Skip to main content
Log in

Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop high-order entropy-conservative semi-discrete schemes for hyperbolic conservation laws applicable to non-conforming curvilinear grids arising from h-, p-, or hp-adaptivity. More precisely, building on previous work with conforming grids by Crean et al. (J Comput Phys 356:410–438, 2018) and Chan et al. (SIAM J Sci Comput 41:A2938–A2966, 2019), we present two schemes: the first couples neighbouring elements in a skew-symmetric method, the second in a pointwise fashion. The key ingredients are degree p diagonal-norm summation-by-parts operators equipped with interface quadrature rules of degree 2p or higher, a skew-symmetric geometric mapping procedure using suitable polynomial functions, and a numerical flux that conserves mathematical entropy. Furthermore, entropy-stable schemes are obtained when augmenting the original schemes with a stabilization term that dissipates mathematical entropy at element interfaces. We provide both theoretical and numerical analysis for the compressible Euler equations demonstrating the element-wise conservation, entropy conservation/dissipation, and accuracy properties of the schemes. While both methods produce comparable results, our studies suggest that the scheme coupling elements in a pointwise manner is more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The term “collocated mesh” is used here as the opposite of “staggered mesh” and does not refer to a finite-element method with collocated solution and cubature nodes.

  2. While this paper is concerned with schemes applicable to non-conforming grids, a posteriori error estimates are not used here to drive mesh adaptation.

  3. For brevity, we will refer to the \(\mathsf {R}_{\gamma }\) matrix as the extrapolation operator instead of the interpolation/extrapolation operator for the remainder of this work.

  4. Equation (2b) is sufficient but not necessary to construct SBP operators. For instance, the LGL operators are equipped with a quadrature rule of degree \(s=2p-1 \not \ge 2p\) yet they still satisfy the SBP property. In this work, we exclusively deal with SBP operators that obey (2b).

  5. In the case that this assumption does not hold, a different cubature rule can be chosen or constructed.

  6. Similar to \(\mathsf {R}_{\gamma }\), we will refer to these operators as interface extrapolation operators for brevity.

  7. We refer the interested reader to Ref. [11] for the proofs.

  8. For the Euler equations, \(\mathcal {H}\) is the set of conservative variables with positive density and pressure.

  9. Well posedness of the Euler equations is a complex subject: see, for example, Refs. [48, 49].

  10. For the entropy pair of the Euler equations used in this paper, the potential flux is simply the momentum in the \(x_i\)-direction, i.e. \(\psi _{x_i} = \rho u_i\).

  11. In Ref. [10], the author uses “decoupled” SBP operators which can be viewed as a superset of the (collocated) SBP operators used in this paper.

  12. \(\overline{\varvec{u}}_{\kappa I}\) and \(\overline{\varvec{u}}_{\nu I}\) are generally not equal to the extrapolated conservative variables.

References

  1. Yano, M., Darmofal, D.L.: An optimization-based framework for anisotropic simplex mesh adaptation. J. Comput. Phys. 231, 7626–7649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fidkowski, K.J.: Output-based space-time mesh optimization for unsteady flows using continuous-in-time adjoints. J. Comput. Phys. 341, 258–277 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hartmann, R., Held, J., Leicht, T., Prill, F.: Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sorensen, K. (eds.) ADIGMA—A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, pp. 339–353. Springer, Berlin (2010)

    Chapter  Google Scholar 

  4. Del Rey Fernández, D .C., Hicken, J .E., Zingg, D .W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput Fluids 95, 171–196 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, T.C.: High-order L2 stable multi-domain finite difference method for compressible flows. Ph.D thesis, Purdue University (2012)

  7. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier–Stokes equations. J. Comput. Phys. 292, 88–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, J.: On discretely entropy conservative and entropy stable discontinuous galerkin methods. J. Comput. Phys. 362, 346–374 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crean, J., Hicken, J .E., Del Rey Fernández, D .C., Zingg, D .W., Carpenter, M .H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32, 2298–2320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopriva, D.A.: A conservative staggered-grid chebyshev multidomain method for compressible flows. II. A semi-structured method. J. Comput. Phys. 128, 475–488 (1996)

    Article  MATH  Google Scholar 

  14. Wang, S., Virta, K., Kreiss, G.: High order finite difference methods for the wave equation with non-conforming grid interfaces. J. Sci. Comput. 68, 1002–1028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozdon, J.E., Wilcox, L.C.: Stable coupling of nonconforming, high-order finite difference methods. SIAM J. Sci. Comput. 38, A923–A952 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lundquist, T., Nordström, J.: On the suboptimal accuracy of summation-by-parts schemes with non-conforming block interfaces. Technical Report, Linköping University. (2015)

  17. Friedrich, L., Del Rey Fernández, D .C., Winters, A .R., Gassner, G .J., Zingg, D .W., Hicken, J.: Conservative and stable degree preserving SBP operators for non-conforming meshes. J. Sci. Comput. 75, 657–686 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gassner, G.J.: A skew-symmetric discontinuous galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36, A2076–A2099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the navier-stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36, B835–B867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible euler equations. J. Comput. Phys. 327, 39–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gassner, G.J.: A kinetic energy preserving nodal discontinuous galerkin spectral element method: KEP-DGSEM. Int. J. Numer. Meth. Fluids 76, 28–50 (2014)

    Article  Google Scholar 

  24. Abe, Y., Morinaka, I., Haga, T., Nonomura, T., Shibata, H., Miyaji, K.: Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms. J. Comput. Phys. 353, 193–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Carpenter, M.H., Parsani, M., Nielsen, E.J., Fisher, T.C.: Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics. In: 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (2016)

  27. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier–Stokes equations. SIAM J. Sci. Comput. 38, A3129–A3162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Friedrich, L., Winters, A .R., Del Rey Fernández, D .C., Gassner, G .J., Parsani, M., Carpenter, M .H.: An entropy stable h/p non-conforming discontinuous galerkin method with the summation-by-parts property. J. Sci. Comput. 77, 689–725 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Del Rey Fernández, D.C.: Generalized Summation-by-Parts Operators for First and Second Derivatives. Ph.D thesis, University of Toronto (Canada) (2015)

  30. Hicken, J .E., Del Rey Fernández, D .C., Zingg, D .W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38, A1935–A1958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Del Rey Fernández, D.C., Hicken, J .E., Zingg, D .W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. J. Sci. Comput. 75, 83–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chan, J., Del Rey Fernández, D .C., Carpenter, M .H.: Efficient entropy stable gauss collocation methods. SIAM J. Sci. Comput. 41, A2938–A2966 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Carpenter, M.H., Parsani, M., Fisher, T.C., Nielsen, E.J.: Entropy Stable Staggered Grid Spectral Collocation for the Burgers’ and Compressible Navier-Stokes Equations. technical report, NASA, (2015)

  34. Del Rey Fernández, D.C., Crean, J., Carpenter, M.H., Hicken, J.E.: Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates. Journal of Computational Physics (2019)

  35. Shadpey, S., Zingg, D.W.: Energy- and Entropy-Stable Multidimensional Summation-by-Parts Discretizations on Non-Conforming Grids, American Institute of Aeronautics and Astronautics. AIAA-2019-3204 (2019)

  36. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2d Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Z.J.: High-order computational fluid dynamics tools for aircraft design. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372, 20130318–20130318 (2014)

