: Plots of R3,2
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4.1. Coefficients of R5,4
α,β

For β > α, the coefficients satisfy the system











































1 0 0 −Γ(β − α)

Γ(β)
0 0 0

0 1 0
Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0 0

0 0 1 − Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0

0 0 0
Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)

1 0 0 0 −1
Γ(β − α)

Γ(β − 2α)
− Γ(β − α)

Γ(β − 3α)

0 1 0 0 0 −1
Γ(β − α)

Γ(β − 2α)
0 0 1 0 0 0 −1































































p1
p2
p3
q0
q1
q2
q3





















=

































0
0
0
−1

− Γ(β − α)

Γ(β − 4α)
Γ(β − α)

Γ(β − 3α)

− Γ(β − α)

Γ(β − 2α)

































.

(27)
For β = α the coefficients satisfy the system





































1 0
Γ(−α)

Γ(α)
0 0 0

0 1 −Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0 0

0 0
Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0

0 0 0 −1 − Γ(−α)

Γ(−2α)
0

1 0 0 0 −1
Γ(−α)

Γ(−2α)
0 1 0 0 0 −1





















































p̂2
p̂3
q̂0
q̂1
q̂2
q̂3

















=





















0
0
−1
0
0

− Γ(−α)

Γ(−2α)





















. (28)

4.2. Coefficients of R6,3
α,β

For β > α, the coefficients satisfy the system











































1 0 0 −Γ(β − α)

Γ(β)
0 0 0

0 1 0
Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0 0

0 0 1 − Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0

0 0 0
Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)

0 0 0 − Γ(β − α)

Γ(β + 4α)

Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)

0 1 0 0 0 −1
Γ(β − α)

Γ(β − 2α)
0 0 1 0 0 0 −1































































p1
p2
p3
q0
q1
q2
q3





















=

































0
0
0
−1

Γ(β − α)

Γ(β)
Γ(β − α)

Γ(β − 3α)

− Γ(β − α)

Γ(β − 2α)

































,

(29)

9



For β = α, the coefficients satisfy the system





































1 0
Γ(−α)

Γ(α)
0 0 0

0 1 −Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0 0

0 0
Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0

0 0 −Γ(−α)

Γ(4α)

Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)

1 0 0 0 −1
Γ(−α)

Γ(−2α)
0 1 0 0 0 −1





















































p̂2
p̂3
q̂0
q̂1
q̂2
q̂3

















=

























0
0
−1
0

Γ(−α)

Γ(−3α)

− Γ(−α)

Γ(−2α)

























. (30)

4.3. Coefficients of R7,2
α,β

For β > α, the coefficients satisfy the system











































1 0 0 −Γ(β − α)

Γ(β)
0 0 0

0 1 0
Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0 0

0 0 1 − Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)
0

0 0 0
Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)
−Γ(β − α)

Γ(β)

0 0 0 − Γ(β − α)

Γ(β + 4α)

Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)

Γ(β − α)

Γ(β + α)

0 0 0
Γ(β − α)

Γ(β + 5α)
− Γ(β − α)

Γ(β + 4α)

Γ(β − α)

Γ(β + 3α)
− Γ(β − α)

Γ(β + 2α)
0 0 1 0 0 0 −1































































p1
p2
p3
q0
q1
q2
q3





















=

































0
0
0
−1

Γ(β − α)

Γ(β)

−Γ(β − α)

Γ(β + α)

− Γ(β − α)

Γ(β − 2α)

































.

(31)

For β = α, the coefficients satisfy the system





































1 0
Γ(−α)

Γ(α)
0 0 0

0 1 −Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0 0

0 0
Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)

Γ(−α)

Γ(α)
0

0 0 −Γ(−α)

Γ(4α)

Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)
−Γ(−α)

Γ(α)

0 0
Γ(−α)

Γ(5α)
−Γ(−α)

Γ(4α)

Γ(−α)

Γ(3α)
−Γ(−α)

Γ(2α)
0 1 0 0 0 −1





















































p̂2
p̂3
q̂0
q̂1
q̂2
q̂3

















=

























0
0
−1
0

Γ(−α)

Γ(−3α)

− Γ(−α)

Γ(−2α)

























. (32)

Remark 4.1. Although the type (m,n) of the fourth order global Padé approximant of
Eα(−x) by Ingo et al. [14] is not given, based on their construction, we expect the type
to be a special case of one of the approximants above when β = 1.
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5. Partial fraction decomposition

Partial fraction decomposition provides an efficient form for evaluating rational
functions. In a recent work by [2], the efficiency of using partial fraction decomposition
for computing functions of matrices is discussed. This efficiency is indisputable when
the poles are complex conjugates and the argument is a matrix.

