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A Mixed Discontinuous Galerkin Method for Linear Elasticity

with Strongly Imposed Symmetry∗

Fei Wang† Shuonan Wu‡ Jinchao Xu§

Abstract

In this paper, we study a mixed discontinuous Galerkin (MDG) method to solve linear elasticity

problem with arbitrary order discontinuous finite element spaces in d-dimension (d = 2, 3). This method

uses polynomials of degree k + 1 for the stress and of degree k for the displacement (k ≥ 0). The mixed

DG scheme is proved to be well-posed under proper norms. Specifically, we prove that, for any k ≥ 0,

the H(div)-like error estimate for the stress and L2 error estimate for the displacement are optimal. We

further establish the optimal L2 error estimate for the stress provided that the Pk+2 −P
−1

k+1
Stokes pair

is stable and k ≥ d. We also provide numerical results of MDG showing that the orders of convergence

are actually sharp.
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1 Introduction

In this paper, we present a mixed discontinuous Galerkin (MDG) method for the following linear elasticity

problem: 



Aσ − ε(u) = 0 in Ω,

divσ = f in Ω,

u = 0 on ∂Ω,

(1.1)

where u : Ω 7→ R
d and σ : Ω 7→ S, denote displacement and stress, respectively. Here, S represents the space

of real symmetric matrices of order d× d. The tensor A : S 7→ S is assumed to be bounded and symmetric

positive definite, and the linearized strain tensor is denoted by ε(u) = (∇u + (∇u)t)/2.

For the mixed methods for linear elasticity problem (1.1), it is very challenging to develop the stable

mixed finite element methods because the stress tensor needs to be symmetric. One approach to circumvent

this difficulty is to introduce the antisymmetric part of ∇u as a new variable, and hence, to enforce stress

symmetry weakly [2, 6, 11, 22, 26, 37, 29]. Another approach is to use the composite element for the stress
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[36, 5]. The first stable non-composite conforming mixed finite element method for plane elasticity was

proposed by Arnold and Winther in 2002 [7], and analogs of the results in the 3D case were reported in

[1, 3]. In this class of elements, the displacement is discretized by discontinuous piecewise P−1
k (k ≥ 1)

polynomial, while the stress is discretized by the conforming Pk+2 tensors whose divergence is Pk vector

on each triangle. In recent years, Hu and Zhang [33, 34] and Hu [32] proposed a family of conforming

mixed elements for R
d that apply the Pk+1 − Pk pair for the stress and displacement when k ≥ d. These

elements also admit a unified theory and a relatively easy implementation. The lower order conforming

approximations of stress were also considered in [35], and a simpler stress element with jump stabilization

term for the displacement [19].

Because of the lack of suitable conforming mixed elasticity elements, several authors have resorted to

the nonconforming elements [8, 4, 28], where the optimal convergence order for the displacement can be

proved under the full elliptic regularity assumption but the convergence order of L2 error for stress is still

suboptimal. To improve the convergence order for stress, an interior penalty mixed finite element method

using Crouzeix-Raviart nonconforming linear element to approximate each component of the symmetric

stress was studied in [17]. In [40], Wu, Gong, and Xu proposed two classes of interior penalty mixed finite

elements for linear elasticity of arbitrary order in arbitrary dimension, where the stability is guaranteed by

introducing the nonconforming face-bubble spaces based on the local decomposition of discrete symmetric

tensors.

Discontinuous Galerkin (DG) methods have been applied to solve various differential equations due

to their flexibility in constructing feasible local shape function spaces and the advantage to capture non-

smooth or oscillatory solutions effectively. The DG methods are attracting the interest of many applied

mathematicians and engineers because they discretize the equations in an element-by-element fashion, and

glue each element through numerical traces, which can give rise to locally conservative methods. In [9],

Arnold, Brezzi, Cockburn, and Marini proposed a unified framework for the devising and analysis of most

DG methods for second-order elliptic equations. The LDG method, which is introduced in [24], is one of

several discontinuous Galerkin methods which are being vigorously studied [18, 9, 21, 23]. As proposed in

[18, Equ. (2.4)], the numerical traces for second-order elliptic equations have the general expressions as

p̂ = {p} − C11JuK −C12[p],

û = {u}+C12 · JuK − C22[p],

where u and p are the approximations of primal variable and flux, respectively. In most literature, the

parameter C22 is taken as 0 or O(h) so that the resulting scheme is of the category of primal DG method.

When taking C22 as O(h−1), the penalty term on the jump of p leads to a mixed DG scheme [31].

For linear elasticity problem, a primal LDG method was studied in [20], where the discontinuous P−1
k −

P−1
k+1 pairs were used to approximate the stress and displacement for k ≥ 0. In the weak formulation, two

penalty terms for stress and displacement are adopted, however, the error analysis was only given for the

case when the penalty term of the stress vanishes, i.e. C22 = 0.