    Article  Google Scholar 

  38. Vinokur, M.: Conservation equations of gasdynamics in curvilinear coordinate systems. J. Comput. Phys. 14, 105–125 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chan, J., Wilcox, L.C.: On discretely entropy stable weight-adjusted discontinuous galerkin methods: curvilinear meshes. J. Comput. Phys. 378, 366–393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26, 301–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: i. symmetric forms of the compressible euler and Navier–Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. 68(8), 1686–1688 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  45. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dafermos, C .M.: Hyperbolic Conservation laws in Continuum Physics, vol. 325, 3rd edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  47. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. i. Math. Comput. 49, 91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pur. Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J Hyperbolic Differ. Equat. 11(03), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40, 1968–1992 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960)

    Article  MATH  Google Scholar 

  52. Butcher, J.: A history of Runge–Kutta methods. Appl. Numer. Math 20, 247–260 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ismail, F., Roe, P.L.: Affordable, entropy-consistent euler flux functions ii: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Erlebacher, G., Hussaini, M.Y., Shu, C.-W.: Interaction of a shock with a longitudinal vortex. J. Fluid Mech. 337, 129–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Spiegel, S.C., Huynh, H.T., DeBonis, J.R., Glenn, N.: A survey of the isentropic euler vortex problem using high-order methods, In: 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation, pp 1–21 (2015)

  56. Williams, D.M., Jameson, A.: Nodal Points and the Nonlinear Stability of High-Order Methods for Unsteady Flow Problems on Tetrahedral Meshes. In: 21st AIAA Computational Fluid Dynamics Conference, (San Diego, CA), American Institute of Aeronautics and Astronautics, AIAA 2013-2830 (2013)

  57. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Meth. Fluids 72, 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  58. Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34, 188–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Svärd, M., Özcan, H.: Entropy-stable schemes for the euler equations with far-field and wall boundary conditions. J. Sci. Comput. 58, 61–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.-H., Chen, J., Dursi, L.J., Chong, J., Northrup, S., Pinto, J., Knecht, N., Zon, R.V.: SciNet: lessons learned from building a power-efficient top-20 system and data centre. J. Phys: Conf. Ser. 256, 012026 (2010)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Masayuki Yano for insightful implementation recommendations about grids with hanging nodes and David Del Rey Fernández for helpful discussions regarding the pointwise-coupling term used in this paper. We also thank the Aerospace Computational Engineering Lab at the University of Toronto for the use of their software, the Automated PDE Solver (APS). Finally, we gratefully acknowledge the financial support provided by the governments of Ontario and Canada. Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium [61]. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavosh Shadpey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Condition 2 of Definition 2

Here we show that condition 2 of Definition 2, i.e.

$$\begin{aligned} \mathsf {R}_{\kappa \gamma }^\mathrm {T}\hat{\mathsf {B}}_{\kappa \gamma } \mathsf {R}_{\kappa \gamma }&= \mathsf {R}_{\kappa \gamma }^\mathrm {T}\mathsf {P}_{\kappa \gamma \rightarrow I}^\mathrm {T}\hat{\mathsf {B}}_I \mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }, \\ \mathsf {R}_{\nu \gamma }^\mathrm {T}\hat{\mathsf {B}}_{\nu \gamma } \mathsf {R}_{\nu \gamma }&= \mathsf {R}_{\nu \gamma }^\mathrm {T}\mathsf {P}_{\nu \gamma \rightarrow I}^\mathrm {T}\hat{\mathsf {B}}_I \mathsf {P}_{\nu \gamma \rightarrow I}\mathsf {R}_{\nu \gamma }, \end{aligned}$$

holds under mild assumptions. For simplicity we show the proof for an arbitrary element and thus drop the subscripts \(\kappa \) and \(\nu \).

Assumption 2

We assume that the reference element’s facet quadrature rule and the intermediate reference interface’s facet quadrature rule exactly integrate polynomials of at least degree \(s \ge 2r\). Furthermore, we assume that the volume nodal set \(S_{\hat{\Omega }}\) and facet nodal set \(S_{\hat{\gamma }}\) produce degree r full-column-rank Vandermonde matrices \(\hat{\mathsf {V}}_{\Omega } \in \mathbb {R}^{N \times n_r}\) and \(\hat{\mathsf {V}}_{\gamma } \in \mathbb {R}^{N_{\gamma } \times n_r}\), respectively.

Lemma 1

If Assumption 2 holds, then

$$\begin{aligned} \mathsf {R}_{\gamma }^\mathrm {T}\hat{\mathsf {B}}_{\gamma }\mathsf {R}_{\gamma }= \mathsf {R}_{\gamma }^\mathrm {T}\mathsf {P}_{\gamma \rightarrow I}^\mathrm {T}\hat{\mathsf {B}}_{I}\mathsf {P}_{\gamma \rightarrow I}\mathsf {R}_{\gamma }. \end{aligned}$$

Proof

Let \(\hat{\mathsf {V}}_{I} \in \mathbb {R}^{N_I \times n_r}\) be the degree r Vandermonde matrix evaluated at the nodal set \(S_{\hat{I}}\) (which does not necessarily coincide with \(S_{\hat{\gamma }}\)). Since \(\hat{\mathsf {B}}_{I}\) and \(\hat{\mathsf {B}}_{\gamma }\) integrate polynomials of at least degree \(s \ge 2r\) and the Vandermonde matrices \(\hat{\mathsf {V}}_{\gamma }\) and \(\hat{\mathsf {V}}_{I}\) are each of degree r, then

$$\begin{aligned} \hat{\mathsf {V}}_{\gamma }^\mathrm {T}\hat{\mathsf {B}}_{\gamma }\hat{\mathsf {V}}_{\gamma } = \hat{\mathsf {V}}_{I}^\mathrm {T}\hat{\mathsf {B}}_{I}\hat{\mathsf {V}}_{I}. \end{aligned}$$

Left-multiplying the right-hand side by \((\hat{\mathsf {V}}_{\gamma }^{\dagger } \hat{\mathsf {V}}_{\gamma })^\mathrm {T}= \mathsf {I}\) and right-multiplying it by \((\hat{\mathsf {V}}_{\gamma }^{\dagger } \hat{\mathsf {V}}_{\gamma })= \mathsf {I}\), we obtain

$$\begin{aligned} \hat{\mathsf {V}}_{\gamma }^\mathrm {T}\hat{\mathsf {B}}_{\gamma }\hat{\mathsf {V}}_{\gamma } = (\hat{\mathsf {V}}_{I} \hat{\mathsf {V}}_{\gamma }^{\dagger } \hat{\mathsf {V}}_{\gamma })^\mathrm {T}\hat{\mathsf {B}}_{I}(\hat{\mathsf {V}}_{I} \hat{\mathsf {V}}_{\gamma }^{\dagger } \hat{\mathsf {V}}_{\gamma }). \end{aligned}$$

Left-multiplying both sides by \((\hat{\mathsf {V}}_{\Omega }^{\dagger })^\mathrm {T}\) and right-multiplying them by \(\hat{\mathsf {V}}_{\Omega }^{\dagger }\) gives

$$\begin{aligned} (\hat{\mathsf {V}}_{\gamma } \hat{\mathsf {V}}_{\Omega }^{\dagger })^\mathrm {T}\hat{\mathsf {B}}_{\gamma }(\hat{\mathsf {V}}_{\gamma } \hat{\mathsf {V}}_{\Omega }^{\dagger }) = \Big ( (\hat{\mathsf {V}}_{I} \hat{\mathsf {V}}_{\gamma }^{\dagger }) (\hat{\mathsf {V}}_{\gamma } \hat{\mathsf {V}}_{\Omega }^{\dagger }) \Big )^\mathrm {T}\hat{\mathsf {B}}_{I}\Big ((\hat{\mathsf {V}}_{I} \hat{\mathsf {V}}_{\gamma }^{\dagger })(\hat{\mathsf {V}}_{\gamma } \hat{\mathsf {V}}_{\Omega }^{\dagger }) \Big ). \end{aligned}$$