Unlike the the Padé approximations for the exponential function, the poles of Rm,n
α,β

are functions of α and β. Fortunately, through direct calculations, one can show that
for most (α, β) ∈ A, the poles of Rm,n

α,β are complex conjugates. Next, we explore the
partial fraction decomposition of these approximations.

5.1. Decomposition of second-order global Padé approximant

The second-order global Padé approximant R3,2
α,β admits the partial fraction decom-

position

R3,2
α,β(x) =

c1
x− r1

+
c2

x− r2
,

where

r1 =
−q1 +

√

q21 − 4q0
2

, r2 =
−q1 −

√

q21 − 4q0
2

,

and

c1 =
p1 − r1
r2 − r1

, c2 =
p1 − r2
r1 − r2

.

We can verify numerically that for (α, β) ∈ A we have q21 − 4q0 < 0 which imply that
r2 = r̄1 and c2 = c̄1. As a result, we can write

R3,2
α,β(x) = 2Re

[

c1
x− r1

]

. (33)

5.2. Decomposition of the fourth-order global Padé approximants

The partial fraction decomposition for Rm,n
α,β , (m,n) = (5, 4), (6, 3), (7, 2), takes the

form
Rm,n

α,β (x) =
c1

x− r1
+

c2
x− r2

+
c3

x− r3
+

c4
x− r4

. (34)

Empirically, for (α, β) ∈ A, these poles are complex conjugates. If we let r3 = r̄1,
r4 = r̄2, c3 = c̄1, and c4 = c̄2, then the partial fraction decomposition can be written as

Rm,n
α,β (x) = 2Re

[

c1
x− r1

]

+ 2Re

[

c2
x− r2

]

. (35)

Computing of the poles and weights is outlined in the following algorithm.

6. Inverse Mittag-Leffler Function

The invertibility of Eα,β(−x), x > 0, follows from the complete monotonicity prop-
erty of Eα,β . As shown in [10], this function is completely monotone if and only if
0 < α ≤ 1 and β ≥ α. Since Eα,β(0) = 1/Γ(β) and limx→∞Eα,β(−x) = 0, then for
0 < α ≤ 1 and β ≥ α, the inverse function −Lα,β of Eα,β(−x), x > 0, is the function

−Lα,β : (0, 1/Γ(β)] → [0,∞),

11



Algorithm 1 Poles and weights for partial fraction decomposition of fourth-order Rm,n
α,β

Step 1
Specify m, n, α, β.
Obtain pi, qi by solving the corresponding system.
Step 2
Use the obtained coefficients pi, qi to find the weights and poles:
If β > α

Matlab: residue([1, p3, p2, p1], [1, q3, q2, q1, q0]),
Python: scipy.signal.residue([1, p3, p2, p1], [1, q3, q2, q1, q0]).

If α = β
Matlab: residue([1, p3, p2], [1, q3, q2, q1, q0]),
Python: scipy.signal.residue([1, p3, p2], [1, q3, q2, q1, q0]).

such that
− Lα,β(x) = y iff x = Eα,β(−y). (36)

The inverse function can be approximated by inverting the approximations Rm,n
α,β of

Eα,β(−x),

Eα,β(−x) ≈ Rm,n
α,β =

1

sα,β(x)

p(x)

q(x)
.