In this paper, we study the mixed LDG method for solving linear elasticity by discontinuous P−1
k+1−P−1

k

finite element pairs for the stress and displacement with k ≥ 0 for any spatial dimension in a unified fashion.

Our contributions are twofold. First, by introducing a mesh-dependent norm for the stress, we give a prior

error analysis, which shows that optimal L2-error estimate for displacement and optimal Hh(div) error

estimate for stress. Second, when the Pk+2 −P−1
k+1 Stokes pair is stable and k ≥ d, we prove the optimal L2

error estimate for the stress by the BDM projection [14] and a symmetrization technique.

The rest of the paper is organized as follows. In Section 2, we derive the mixed DG scheme to solve the

linear elasticity problem. Then based on Brezzi theory, we prove the well-posedness of the scheme in Section
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3, and the optimal convergence rates are obtained for both stress and displacement variables in Section 4.

In addition, the optimal L2 error estimate for the stress is shown in Section 5. In Section 6, numerical tests

are given for solving the linear elasticity problems by the mixed LDG methods, and the numerical results

verify the theoretical error analysis. Finally, we give several concluding remarks in the last section.

2 Mixed DG method for linear elasticity problem

In this section, we study a mixed discontinuous Galerkin method for the linear elasticity problem (1.1),

whose weak formulation reads: Find (σ, u) ∈ Σ× V such that

{
(Aσ, τ )Ω + (u, divτ )Ω = 0 ∀τ ∈ Σ,

(divσ, v)Ω = (f, v)Ω ∀v ∈ V.
(2.1)

Here, V = L2(Ω;Rd) denotes the space of vector-valued functions which are square-integrable with the L2

norm, and Σ = H(div,Ω; S) consists of square-integrable symmetric matrix fields with square-integrable

divergence, and the corresponding norm is defined by

‖τ‖2div,Ω := ‖τ‖20,Ω + ‖divτ‖20,Ω ∀τ ∈ H(div,Ω; S).

For the symmetric tensor space S, we define the inner products by σ : τ =
∑d

i,j=1 σijτij for any σ, τ ∈ S.

Further, we define the symmetric tensor product ⊙ as

u⊙ v :=
1

2
(u⊗ v + v ⊗ u) ∈ S ∀u, v ∈ R

d, (2.2)

where u⊗ v is a tensor with uivj as its (i, j)-th entry.

2.1 DG notation

We introduce some notation before presenting the mixed DG scheme. Given a bounded domain D ⊂ R
d and

a positive integer m, Hm(D) is the Sobolev space with the corresponding usual norm and semi-norm, which

are denoted respectively by ‖ · ‖m,D and | · |m,D. We abbreviate them by ‖ · ‖m and | · |m, respectively, when

D is chosen as Ω. The L2-inner product on D and ∂D are denoted by (·, ·)D and 〈·, ·〉∂D, respectively. ‖ · ‖D
and ‖ · ‖∂D are the norms of Lebesgue spaces L2(D) and L2(∂D), respectively. We assume Ω is a polygonal

domain and denote by {Th}h a family of triangulations of Ω, with the minimal angle condition satisfied. Let

hK = diam(K) and h = max{hK : K ∈ Th}. Denote by Eh the union of the boundaries of the elements K of

Th, E
i
h is the set of interior edges and E∂

h = Eh\E
i
h is the set of boundary edges. Let e be the common edge of

two elements K+ and K−, and ni = n|∂Ki be the unit outward normal vector on ∂Ki with i = +,−. For

any vector-valued function v and tensor-valued function τ , let v± = v|∂K± , τ± = τ |∂K± . Then, we define

the average {·}, jump [·] and tensor jump J·K as follows:

{v} =
1

2
(v+ + v−), {τ} =

1

2
(τ+ + τ−) on e ∈ E i

h,

[τ ] = τ+n+ + τ−n−, JvK = v+ ⊙ n+ + v− ⊙ n− on e ∈ E i
h,

{τ} = τ , JvK = v ⊙ n on e ∈ E∂
h .

where n is the outward unit normal vector on ∂Ω. Let us give the following identities which are used

often in this section. For any vector-valued function v and tensor-valued function τ , all being continuously
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differentiable over K, we have the following integration by parts formula:
∫

K

divτ · v dx = −

∫

K

τ : ε(v) dx+

∫

∂K

(τnK) · v ds, (2.3)

and the following identity:

∑

K∈Th

∫

∂K

(τnK) · v ds =

∫

Eh

{τ} : JvKds+

∫

Ei

h

[τ ] · {v} ds. (2.4)

Throughout this paper, we shall use letter C to denote a generic positive constant independent of h which

may stand for different values at its different occurrences. The notation x . y means x ≤ Cy. For piecewise

smooth vector-valued function v and tensor-valued function τ , let ∇h and divh be defined by the relation

∇hv|K = ∇v|K , divhτ |K = divτ |K ,

on any element K ∈ Th, respectively.