Substituting \(\mathsf {R}_{\gamma }\equiv \hat{\mathsf {V}}_{\gamma } \hat{\mathsf {V}}_{\Omega }^{\dagger }\) and \(\mathsf {P}_{\gamma \rightarrow I}\equiv \hat{\mathsf {V}}_{I} \hat{\mathsf {V}}_{\gamma }^{\dagger }\) in the above equation leads to

$$\begin{aligned} \mathsf {R}_{\gamma }^\mathrm {T}\hat{\mathsf {B}}_{\gamma }\mathsf {R}_{\gamma }&= (\mathsf {P}_{\gamma \rightarrow I}\mathsf {R}_{\gamma })^\mathrm {T}\hat{\mathsf {B}}_{I}(\mathsf {P}_{\gamma \rightarrow I}\mathsf {R}_{\gamma }), \\ \mathsf {R}_{\gamma }^\mathrm {T}\hat{\mathsf {B}}_{\gamma }\mathsf {R}_{\gamma }&= \mathsf {R}_{\gamma }^\mathrm {T}\mathsf {P}_{\gamma \rightarrow I}^\mathrm {T}\hat{\mathsf {B}}_{I}\mathsf {P}_{\gamma \rightarrow I}\mathsf {R}_{\gamma }, \end{aligned}$$

which is the desired result. \(\square \)

Appendix B Proof of Theorem 1

To show that the diagonal-\(\mathsf {E}\) entropy-conservative scheme (18) and the dense-coupling entropy-conservative scheme (13) are equivalent on affine meshes for SBP operators equipped with facet quadrature rules of degree \(s \ge 2r \ge 2p\), we individually deal with the transient, volumetric, and inter-element coupling terms.

The transient terms in (18) and (13) are the same. Furthermore, noting that on affine meshes \(\mathsf {N}_{\kappa \gamma , {x_i} }= n_{\gamma ,x_i} \mathsf {I}_{N_{\kappa \gamma }}\) and invoking condition 2 of Definition 2, we can regain the volumetric terms of (13) from the volumetric terms of (18) as follows:

$$\begin{aligned}&\Bigg \{ \bigg (- 2 \tilde{\mathsf {Q}}_{x_i}^\mathrm {T}+ \sum _{\kappa \gamma } (\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {N}}_{\kappa \gamma , {x_i} }\tilde{\mathsf {B}}_{\kappa \gamma }\tilde{\mathsf {R}}_{\kappa \gamma }) \bigg ) \circ \mathsf {F}_{x_i} (\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \Bigg \{ \bigg (- 2 \tilde{\mathsf {Q}}_{x_i}^\mathrm {T}+ \sum _{\kappa \gamma } \tilde{\mathsf {E}}_{x_i}^{(\kappa \kappa )}\bigg ) \circ \mathsf {F}_{x_i} (\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \Bigg \{ \bigg (- 2 \tilde{\mathsf {Q}}_{x_i}^\mathrm {T}+ \tilde{\mathsf {E}}_{x_i}\bigg ) \circ \mathsf {F}_{x_i} (\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \Bigg \{ \bigg (2\tilde{\mathsf {S}}_{x_i}\bigg ) \circ \mathsf {F}_{x_i} (\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa }, \end{aligned}$$

where we used the property \(\mathsf {E}_{x_i}= \sum _{\kappa \gamma } \mathsf {E}_{x_i}^{(\kappa \kappa )}\) in the penultimate step and \(\mathsf {S}_{x_i}= -2 \mathsf {Q}_{x_i}^\mathrm {T}+ \mathsf {E}_{x_i}\) in the last step. The last term to consider is the facet coupling terms of the two schemes. We start with the coupling term of the dense-coupling entropy-stable scheme and utilize the property \([\mathsf {R}_{\gamma }]_{lj} = \delta _{lj} , \ \forall \,\, \ j\in \{1,\ldots ,N\}, \ l\in \{1,\ldots ,N_{\gamma }\}\) of diagonal-\(\mathsf {E}\) SBP operators. For \(j\in \{1,\ldots ,N_{\kappa } \}\), we have

$$\begin{aligned}&\Bigg [ \bigg (\tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg ) \varvec{1}_{\nu } \Bigg ]_j\\&\quad = \Bigg [ \bigg ((\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}\tilde{\mathsf {R}}_{\nu \gamma }) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg ) \varvec{1}_{\nu } \Bigg ]_j \\&\quad = \sum _{l=1}^{N_{\kappa \gamma }} \sum _{k=1}^{N_{\kappa I}} \sum _{m=1}^{N_{\nu \gamma }} \delta _{lj} [\mathsf {P}_{\kappa \gamma \rightarrow I}]_{kl} [\mathsf {N}^{(\kappa )}_{I,{x_i}}]_{kk} [\mathsf {B}_{I}]_{kk} [\mathsf {P}_{\nu \gamma \rightarrow I}]_{km} \sum _{n=1}^{N_{\nu }} \delta _{mn} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\nu }]_n) \\&\quad = \sum _{l=1}^{N_{\kappa \gamma }} \sum _{k=1}^{N_{\kappa I}} \sum _{m=1}^{N_{\nu \gamma }} \delta _{lj} [\mathsf {P}_{\kappa \gamma \rightarrow I}]_{kl} [\mathsf {N}^{(\kappa )}_{I,{x_i}}]_{kk} [\mathsf {B}_{I}]_{kk} [\mathsf {P}_{\nu \gamma \rightarrow I}]_{km} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa \gamma }]_l,[\varvec{u}_{\nu \gamma }]_m), \end{aligned}$$

where we used the properties of the Kronecker delta and substituted \(\delta _{lj} \sum _{n=1}^{N_{\nu }} \delta _{mn} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\nu }]_n) = \delta _{lj} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa \gamma }]_l,[\varvec{u}_{\nu \gamma }]_m)\). On affine meshes \(\mathsf {N}^{(\kappa )}_{I,{x_i}}= n_{\gamma ,x_i} \mathsf {I}_{N_I}\) and we can write the above expression in matrix form as

$$\begin{aligned} \bigg (\tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg ) \varvec{1}_{\nu }&= n_{\gamma ,x_i} \tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\bigg ( (\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\tilde{\mathsf {B}}_{I}\tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa \gamma },\varvec{u}_{\nu \gamma }) \bigg ) \varvec{1}_{\nu \gamma } \\&= n_{\gamma ,x_i} \tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\bigg ( (\tilde{\mathsf {B}}_{\kappa \gamma }\tilde{\mathsf {P}}_{I \rightarrow \kappa \gamma }\tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa \gamma },\varvec{u}_{\nu \gamma }) \bigg ) \varvec{1}_{\nu \gamma } \\&= n_{\gamma ,x_i} \tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\bigg ( (\tilde{\mathsf {B}}_{\kappa \gamma }\tilde{\mathsf {P}}_{\nu \gamma \rightarrow \kappa \gamma }) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa \gamma },\varvec{u}_{\nu \gamma }) \bigg ) \varvec{1}_{\nu \gamma }, \end{aligned}$$

where we used (20), \(\mathsf {P}_{\kappa \gamma \rightarrow I}^\mathrm {T}\mathsf {B}_{I}= \mathsf {B}_{\kappa \gamma }\mathsf {P}_{I \rightarrow \kappa \gamma }\), and (19), \(\mathsf {P}_{\nu \gamma \rightarrow \kappa \gamma }\equiv \mathsf {P}_{I \rightarrow \kappa \gamma }\mathsf {P}_{\nu \gamma \rightarrow I}\), in the second and last steps, respectively. Finally, we can pull out the diagonal mass matrix and write the normal as a matrix to obtain

$$\begin{aligned} \bigg (\tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg ) \varvec{1}_{\nu }&= \tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {N}}_{\kappa \gamma , {x_i} }\tilde{\mathsf {B}}_{\kappa \gamma }\bigg ( \tilde{\mathsf {P}}_{\nu \gamma \rightarrow \kappa \gamma }\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa \gamma },\varvec{u}_{\nu \gamma }) \bigg ) \varvec{1}_{\nu \gamma }, \end{aligned}$$

which is exactly the coupling term in (18).