This is equivalent to computing the positive root r+ of the equation

sα,β(x)q(x)y − p(x) = 0, (37)

where y = Eα,β(−r+). Zeng and Chen in [25] solved a quadratic equation of the form
(37) for R3,2

α,β(x) to obtain the approximation

−Lα,β(y) ≈
1

2Γ(β − α)y
− q1

2

+

√

(

q1
2
− 1

2Γ(β − α)y

)2

− q0

(

1− 1

Γ(β)y

)

, β > α, (38)

and

−Lα,α(y) ≈ − Γ(1− α)

Γ(1 − 2α)y

+

√

Γ2(1− α)

Γ2(1− 2α)y2
− 1 + α

1− α

(

1− 1

Γ(α)y

)

. (39)

Approximating the inverse using our fourth order approximants involves finding the
positive root of the fourth degree polynomial in (37), which takes the form

cα,β y q0 − p1 + (cα,βyq1 − p2)x+ (cα,βyq2 − p3)x
2

+(cα,βyq3 − 1)x3 + cα,βyx
4 = 0, cα,β = Γ(β − α) for β > α, (40)

cαyq̂0 + p̂2 + (cαyq̂1 + p̂3)x+ (cαyq̂2 + 1)x2

+cαyq̂3x
3 + cαyx

4 = 0, cα = Γ(−α) for β = α. (41)

It is quite tedious to solve (40) and (41) analytically. Alternatively, the following
algorithm can be employed. One can verify numerical that each of (40) and (41) has
a unique positive root.

12



Algorithm 2 Approximation of the inverse MLF

Step 1
Specify m, n, α, β, y.

Step 2

If β > α
Compute the coefficient cα,β = Γ(β − α)
Obtain pi, qi by solving the corresponding linear system.
Find the roots of the polynomial (40)
Then −Lα,β(y) is the unique positive root.

If α = β
Compute the coefficient cα = Γ(−α)
Obtain p̂i, q̂i by solving the corresponding linear system.
Find the roots of the polynomial (41)
Then −Lα,α(y) is the unique positive root.

7. Performance and comparisons of the approximants

In this section, we demonstrate graphically and computationally the performance of
the fourth-order global Padé approximants constructed above. We start by comparing
the approximants R5,4

α,β , R
6,3
α,β and R7,2

α,β . Figures 3, 4 and 5 contain the profiles for differ-

ent combinations of (α, β). These profiles reveal that both R7,2
α,β(x) and R6,3

α,β(x) provide

extremely well approximants and compare favorably with R5,4
α,β(x). This observation

supports our earlier argument in Remark 2.3 that approximations of the same order
can be improved by increasing the number of local terms m and decreasing the number
of asymptotic terms n in the matching requirements (16) and (17). The profile of the
absolute errors are shown in Figure 6 and for completeness, we include in Figure 7
different profiles of R7,2

α,β vs R3,2
α,β.

In table 2, we provide the maximum absolute error

max
x∈I

{|Eα,β(−x)−Rα,β(x)|},

and the maximum relative error

max
x∈I

{∣

∣

∣

∣

Eα,β(−x)−Rα,β(x)

Eα,β(−x)

∣

∣

∣

∣

}

,

where I is the interval [0, 10] and Rα,β is any of the approximants for Eα,β. In the
case β = 1, the errors resulting from R6,3

α,1 and R7,2
α,1 are smaller than those from the

approximation by Ingo et al. in [14]. It is worth mentioning that they were comparing
with ”mlf” Matlab function by Podlubny which is based on the algorithm by Gorenflo
et al. in [11] while we are comparing with the ”ml” Matlab function by Garrappa [8].

