Skip to main content
Log in

Discontinuous Galerkin via Interpolation: The Direct Flux Reconstruction Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The discontinuous Galerkin (DG) method is based on the idea of projection using integration. The recent direct flux reconstruction (DFR) method by Romero et al. (J Sci Comput 67(1):351–374, 2016) is derived via interpolation and results in a scheme identical to DG (on hexahedral meshes). The DFR method is further studied and developed here. Two proofs for its equivalence with the DG scheme considerably simpler than the original proof are presented. The first proof employs the \( 2K - 1 \) degree of precision by a \( K \)-point Gauss quadrature. The second shows the equivalence of DG, FR, and DFR by using the property that the derivative of the degree \( K + 1 \) Lobatto polynomial vanishes at the \( K \) Gauss points. Fourier analysis for these schemes are presented using an approach more geometric compared with existing analytic approaches. The effects of nonuniform mesh and those of high-order mesh transformation (a precursor for curved meshes in two and three spatial dimensions) on stability and accuracy are examined. These nonstandard analyses are obtained via an in-depth study of the behavior of eigenvalues and eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abe, Y., Haga, T., Nonomura, T., Fujii, K.: On the freestream preservation of high-order conservative flux-reconstruction schemes. J. Comput. Phys. 281, 28–54 (2015)

    Article  MathSciNet  Google Scholar 

  2. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  Google Scholar 

  4. Alhawwary, M., Wang, Z.J.: Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws. J. Comput. Phys. 373, 835–862 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(1997), 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution for the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation, and Application. Lecture Notes in Computational Science and Engineering, pp. 77–88. Springer, Berlin (2000)

    Chapter  Google Scholar 

  8. Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Black, K.: Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.): Discontinuous Galerkin Methods: Theory, Computation, and Application. Springer, Berlin (2000)

    Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin methods for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: Foreword for the special issue on discontinuous Galerkin method. J. Sci. Comput. 22–23, 1–3 (2005)

    Google Scholar 

  13. Cockburn, B., Shu, C.-W.: Foreword for the special issue on discontinuous Galerkin method. J. Sci. Comput. 40, 1–3 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gassner, G., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, Berlin (2008)

    Book  Google Scholar 

  16. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. Dover Books on Advanced Mathematics, New York (1987)

    MATH  Google Scholar 

  17. Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)

    Article  Google Scholar 

  18. Hu, F., Atkins, H.: Eigensolution analysis of the discontinuous Galerkin method with nonuniform grids: I. One space dimension. J. Comput. Phys. 182(2), 516–545 (2002)

    Article  MathSciNet  Google Scholar 

  19. Huynh, H.T.: A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods. AIAA Paper 2007-4079 (2007)

  20. Huynh, H.T.: A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion. AIAA Paper 2009-403 (2009)

  21. Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  22. Johnson, P.E., Johnsen, E., Huynh, H.T.: A novel flux reconstruction method for diffusion problems. In: AIAA Paper, AIAA Aviation Conference (2019, to appear)

  23. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26, 301–326 (2006)

    Article  MathSciNet  Google Scholar 

  24. Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Discontinuous spectral element approximation of Maxwell’s equations. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer, New York (2000)

    Google Scholar 

  25. Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Meth. Eng. 53, 105–122 (2002)

    Article  Google Scholar 

  26. LaSaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, Cambridge (1974)

    Chapter  Google Scholar 

  27. Mengaldo, G., De Grazia, D., Moura, R.C., Sherwin, S.J.: Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness. J. Comput. Phys. 358, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  28. Moura, R.C., Sherwin, S.J., Peiró, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MathSciNet  Google Scholar 

  29. Reed, W.H., Hill, T.R.: Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Report, LA-UR-73-479 (1973)

  30. Romero, J., Asthana, K., Jameson, A.: A simplified formulation of the flux reconstruction method. J. Sci. Comput. 67(1), 351–374 (2016)

    Article  MathSciNet  Google Scholar 

  31. Romero, J., Witherden, F.D., Jameson, A.: A direct flux reconstruction scheme for advection–diffusion problems on triangular grids. J. Sci. Comput. 73(2–3), 1115–1144 (2017)

    Article  MathSciNet  Google Scholar 

  32. Shu, C.-W.: Discontinuous Galerkin method for time dependent problems: survey and recent developments. In: Feng, X., et al. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, The IMA Volumes in Mathematics and its Applications 157. Springer, Berlin (2012)

  33. Van den Abeele, K.: Development of High-Order Accurate Schemes for Unstructured Grids. Ph.D. thesis, Vrije Universiteit Brussel (2009)

  34. Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230(22), 8134–8154 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wang, Z.J., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Meth. Fluids 72(8), 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wang, Z.J., Huynh, H.T.: A review of flux reconstruction or correction procedure via reconstruction method for the Navier–Stokes equations. Mech. Eng. Rev. 3(1), 1–16 (2016)

    Article  Google Scholar 

  37. Wang, L., Yu, M.: Compact direct flux reconstruction for conservation laws. J. Sci. Comput. 75, 253–275 (2018)

    Article  MathSciNet  Google Scholar 

  38. Witherden, F.D., Vincent, P.E., Jameson, A.: High-order flux reconstruction schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Analysis, Chapter 10, vol. 17, pp. 227–263. Elsevier, Amsterdam (2016)

    Google Scholar 

  39. Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552–574 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was supported by the Transformational Tools and Technologies Project of NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Huynh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, H.T. Discontinuous Galerkin via Interpolation: The Direct Flux Reconstruction Method. J Sci Comput 82, 75 (2020). https://doi.org/10.1007/s10915-020-01175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01175-3

Keywords

Navigation