Appendix C Dense-Coupling Entropy-Conservative Scheme: Conservation Proof (Theorems 2 and 3)

1.1 Element-Wise Conservation

Lemma 2

The spatial derivative term in (21) simplifies to

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\bigg (2\mathsf {S}_{x_i}\circ \mathsf {F}_{x_i}^{(\rho )}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg ) \varvec{1}_{\kappa } = 0, \quad \forall \,\, \ i\in \{1,\ldots ,d\}. \end{aligned}$$

Proof

Since \(\mathsf {S}_{x_i}\) is a skew-symmetric matrix and \(\mathsf {F}_{x_i}^{(\rho )}(\varvec{u}_{\kappa },\varvec{u}_{\kappa })\) is a symmetric matrix, their Hadamard product, i.e. \(\mathsf {S}_{x_i}~\circ ~\mathsf {F}_{x_i}^{(\rho )}(\varvec{u}_{\kappa },\varvec{u}_{\kappa })\), is a skew-symmetric matrix as well. Therefore, the term above is zero. \(\square \)

1.2 Global Conservation

The proof of Theorem 3 follows from the element-wise conservation theorem (Theorem 2), the symmetry of the flux functions, and the skew-symmetric property \(\Big (\mathsf {E}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}= - \mathsf {E}_{x_i}^{(\kappa \nu )}\). Using Theorem 2, we add the element-wise conservation equation for element \(\kappa \) to the equivalent equation for its neighbouring element \(\nu \) (and drop the terms not associated with the shared facet) to obtain

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} \varvec{\rho }_{\kappa }}{\mathrm {d} t} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {H}_{\nu } \frac{ \mathrm {d} \varvec{\rho }_{\nu }}{\mathrm {d} t}&= \sum _{i=1}^d \varvec{1}_{\kappa }^\mathrm {T}\Bigg \{ \mathsf {E}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu }\\&\quad + \varvec{1}_{\nu }^\mathrm {T}\Bigg \{ \mathsf {E}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&= \sum _{i=1}^d \varvec{1}_{\kappa }^\mathrm {T}\Bigg \{ \mathsf {E}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } \\&\quad + \varvec{1}_{\kappa }^\mathrm {T}\Bigg \{ \Big (\mathsf {E}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}\circ \Big (\mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Big )^\mathrm {T}\Bigg \} \varvec{1}_{\nu } \\&= \sum _{i=1}^d \varvec{1}_{\kappa }^\mathrm {T}\Bigg \{ \mathsf {E}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } \\&\quad - \varvec{1}_{\kappa }^\mathrm {T}\Bigg \{ \mathsf {E}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } \\&= 0, \end{aligned}$$

where we took the transpose of the second (scalar) term in the second step and used the properties \(\Big ( \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Big )^\mathrm {T}= \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu })\) and \(\Big (\mathsf {E}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}= - \mathsf {E}_{x_i}^{(\kappa \nu )}\) in the penultimate step. Repeating these steps for all facets in \(\Gamma _h = \Gamma _{h,i}\), we arrive at the desired result.

Appendix D Dense-Coupling Entropy-Conservative Scheme: Entropy Conservation Proof (Theorems 4 and 5)

1.1 Element-Wise Entropy Conservation

Lemma 3

The transient term in (22) simplifies to

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {H}}\frac{ \mathrm {d} \varvec{u}_{\kappa }}{\mathrm {d} t} = \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}\frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t}. \end{aligned}$$

Proof

Writing the term in index notation and noting that the \(\mathsf {H}\) matrix is diagonal, we obtain

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {H}}\frac{ \mathrm {d} \varvec{u}_{\kappa }}{\mathrm {d} t}&= \sum _{j=1}^{N_{\kappa }} [\varvec{w}_{\kappa }]_j^\mathrm {T}[\mathsf {H}]_{jj} \left[ \frac{ \mathrm {d} \varvec{u}_{\kappa }}{\mathrm {d} t}\right] _j = \sum _{j=1}^{N_{\kappa }} [\mathsf {H}]_{jj} \left[ \frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t}\right] _j = \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}\frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t}, \end{aligned}$$

where, for the second equality, we invoked the relation \(\varvec{\mathcal {W}}^\mathrm {T}\frac{ \mathrm {d} \varvec{\mathcal {U}}}{\mathrm {d} t} = \frac{ \partial \mathcal {S}}{\partial \varvec{\mathcal {U}}} \cdot \frac{ \mathrm {d} \varvec{\mathcal {U}}}{\mathrm {d} t} =\frac{ \mathrm {d} \mathcal {S}}{\mathrm {d} t}\) for each node \(j\in \{1,\ldots ,N_{\kappa }\}\). \(\square \)

Lemma 4

The spatial derivative term in (22) simplifies to

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\bigg (2\tilde{\mathsf {S}}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg ) \varvec{1}_{\kappa } = -\varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}\varvec{\psi }_{\kappa ,x_i} , \ \forall \,\, \ i \in \{1,\ldots ,d\}. \end{aligned}$$

Proof

The proof relies on the SBP property, the symmetry and the entropy conservation property of the entropy-conservative flux function, and the exactness of the derivative operator for constant functions. Substituting \(2\mathsf {S}_{x_i}= \mathsf {S}_{x_i}- \mathsf {S}_{x_i}^\mathrm {T}= \mathsf {Q}_{x_i}- \mathsf {Q}_{x_i}^\mathrm {T}, \ \forall \,\, i\in \{1,\ldots ,d\}\), we obtain,

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\bigg (2\tilde{\mathsf {S}}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg ) \varvec{1}_{\kappa }&= \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} 2 [\varvec{w}_{\kappa }]_j^\mathrm {T}[\mathsf {S}_{x_i}]_{jk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_k) \\&= \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} [\varvec{w}_{\kappa }]_j^\mathrm {T}\Big ([\mathsf {Q}_{x_i}]_{jk} - [\mathsf {Q}_{x_i}]_{kj} \Big ) \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_k) \\&= \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} [\varvec{w}_{\kappa }]_j^\mathrm {T}[\mathsf {Q}_{x_i}]_{jk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_k) \\&\quad -\sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} [\varvec{w}_{\kappa }]_k^\mathrm {T}[\mathsf {Q}_{x_i}]_{jk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_k,[\varvec{u}_{\kappa }]_j), \end{aligned}$$

where we flipped the indices of the second (scalar) term in the last line. Invoking the symmetry of the entropy-conservative flux and Tadmor’s condition (from Definition 3), we find

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\bigg (2\tilde{\mathsf {S}}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg ) \varvec{1}_{\kappa }&= \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} \Big ([\varvec{w}_{\kappa }]_j - [\varvec{w}_{\kappa }]_k \Big )^\mathrm {T}\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_k) [\mathsf {Q}_{x_i}]_{jk} \\&= \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\kappa }} \Big ([\psi _{\kappa ,x_i}]_j - [\psi _{\kappa ,x_i}]_k \Big ) [\mathsf {Q}_{x_i}]_{jk} \\&= \varvec{1}_{\kappa }^\mathrm {T}\mathsf {Q}_{x_i}^\mathrm {T}\varvec{\psi }_{\kappa ,x_i} - \varvec{1}_{\kappa }^\mathrm {T}\mathsf {Q}_{x_i}\varvec{\psi }_{\kappa ,x_i}. \\ \end{aligned}$$