Finally, in Figure 8 we compare the approximations of the inverse function obtained
by solving (37) for R7,2

α,β vs the exact values by definition (2).
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α = 0.9, β = 1.9 α = 0.9, β = 1 α = 0.5, β = 0.5 α = 1.0, β = 1.1 α = 1.0, β = 2.0
AE RE AE RE AE RE AE RE AE RE

RDP 0.0813 0.8234 0.1153 3.2415 0.0800 10.675 0.1225 3.3583 0.1165 1.165

R
3,2
α,β 0.0254 0.0526 0.1926 0.4884 0.1349 0.4697 0.3112 0.6394 0.0352 0.0755

R
5,4
α,β 0.0018 0.0052 0.0264 0.1552 0.0040 0.0119 0.1020 0.4274 0.0040 0.0119

R
6,3
α,β 0.0007 0.0034 0.0047 0.0920 0.0002 0.0028 0.0092 0.2278 0.0014 0.0073

R
7,2
α,β 0.0006 0.0055 0.0033 0.1648 0.0001 0.0033 0.0061 0.3949 0.0012 0.0112

Table 2: The maximum absolute error (AE) and maximum relative error (RE) for the different
approximants

8. Applications

The fundamental importance of the two-parametric MLF and its inverse is the main
motivation behind the construction of the approximants in this paper. Our objective
here is to show the accuracy and efficiency of these approximants when applied to
solutions of fractional differential and integral equations. The fourth order approximant
R7,2

α,β is used all through this section, while the second order approximant R3,2
α,β is also

applied for comparison purposes. Below, we consider some applications with solutions
that involve MLF with scalar and matrix arguments.

8.1. Applications with scalar arguments

We start by considering the following applications that involve MLF with scalar
arguments.

8.1.1. Fractional reaction-diffusion equation

Consider the following sub-diffusion initial-boundary value problem:

c∂α
t u(x, t) = uxx(x, t) + u(x, t) ux(x, t) + f(x, t), x ∈ (0, 1), t > 0, (42)

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = x(1− x), x ∈ [0, 1],

where c∂α
t , 0 < α < 1, is the Caputo fractional derivative. When

f(x, t) = −
[

2 + Eα(−tα)(2x3 − 3x2 + x) + x(1 − x)
]

Eα(−tα),

then the exact solution is

u(x, t) = x(1− x)Eα(−tα). (43)

The solution profile and its approximations at x = 0.5 for t ∈ [0, 10] and α = 0.5, 0.9
are included in Figure 9. The corresponding errors and runtime (in seconds) for time
increment of 0.01 are listed in Table 3 together with the runtime for ml subroutine in
[9]. As can be observed, R7,2

α,β provides an excellent approximation at a significantly
reduced runtime as compared to the ml subroutine runtime. Furthermore, it is clear
from the figures that, in general, R3,2

α,β may not be a good option.
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Figure 8: Plots of inverse MLF approximated by solving (37) for R7,2
α,β vs the exact value obtained by

applying the definition (2).
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Figure 9: Plots of R7,2
α,β and R

3,2
α,β approximations to the solution (43) of the fractional reaction-

diffusion problem (42) at x = 0.5
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α Max Abs. Error Max Rel. Error Runtime ml Runtime

0.5 9.56e-06 6.77e-05 6.22e-04 7.25e-02
0.9 8.25e-04 1.80e-03 7.06e-04 9.66e-02

Table 3: Errors and runtime for R7,2
α,β approximation to the solution (43) of the fractional reaction-

diffusion problem (42) at x = 0.5
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Figure 10: Plots of R7,2
α,β and R

3,2
α,β approximations to the solution (45) of the integral equation (44)

8.1.2. Fractional integral equation

Consider the following integral equation:

Iα
t u(t) + u(t) = tβ−1, t > 0, (44)

where α, β > 0 and Iα is the Riemann-Liouville integral of order α. The exact solution
of (44) is given by:

u(t) = Γ(β)tβ−1Eα,β(−tα). (45)

Plots of the solution u(t) and its approximations for (α, β) = (0.6, 0.6) and (1.0, 1.5)
are provided in Figure 10. The corresponding errors and runtime (in seconds) for time
increment of 0.01 are listed in Table 4. Again, the results assert that superiority of
R7,2

α,β .