Since SBP operators exactly differentiate constant functions, i.e. \(\mathsf {Q}_{x_i}\varvec{1} = \varvec{0}\), we can drop the first term and add \(-\varvec{1}^\mathrm {T}\mathsf {Q}_{x_i}^\mathrm {T}\varvec{\psi }_{\kappa ,x_i} = 0\) to obtain

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\bigg (2\tilde{\mathsf {S}}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg ) \varvec{1}_{\kappa }&= - \varvec{1}_{\kappa }^\mathrm {T}(\mathsf {Q}_{x_i}^\mathrm {T}+ \mathsf {Q}_{x_i}) \varvec{\psi }_{\kappa ,x_i} = -\varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}\varvec{\psi }_{\kappa ,x_i}, \end{aligned}$$

where we used the SBP property for the last equality. \(\square \)

1.2 Global Entropy Conservation

Lemma 5

Adding the interface coupling term of two neighbouring elements \(\kappa \) and \(\nu \) in each direction, we obtain

$$\begin{aligned}&\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } + \varvec{w}_{\nu }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \kappa )}\varvec{\psi }_{\kappa ,x_i} + \varvec{1}_{\nu }^\mathrm {T}{\mathsf {E}}^{(\nu \nu )}_{x_i} \varvec{\psi }_{\nu ,x_i} , \ \forall \,\, i\in \{1,\dots ,d\}. \end{aligned}$$

Proof

The proof relies on the property \(\Big (\mathsf {E}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}= - \mathsf {E}_{x_i}^{(\kappa \nu )}\), the symmetry and the entropy conservation property of the entropy-conservative flux function, and the exactness of the extrapolation operators for constant functions. Taking the transpose of the second (scalar) term on the left-hand side, we obtain

$$\begin{aligned}&\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } + \varvec{w}_{\nu }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } + \varvec{1}_{\kappa } \Bigg \{ \Big (\tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}\circ \Big ( \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Big )^\mathrm {T}\Bigg \} \varvec{w}_{\nu } \\&\quad = \varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } - \varvec{1}_{\kappa } \Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{w}_{\nu }, \end{aligned}$$

where we used the properties \(\Big ( \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Big )^\mathrm {T}= \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu })\) and \(\Big (\mathsf {E}_{x_i}^{(\nu \kappa )}\Big )^\mathrm {T}= - \mathsf {E}_{x_i}^{(\kappa \nu )}\) in the last step. Switching to index notation and invoking Tadmor’s condition, we obtain

$$\begin{aligned}&\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } + \varvec{w}_{\nu }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad = \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\nu }} \Bigg ([\varvec{w}_{\kappa }]_j - [\varvec{w}_{\nu }]_k \Bigg )^\mathrm {T}\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\nu }]_k) \Big [ \mathsf {E}_{x_i}^{(\kappa \nu )}\Big ]_{jk} \\&\quad = \sum _{j=1}^{N_{\kappa }} \sum _{k=1}^{N_{\nu }} \Bigg ([\psi _{\kappa ,x_i}]_j - [\psi _{\nu ,x_i}]_k \Bigg ) \Big [ \mathsf {E}_{x_i}^{(\kappa \nu )}\Big ]_{jk}. \end{aligned}$$

Switching back to matrix notation and using the property \(\Big (\mathsf {E}_{x_i}^{(\kappa \nu )}\Big )^\mathrm {T}= - \mathsf {E}_{x_i}^{(\nu \kappa )}\) again, we have

$$\begin{aligned} \varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } + \varvec{w}_{\nu }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } =&\varvec{\psi }_{\kappa ,x_i}^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \nu )}\varvec{1}_{\nu } - \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \nu )}\varvec{\psi }_{\nu ,x_i} \\ =&\varvec{\psi }_{\kappa ,x_i}^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \nu )}\varvec{1}_{\nu } + \varvec{\psi }_{\nu ,x_i}^\mathrm {T}\mathsf {E}_{x_i}^{(\nu \kappa )}\varvec{1}_{\kappa } \\ =&\varvec{\psi }_{\kappa ,x_i}^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \kappa )}\varvec{1}_{\kappa } + \varvec{\psi }_{\nu ,x_i}^\mathrm {T}\mathsf {E}^{(\nu \nu )}_{x_i} \varvec{1}_{\nu } \\ =&\varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \kappa )}\varvec{\psi }_{\kappa ,x_i} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {E}^{(\nu \nu )}_{x_i} \varvec{\psi }_{\nu ,x_i}, \end{aligned}$$

where we invoked the properties \(\mathsf {E}_{x_i}^{(\kappa \nu )}\varvec{1}_{\nu } = \mathsf {E}_{x_i}^{(\kappa \kappa )}\varvec{1}_{\kappa }\) and \(\mathsf {E}_{x_i}^{(\nu \kappa )}\varvec{1}_{\kappa } = \mathsf {E}^{(\nu \nu )}_{x_i} \varvec{1}_{\nu }\) (from Sect. 3.6) in the third line, and the symmetry of \(\mathsf {E}_{x_i}^{(\kappa \kappa )}\) and \({\mathsf {E}}_{x_i}^{(\nu \nu )}\) in the last line. \(\square \)

Adding the element-wise entropy conservation equation of Theorem 4 for 2 neighbouring elements and dropping the terms not associated with the shared facet, we obtain

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} s_{\kappa }}{\mathrm {d} t} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {H}_{\nu } \frac{ \mathrm {d} s_{\nu }}{\mathrm {d} t}&=- \sum _{i=1}^d \varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \Bigg \} \varvec{1}_{\nu } -\sum _{i=1}^d \varvec{w}_{\nu }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\nu \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\nu },\varvec{u}_{\kappa }) \Bigg \} \varvec{1}_{\kappa } \\&\quad +\sum _{i=1}^d \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}^{(\kappa \kappa )}\varvec{\psi }_{\kappa ,x_i} +\sum _{i=1}^d \varvec{1}_{\nu }^\mathrm {T}\mathsf {E}_{x_i}^{(\nu \nu )} \varvec{\psi }_{\nu ,x_i}. \end{aligned}$$

Invoking Lemma 5, we see that the right-hand side is zero. Repeating this step for all facets in \(\Gamma _h = \Gamma _{h,i}\), we obtain the desired result of Theorem 5.

Appendix E Dense-Coupling Entropy-Conservative Scheme: Design-Order Accuracy (Theorem 6)

To prove Theorem 6, it is sufficient to prove that the penalty term vanishes for \(\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}(\varvec{\mathcal {U}}(\cdot ),\varvec{\mathcal {U}}(\cdot )) \in \mathbb {P}_{r_{\text {min}}}(\Omega _{\kappa } \cup \Omega _{\nu })\) w.r.t. \(x_i , \ \forall \,\, \ i\in \{1,\ldots ,d\}\). Noting that \(\mathsf {E}_{x_i}^{(\kappa \kappa )}= \mathsf {E}^{(\kappa I)}_{x_i}\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }\) and \(\mathsf {E}_{x_i}^{(\kappa \nu )}= \mathsf {E}^{(\kappa I)}_{x_i}\mathsf {P}_{\nu \gamma \rightarrow I}\mathsf {R}_{\nu \gamma }\) (see Sect. 3.6), for \(i\in \{1,\ldots ,d\}\), we can show that

$$\begin{aligned}&\Bigg [ \bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \nu )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg \} \varvec{1}_{\nu } - \bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg \} \varvec{1}_{\kappa } \Bigg ]_j \\&\quad = \Bigg [ \bigg \{ (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}\tilde{\mathsf {R}}_{\nu \gamma }) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\nu }) \bigg \} \varvec{1}_{\nu } \\&\qquad - \bigg \{ (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}\tilde{\mathsf {R}}_{\kappa \gamma }) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg \} \varvec{1}_{\kappa } \Bigg ]_j \\&\quad = \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \sum _{k=1}^{N_{\nu }} [\mathsf {P}_{\nu \gamma \rightarrow I}\mathsf {R}_{\nu \gamma }]_{lk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\nu }]_k) \\&\qquad - \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \sum _{m=1}^{N_{\kappa }} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lm} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_m) \\&\quad = \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_I]_l) \\&\qquad - \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_I]_l) \\&\quad = 0, \end{aligned}$$

where we used the accuracy properties of \(\mathsf {R}_{\kappa \gamma }\), \(\mathsf {R}_{\nu \gamma }\), \(\mathsf {P}_{\kappa \gamma \rightarrow I}\), and \(\mathsf {P}_{\nu \gamma \rightarrow I}\) to arrive at the penultimate step.

Appendix F Pointwise-Coupling Entropy-Conservative Scheme: Conservation Proof (Theorems 7 and 8)

1.1 Element-Wise Conservation

The proof of Theorem 7 is as follows. Taking the transpose of the second term on the right-hand side of (23) and noting that \(\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }\varvec{1}_{\kappa } = \varvec{1}_{I}\) and \(\bigg ( \mathsf {F}^{(\rho )}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa }) \bigg )^\mathrm {T}= \mathsf {F}^{(\rho )}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\), this term cancels out with the first term. Furthermore, invoking Lemma 2 for the volumetric terms, we arrive at the desired result.

1.2 Global Conservation

The proof of Theorem 8 follows from the element-wise conservation theorem (Theorem 7) and the symmetry of the entropy-conservative numerical flux. Using Theorem 7, we add the element-wise conservation equation for two neighbouring elements \(\kappa \) and \(\nu \), drop the terms not associated with the shared facet, and use the properties \(\varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}^{(\kappa I)}_{x_i}= \varvec{1}_I^\mathrm {T}\mathsf {B}_{I}\mathsf {N}^{(\kappa )}_{I,{x_i}}\) and \(\varvec{1}_{\nu }^\mathrm {T}\mathsf {E}^{(\nu I)}_{x_i}= \varvec{1}_I^\mathrm {T}\mathsf {B}_{I}\mathsf {N}^{(\nu )}_{I,{x_i}}\) (from Sect. 3.6) to obtain

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} \varvec{\rho }_{\kappa }}{\mathrm {d} t} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {H}_{\nu } \frac{ \mathrm {d} \varvec{\rho }_{\nu }}{\mathrm {d} t}&=- \sum _{i=1}^d \varvec{1}^\mathrm {T}_{\kappa } \mathsf {E}^{(\kappa I)}_{x_i}\varvec{f}_{x_i}^{*,\text {EC},\rho }(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I}) \\&\quad - \sum _{i=1}^d\varvec{1}_{\nu }^\mathrm {T}\mathsf {E}^{(\nu I)}_{x_i}\varvec{f}_{x_i}^{*,\text {EC},\rho }(\overline{\varvec{u}}_{\nu I},\overline{\varvec{u}}_{\kappa I}) \\&=- \sum _{i=1}^d \varvec{1}^\mathrm {T}_{I} \mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}\varvec{f}_{x_i}^{*,\text {EC},\rho }(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I}) \\&\quad - \sum _{i=1}^d\varvec{1}_{I}^\mathrm {T}\mathsf {N}^{(\nu )}_{I,{x_i}}\mathsf {B}_{I}\varvec{f}_{x_i}^{*,\text {EC},\rho }(\overline{\varvec{u}}_{\nu I},\overline{\varvec{u}}_{\kappa I}) \\&= 0, \end{aligned}$$

where, to arrive at the last step, we used the symmetry of the numerical flux and \(\mathsf {N}^{(\nu )}_{I,{x_i}}= - \mathsf {N}^{(\kappa )}_{I,{x_i}}\). Repeating these steps for all facets in \(\Gamma _h = \Gamma _{h,i}\), we arrive at the desired result.

Appendix G Pointwise-Coupling Entropy-Conservative Scheme: Entropy Conservation Proof (Theorems 9 and 10)

1.1 Element-Wise Entropy Conservation

Lemma 6

The first and second terms on the right-hand side of (24) simplify to

$$\begin{aligned}&\sum _{\kappa \gamma } -\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\Bigg \} \varvec{1}_{I} + \varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\Bigg \{ \big (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\Bigg \} \varvec{1}_{\kappa } \\&\quad = - \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}\varvec{\psi }_{\kappa ,x_i} + \sum _{\kappa \gamma } \varvec{1}_{I}^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}\overline{\varvec{\psi }}_{\kappa I,x_i}, \quad \forall \,\, \ i\in \{1,\ldots ,d\}, \end{aligned}$$

where, as previously defined, \([\overline{\varvec{\psi }}_{\kappa I,x_i}]_l \equiv \psi _{x_i} \big ([\overline{\varvec{u}}_{\kappa I}]_l \big ) , \ \forall \,\, l\in \{1,\ldots ,N_{I} \}\) is the potential flux vector in the \(x_i\)-direction corresponding to the extrapolated entropy variables \(\varvec{w}_{\kappa I} \).

Proof

The proof relies on the symmetry and the entropy conservation property of the entropy-conservative flux function and the exactness of the extrapolation operators for constant functions. Using \(\varvec{w}_{\kappa I} \equiv \tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}\tilde{\mathsf {R}}_{\kappa \gamma }\varvec{w}_{\kappa }\), we can show that, for \(i\in \{1,\ldots ,d\}\),

$$\begin{aligned}&\sum _{\kappa \gamma } -\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\Bigg \} \varvec{1}_{I} + \varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\Bigg \{ \big (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\Bigg \} \varvec{1}_{\kappa } \\&\quad = \sum _{\kappa \gamma } -\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\Bigg \} \varvec{1}_{I} \\&\quad \quad + \varvec{w}_{\kappa I}^\mathrm {T}\Bigg \{ \big (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\Bigg \} \varvec{1}_{\kappa } \\&\quad =\sum _{\kappa \gamma } \sum _{j=1}^{N_{\kappa }} \sum _{l=1}^{N_I} \big ([\varvec{w}_{\kappa I}]_l - [\varvec{w}_{\kappa }]_j \big )^\mathrm {T}\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\varvec{u}_{\kappa }]_j) [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \\&\quad = \sum _{\kappa \gamma } \sum _{j=1}^{N_{\kappa }} \sum _{l=1}^{N_I} ([\overline{\psi }_{\kappa I,x_i}]_l - [\psi _{\kappa , x_i}]_j) [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \\&\quad = \sum _{\kappa \gamma } \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}^{(\kappa I)}_{x_i}\overline{\varvec{\psi }}_{\kappa I,x_i} - \varvec{1}_{I}^\mathrm {T}(\mathsf {E}^{(\kappa I)}_{x_i})^\mathrm {T}\varvec{\psi }_{\kappa , x_i}, \end{aligned}$$

where we invoked the symmetry of the numerical flux in the second step, and Tadmor’s condition in the penultimate step. Using \(\varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}^{(\kappa I)}_{x_i}= \varvec{1}_I^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}\) and \(\sum _{\kappa \gamma } \mathsf {E}^{(\kappa I)}_{x_i}\varvec{1}_{I} = \mathsf {E}_{x_i}^\mathrm {T}\varvec{1}_{\kappa }\), we obtain

$$\begin{aligned}&\sum _{\kappa \gamma } -\varvec{w}_{\kappa }^\mathrm {T}\Bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\Bigg \} \varvec{1}_{I} + \varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\Bigg \{ \big (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\Bigg \} \varvec{1}_{\kappa } \\&\quad = \sum _{\kappa \gamma } \varvec{1}_{I}^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}\overline{\varvec{\psi }}_{\kappa I,x_i} - \varvec{1}_{\kappa }^\mathrm {T}\mathsf {E}_{x_i}\varvec{\psi }_{\kappa ,x_i}, \end{aligned}$$

which is the desired result. \(\square \)