(α, β) Max Abs. Error Max Rel. Error Runtime ml Runtime

(0.6, 0.6) 3.77e-04 1.39e-04 3.00e-03 8.09e-02
(1.0, 1.5) 7.40e-03 8.70e-03 1.20e-03 1.09e-01

Table 4: Errors and runtime for R
7,2
α,β approximation to the solution (45) of the integral equation

(44)

8.1.3. Ultraslow diffusion

The propagator p(x, t) of an ultraslow diffusive process satisfies the structural dif-
fusion equation:

dp(x, t)

dmt
= kα∂

2
xp(x, t), t > 0,−∞ < x < ∞, (46)
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Figure 11: Plots of the propagator p(x, t) (47), of the ultraslow diffusion equation (46) together with
the corresponding approximation using the inversion of R7,2

α,β at x = 1 with α = 0.6.

where the local structural derivative in time dp(x,t)
dmt

with respect to the structural func-

tion E−1
α is given by [17]

dp(x, t)

dmt
= lim

s→t

p(x, s)− p(x, t)

E−1
α (s)− E−1

α (t)
, 0 < α < 1.

The solution of (46) (see [17]) is given by the scaled Gaussian function:

p(x, t) =
1

√

4πkαE−1
α (t)

exp

(

− x2

4kαE−1
α (t)

)

. (47)

As shown in Figure 11, we have a good agreement between the propagator p(x, t)
for t ∈ (0, 1), x = 1, and its approximation when E−1

α is approximated by the inverse
of R7,2

α,1.

8.2. Applications with matrix arguments

MLFs of matrix argument arise naturally in solutions of systems of fractional dif-
ferential equations. The two-parametric MLF of a matrix A ∈ Cn×n (see [22]) is given
by:

Eα,β(A) =

∞
∑

k=0

Ak

Γ(αk + β)
, Reα > 0, β ∈ C. (48)

Next, we demonstrate the effectiveness of using R7,2
α,β to approximate Eα,β of a matrix

argument. The numerical experiments below show the runtime saving and accuracy in
comparison with the ml matrix function described in [9].

8.2.1. The Bagley-Torvik problem

The initial-value problem of Bagley-Torvik equation is given by

D2u(t) + a1
cD3/2u(t) + a2u(t) = f(t), u(0) = 0, u′(0) = 0, (49)

where a1 and a2 are positive constants. This problem models the motion of a thin,
rigid plate immersed in a Newtonian fluid of infinite extension connected to a fixed
point via a spring [16]. Using Laplace transform, the exact solution of (49) is

u(t) =

∫ t

0

G2, 3
2

(t− τ)f(τ)dτ, (50)
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where

G2, 3
2

(t) =

∞
∑

n=0

(−a2)
n

n!
t2n+1

1Ψ1





(n+ 1, 1)

(2n+ 2, 1
2
)

∣

∣

∣

∣

∣

∣

− a1t
1

2



 . (51)

and 1Ψ1 is the Wright function.
To avoid the complexity of calculating (51), using Theorem 8.1 in [4], the initial-

value problem (49) can be converted into the system

D
1

2U(t) = AU(t) + f(t) e4, U(0) = U0, (52)

where

U =
(

u, cD
1

2u, cD1u, cD
3

2u
)T

, e4 = (0, 0, 0, 1)T , U0 = (0, 0, 0, 0)T ,

and

A =









0 1 0 0
0 0 1 0
0 0 0 1

−a2 0 0 −a1









.

Then, the exact solution of (52) is [21]

U(t) =

∫ t

0

(t− τ)−
1

2 E 1

2
, 1
2

((t− τ)
1

2A) e4 f(τ) dτ. (53)

For testing purposes, let

f(t) = a2t
2 +

4a1√
π
t
1

2 + 2. (54)

Then the exact solution of (49) is

u(t) = t2, (55)

while the solution (53) takes the form

U(t) = 2
[

t
1

2E 1

2
, 3
2

(At
1

2 ) + a1tE 1

2
,2(At

1

2 ) + a2t
5

2E 1

2
, 7
2

(At
1

2 )
]

e4. (56)

Then the MLFs of matrix argument in (56) can be approximated using the partial
fraction decomposition (35) of R7,2

α,β :

Eα,β(B) ≈ 2Re
[

c1(−B − Ir1)
−1 + c2(−B − Ir2)

−1
]

.