1.2 Global Entropy Conservation

The proof of Theorem 10 follows from the element-wise entropy conservation theorem (Theorem 9), and the symmetry and the entropy conservation property of the entropy-conservative numerical flux. Using Theorem 9, we add the element-wise entropy conservation equation for two neighbouring elements \(\kappa \) and \(\nu \) and, dropping the terms not associated with the shared facet, we obtain

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {H}_{\nu } \frac{ \mathrm {d} \varvec{s}_{\nu }}{\mathrm {d} t}&= \sum _{i=1}^d \varvec{1}_I^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}\overline{\varvec{\psi }}_{\kappa I,x_i} + \sum _{i=1}^d\varvec{1}_I^\mathrm {T}\mathsf {N}^{(\nu )}_{I,{x_i}}\mathsf {B}_{I}\overline{\varvec{\psi }}_{\nu I,x_i} \\&\quad \quad -\sum _{i=1}^d \varvec{w}_{\kappa I}^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I}) \\&\quad \quad - \sum _{i=1}^d\varvec{w}_{\kappa I}^\mathrm {T}\tilde{\mathsf {N}}^{(\nu )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\nu I},\overline{\varvec{u}}_{\kappa I}) \\&= \sum _{i=1}^d \varvec{1}_I^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}(\overline{\varvec{\psi }}_{\kappa I,x_i} - \overline{\varvec{\psi }}_{\nu I,x_i}) \\&\quad \quad -\sum _{i=1}^d (\varvec{w}_{\kappa I} - \varvec{w}_{\nu I})^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I}), \end{aligned}$$

where we used \(\mathsf {N}^{(\nu )}_{I,{x_i}}= - \mathsf {N}^{(\kappa )}_{I,{x_i}}\) and the symmetry of the numerical flux. Writing the last term in index notation and invoking Tadmor’s condition, we see that

$$\begin{aligned}&(\varvec{w}_{\kappa I} - \varvec{w}_{\nu I})^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I})\\&\quad = \sum _{l=1}^{N_I} [\mathsf {N}^{(\kappa )}_{I,{x_i}}]_l [\mathsf {B}_{I}]_l ([\varvec{w}_{\kappa I}]_l - [\varvec{w}_{\nu I}]_l)^\mathrm {T}\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\overline{\varvec{u}}_{\nu I}]_l) \\&\quad = \sum _{l=1}^{N_I} [\mathsf {N}^{(\kappa )}_{I,{x_i}}]_l [\mathsf {B}_{I}]_l ([\overline{\varvec{\psi }}_{\kappa I,x_i}]_l - [\overline{\varvec{\psi }}_{\nu I,x_i}]_l) \\&\quad = \varvec{1}_I^\mathrm {T}\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}(\overline{\varvec{\psi }}_{\kappa I,x_i} - \overline{\varvec{\psi }}_{\nu I,x_i}). \end{aligned}$$

Plugging this back into the first equation gives

$$\begin{aligned} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t} + \varvec{1}_{\nu }^\mathrm {T}\mathsf {H}_{\nu } \frac{ \mathrm {d} \varvec{s}_{\nu }}{\mathrm {d} t} = 0. \end{aligned}$$

Repeating these steps for all facets in \(\Gamma _h = \Gamma _{h,i}\), we arrive at the desired result:

$$\begin{aligned} \sum _{\Omega _{\kappa } \in \mathcal {T}_h} \varvec{1}_{\kappa }^\mathrm {T}\mathsf {H}_{\kappa } \frac{ \mathrm {d} \varvec{s}_{\kappa }}{\mathrm {d} t} = 0. \end{aligned}$$

Appendix H Pointwise-Coupling Entropy-Conservative Scheme: Design-Order Accuracy (Theorem 11)

To prove Theorem 11, it is sufficient to show that the penalty term of (14) vanishes for \(\varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}(\varvec{\mathcal {U}}(\cdot ),\varvec{\mathcal {U}}(\cdot ))\), \(\varvec{\mathcal {W}}(\varvec{\mathcal {U}}(\cdot ))\), \(\varvec{\mathcal {U}}(\cdot ) \in \mathbb {P}_{r_{\text {min}}}(\Omega _{\kappa } \cup \Omega _{\nu })\) w.r.t. \(x_i , \ \forall \,\, i\in \{1,\ldots ,d\}\). First, we show that the first and last terms in the right-hand side of (14) cancel each other. Using \(\mathsf {E}_{x_i}^{(\kappa \kappa )}= \mathsf {E}^{(\kappa I)}_{x_i}\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }\), the first and last terms can be simplified as follows for \(i\in \{1,\dots ,d\}\):

$$\begin{aligned}&\Bigg [ - \bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\bigg \} \varvec{1}_{I} + \bigg \{ \tilde{\mathsf {E}}_{x_i}^{(\kappa \kappa )}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg \} \varvec{1}_{\kappa } \Bigg ]_j \\&\quad = \Bigg [ - \bigg \{ \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\overline{\varvec{u}}_{\kappa I})\bigg \} \varvec{1}_{I} +\bigg \{ (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}\tilde{\mathsf {R}}_{\kappa \gamma }) \circ \mathsf {F}_{x_i}(\varvec{u}_{\kappa },\varvec{u}_{\kappa }) \bigg \} \varvec{1}_{\kappa } \Bigg ]_j \\&\quad = -\sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\overline{\varvec{u}}_{\kappa I}]_l)\\&\quad \quad + \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \sum _{k=1}^{N_{\kappa }} (\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma })_{lk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_{\kappa }]_k) \\&\quad = -\sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\overline{\varvec{u}}_{\kappa I}]_l)\\&\quad \quad + \sum _{l=1}^{N_I} [\mathsf {E}^{(\kappa I)}_{x_i}]_{jl} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\varvec{u}_{\kappa }]_j,[\varvec{u}_I]_l), \end{aligned}$$

where we used the accuracy properties of the extrapolation operators \(\mathsf {R}_{\kappa \gamma }\) and \(\mathsf {P}_{\kappa \gamma \rightarrow I}\) in the last step. Furthermore, since both \(\varvec{\mathcal {W}}(\varvec{\mathcal {U}}(\cdot ))\) and \(\varvec{\mathcal {U}}(\cdot )\) are in the degree \(r_{\text {min}}\) polynomial space, the conservative variables evaluated at the extrapolated entropy variables are equal to the extrapolated conservative variables, i.e. \(\overline{\varvec{u}}_{\kappa I} = \varvec{u}_I\). Therefore, the two terms in the last line above cancel each other.

Continuing, the second and third term in the right-hand side of (14) simplify, for \(i\in \{1,\dots ,d\}\), to

$$\begin{aligned}&\Bigg [\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\bigg \{ \big (\tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\bigg \} \varvec{1}_{\kappa } - \tilde{\mathsf {E}}^{(\kappa I)}_{x_i}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I})\Bigg ]_j \\&\quad = \Bigg [\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\bigg \{ \big (\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\big )^\mathrm {T}\circ \mathsf {F}_{x_i}(\overline{\varvec{u}}_{\kappa I},\varvec{u}_{\kappa })\bigg \} \varvec{1}_{\kappa } \\&\quad \quad - \tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\tilde{\mathsf {N}}^{(\kappa )}_{I,{x_i}}\tilde{\mathsf {B}}_{I}\varvec{f}_{x_i}^{*,\mathrm {EC}}(\overline{\varvec{u}}_{\kappa I},\overline{\varvec{u}}_{\nu I})\Bigg ]_j \\&\quad = \sum _{l=1}^{N_I} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lj} [\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}]_{ll} \sum _{k=1}^{N_{\kappa }} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lk} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\varvec{u}_{\kappa }]_k)\\&\quad \quad - \sum _{l=1}^{N_I} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lj} [\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}]_{ll} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\overline{\varvec{u}}_{\nu I}]_l) \\&\quad = \sum _{l=1}^{N_I} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lj} [\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}]_{ll} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\varvec{u}_I]_l) \\&\quad \quad - \sum _{l=1}^{N_I} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lj} [\mathsf {N}^{(\kappa )}_{I,{x_i}}\mathsf {B}_{I}]_{ll} \varvec{\mathcal {F}}_{x_i}^{*,\mathrm {EC}}([\overline{\varvec{u}}_{\kappa I}]_l,[\overline{\varvec{u}}_{\nu I}]_l), \end{aligned}$$

where we used the accuracy properties of \(\mathsf {R}_{\kappa \gamma }\) and \(\mathsf {P}_{\kappa \gamma \rightarrow I}\) in the last step. Again, noting that \(\overline{\varvec{u}}_{\kappa I} = \overline{\varvec{u}}_{\nu I} = \varvec{u}_I\) (since both \(\varvec{\mathcal {W}}(\varvec{\mathcal {U}}(\cdot ))\) and \(\varvec{\mathcal {U}}(\cdot )\) are in the degree \(r_{\text {min}}\) polynomial space), the last line sums to zero.

Appendix I Entropy Dissipative Term: Conservation Proof (Theorem 12)

The proof of Theorem 12 is as follows. Invoking the exactness of the extrapolation operators for constant functions (i.e. \(\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }\varvec{1}_{\kappa } = \mathsf {P}_{\nu \gamma \rightarrow I}\mathsf {R}_{\nu \gamma }\varvec{1}_{\nu } = \varvec{1}_I\)) and the symmetry \(\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )}) = \Lambda _I(\varvec{u}_{\nu I}, \varvec{u}_{\kappa I}; \varvec{n}_I^{(\nu )})\), we show that

$$\begin{aligned}&\varvec{1}_{\kappa }^\mathrm {T}\mathsf {R}_{\kappa \gamma }^\mathrm {T}\mathsf {P}_{\kappa \gamma \rightarrow I}^\mathrm {T}\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )})^{(\rho )} \tilde{\mathsf {B}}_{I}(\varvec{w}_{\kappa I} - \varvec{w}_{\nu I}) \\&\quad \quad + \varvec{1}_{\nu }^\mathrm {T}\mathsf {R}_{\nu \gamma }^\mathrm {T}\mathsf {P}_{\nu \gamma \rightarrow I}^\mathrm {T}\Lambda _I(\varvec{u}_{\nu I}, \varvec{u}_{\kappa I}; \varvec{n}_I^{(\nu )})^{(\rho )} \tilde{\mathsf {B}}_{I}(\varvec{w}_{\nu I} - \varvec{w}_{\kappa I})\\&\quad = \varvec{1}_{I}^\mathrm {T}\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )})^{(\rho )} \tilde{\mathsf {B}}_{I}\bigg [ (\varvec{w}_{\kappa I} - \varvec{w}_{\nu I}) + (\varvec{w}_{\nu I} - \varvec{w}_{\kappa I})\bigg ] \\&\quad = 0, \end{aligned}$$

which is the desired result.

Appendix J Entropy Dissipative Term: Entropy Dissipation Proof (Theorem 13)

The proof of Theorem 13 is as follows. Using the definitions \(\varvec{w}_{\kappa I} \equiv \tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}\tilde{\mathsf {R}}_{\kappa \gamma }\varvec{w}_{\kappa }\) and \(\varvec{w}_{\nu I} \equiv \tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}\tilde{\mathsf {R}}_{\nu \gamma }\varvec{w}_{\nu }\) and \(\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )}) = \Lambda _I(\varvec{u}_{\nu I}, \varvec{u}_{\kappa I}; \varvec{n}_I^{(\nu )})\), we show that

$$\begin{aligned}&-\varvec{w}_{\kappa }^\mathrm {T}\tilde{\mathsf {R}}_{\kappa \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\kappa \gamma \rightarrow I}^\mathrm {T}\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )}) \tilde{\mathsf {B}}_{I}(\varvec{w}_{\kappa I} - \varvec{w}_{\nu I}) \\&-\varvec{w}_{\nu }^\mathrm {T}\tilde{\mathsf {R}}_{\nu \gamma }^\mathrm {T}\tilde{\mathsf {P}}_{\nu \gamma \rightarrow I}^\mathrm {T}\Lambda _I(\varvec{u}_{\nu I}, \varvec{u}_{\kappa I}; \varvec{n}_I^{(\nu )}) \tilde{\mathsf {B}}_{I}(\varvec{w}_{\nu I} - \varvec{w}_{\kappa I})\\&\quad = -(\varvec{w}_{\kappa I} - \varvec{w}_{\nu I})^\mathrm {T}\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )}) \tilde{\mathsf {B}}_{I}(\varvec{w}_{\kappa I} - \varvec{w}_{\nu I}) \\&\quad \le 0, \end{aligned}$$

since the matrix \(\Lambda _I(\varvec{u}_{\kappa I}, \varvec{u}_{\nu I}; \varvec{n}_{I}^{(\kappa )}) \tilde{\mathsf {B}}_{I}\) is symmetric positive semi-definite.

Appendix K Entropy Dissipative Term: Design-Order Accuracy Proof (Theorem 14)

To prove Theorem 14, it is sufficient to show that the interface penalty term (17) vanishes for \(\varvec{\mathcal {W}}(\varvec{\mathcal {U}}(\cdot )) \in \mathbb {P}_{r_{\text {min}}}(\Omega _{\kappa } \cup \Omega _{\nu })\) w.r.t. \(x_i , \ \forall \,\, i \in \{1,\ldots ,d\}\). For \(l\in \{1,\ldots ,N_I\}\), we can show that

$$\begin{aligned}{}[\varvec{w}_{\kappa I} - \varvec{w}_{\nu I}]_l&= \sum _{j=1}^{N_{\kappa }} [\mathsf {P}_{\kappa \gamma \rightarrow I}\mathsf {R}_{\kappa \gamma }]_{lj} [\varvec{w}_{\kappa }]_j - \sum _{k=1}^{N_{\nu }} [\mathsf {P}_{\nu \gamma \rightarrow I}\mathsf {R}_{\nu \gamma }]_{lk} [\varvec{w}_{\nu }]_k \\&= [\varvec{w}_I]_l - [\varvec{w}_I]_l \\&= 0, \end{aligned}$$

where we used the accuracy properties of \(\mathsf {R}_{\kappa \gamma }\), \(\mathsf {R}_{\nu \gamma }\), \(\mathsf {P}_{\kappa \gamma \rightarrow I}\), and \(\mathsf {P}_{\nu \gamma \rightarrow I}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadpey, S., Zingg, D.W. Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws. J Sci Comput 82, 70 (2020). https://doi.org/10.1007/s10915-020-01169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01169-1

Keywords

Navigation