Explicitly, we have

2 t
1

2E 1

2
, 3
2

(At
1

2 ) e4 ≈ 4Re

(

t
1

2

[

c1(−At
1

2 − Ir1)
−1
]

e4 + t
1

2

[

c2(−At
1

2 − Ir2)
−1
]

e4

)

= 4Re[v1 + v2],

where the vectors v1 and v2 are obtained by solving the systems

(−At
1

2 − Ir1) v1 = c1t
1

2 e4, (−At
1

2 − Ir2) v2 = c2t
1

2 e4.

The remaining terms in (56) are approximated in a similar manner.
Figure 12 contains a comparison of the profiles of u and its approximation when

a1 = 3 and a2 = 1. As can be observed, the partial fraction decomposition of R7,2
α,β

generates an accurate approximation of the exact solution. Furthermore, it follows
from and Table 5 and Figure 13 that these approximations are effective in terms of
runtime.
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Figure 12: Plots of the exact solution of Bagley-Torvik problem (49) vs the approximations via R
7,2
α,β

and ml matrix Matlab function. Short-time and long-time profiles are shown in the left and right
figures, respectively.

AE RE Runtime

R7,2
α,β 1.01 3.40e-03 0.32

matrix ml 0.05 4.83e-05 31.16

Table 5: The maximum absolute error (AE), maximum relative error (RE), and runtime for com-
puting the solution of Bagley-Torvik problem (49) over the interval [0, 50] with mesh grid size of
0.01.
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Figure 13: The runtime in seconds for computing the solution of Bagley-Torvik and Basset problems
over the interval [0, 50] with mesh grid size ∆t = 0.01, 0.05, 0.1, 0.5.
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8.2.2. The Basset problem

The Basset problem considered in [18]

[

D + δ1−α cDα + 1
]

u(t) = 1, u(0) = 0, δ > 0, α ∈ (0, 1). (57)

This problem models the dynamics of a sphere immersed in an incompressible viscous
fluid subjected to gravity under a hydraulic force. When α is a rational number,
α = p/q, the exact solution to this problem is

u(t) = 1−
q

∑

k=1

ckE 1

q

(akt
1

q ), (58)

where {ak} are the zeros of the polynomial xq + δ(1−
p

q
)xp + 1, ck = −Ak/ak, and

Ak = 1/
q
∏

j=1

(ak − aj), j 6= k.

When α = 1/2, problem (57) can be converted into the system

cD
1

2U(t) = AU(t) + e2, U(0) = U0, (59)

where
U(t) = (u, cD

1

2u)T , U0 = (0, 0)T , e2 = (0, 1)T ,

and

A =

[

0 1
−1 −δ1/2

]

.

The exact solution of this system (see [21]) is

U(t) = t
1

2E 1

2
, 3
2

(At
1

2 ) e2, (60)

which could be approximated by the partial fraction decomposition of R7,2
α,β .

A comparison between the exact solution (58) and the approximation of (60) for
δ = 3/7 is presented in Figure 14. With a maximum relative error of 3.17e-04, over
the time interval [0,50] for ∆t = 0.01, the runtime of the R7,2

α,β approximation is 0.20
seconds whereas the runtime of the matlab function ml matrix is 10.04 seconds. A
detailed comparison of the runtime is included in Figure 13.

9. Concluding remarks

• A unified framework for constructing global Padé approximants of the two-
parametric MLF, Eα,β(−x), x > 0, is presented. In particular, fourth-order
global Padé approximants are constructed and tested.

• The numerical experiments indicate that these approximants provide efficient
and accurate formulas for computing MLFs. Furhtermore, these approximants
perform well when used to approximate the MLF of a matrix.

• An algorithm for approximating the inverse function based on the inversion of
fourth-order approximants is provided.

• The developed rational approximants will play a pivotal role in developing effi-
cient high-order generalized ETD schemes analogue to the ETD schemes in [6].
This will be explored in a future work.
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Figure 14: Plots of the exact solution of Basset problem (58) vs the approximations via R
7,2
α,β and

ml matrix Matlab function. Short-time and long-time profiles are shown in the left and right figures,
respectively.
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