2.2 Mixed LDG scheme

Now, let us introduce the mixed LDG formulation for (1.1). We denote the piecewise vector and symmetric

matrix valued discrete spaces by Vh and Σh, respectively. We multiply (1.1) by arbitrary test functions

τh ∈ Σh and vh ∈ Vh, respectively, and integration by parts over the element K ∈ Th to obtain




∑

K∈Th

(Aσ, τh)K +
∑

K∈Th

(u, divτ h)K −
∑

K∈Th

〈u, τhnK〉∂K = 0 ∀τh ∈ Σh,

−
∑

K∈Th

(σ, εh(vh))K +
∑

K∈Th

〈σnK , vh〉∂K =
∑

K∈Th

(f, vh)K ∀vh ∈ Vh.
(2.5)

Let V̂h and Σ̂h be the piecewise vector and symmetric matrix valued discrete spaces on Eh, respectively. The

approximate solution (σh, uh) is then defined by using the weak formulation (2.5), namely





∑

K∈Th

(Aσh, τh)K +
∑

K∈Th

(uh, divτ h)K −
∑

K∈Th

〈ûh, τ hnK〉∂K = 0 ∀τh ∈ Σh,

−
∑

K∈Th

(σh, εh(vh))K +
∑

K∈Th

〈σ̂hnK , vh〉∂K =
∑

K∈Th

(f, vh)K ∀vh ∈ Vh,
(2.6)

where the numerical traces ûh ∈ V̂h and σ̂h ∈ Σ̂h need to be suitably defined to ensure the stability of the

method and to enhance its accuracy. By the identity (2.4) and integration by parts (2.3), we get from (2.6)

that




∫

Ω

Aσh : τh dx+

∫

Ω

uh · divhτh dx−

∫

Eh

JûhK : {τh} ds−

∫

Ei

h

{ûh} · [τ h] ds = 0 ∀τ h ∈ Σh,

∫

Ω

divhσh · vh dx+

∫

Eh

{σ̂h − σh} : JvhKds+

∫

Ei

h

[σ̂h − σh] · {vh} ds =

∫

Ω

f · vh dx ∀vh ∈ Vh.

(2.7)

Similar to the discussion for Poisson problem in [31], we choose mixed LDG numerical traces as follow:

{
ûh = {uh} − η[σh] on E i

h, ûh = 0 on E∂
h ,

σ̂h = {σh} on Eh.
(2.8)
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In such choice, it is easy to see that the numerical traces are single valued. Further, we can see that if uh

and σh are replaced by the exact solution u and σ, then ûh = u|Eh
and σ̂h = σ|Eh

on Eh. That is, the

numerical traces are consistent. Moreover, we have

JûhK = 0, [σ̂h] = 0, and {σ̂h − σh} = 0.

Then, we obtain the mixed LDG formulation for (1.1): Find (σh, uh) ∈ Σh × Vh such that

{
ah(σh, τh) + bh(τ h, uh) = 0 ∀τh ∈ Σh,

bh(σh, vh) = (f, vh)Ω ∀vh ∈ Vh.
(2.9)

Here, we choose η = ηeh
−1
e , ηe = O(1), and define

ah(σ, τ ) =

∫

Ω

Aσ · τ dx+

∫

Ei

h

ηeh
−1
e [σ] · [τ ] ds ∀σ, τ ∈ Σh ∪Σ, (2.10a)

bh(τ , v) =

∫

Ω

divhτ · v dx−

∫

Ei

h

[τ ] · {v} ds ∀τ ∈ Σh ∪Σ, v ∈ Vh ∪ V. (2.10b)

Moreover, we define the following star norm

‖τ‖2∗,Ω :=

∫

Ω

(|τ |2 + |divhτ |
2) dx+

∫

Ei

h

ηeh
−1
e |[τ ]|2 ds ∀τ ∈ Σh ∪Σ. (2.11)

In the following subsections, we prove the boundedness, stability and consistency of the mixed LDG

formulation (2.9) when choosing

Vh = V k
h = {vh ∈ L2(Ω;Rd) : vh|K ∈ Pk(K;Rd) ∀K ∈ Th},

Σh = Σk+1
h = {τh ∈ L2(Ω; S) : τh|K ∈ Pk+1(K; S) ∀K ∈ Th},

(2.12)

for k ≥ 0, which lead to the optimal order of convergence.

3 Well-posedness of the mixed LDG method

The well-posedness of the mixed LDG methods (2.9) comes from the boundedness and the stability.

Boundedness. It is easy to check by Cauchy-Schwarz inequality that ah(·, ·) satisfies

ah(σ, τ ) . ‖σ‖∗,Ω‖τ‖∗,Ω ∀σ, τ ∈ Σh ∪Σ. (3.1)

The remaining task is the boundedness of bh(·, ·). To this end, let us recall the lifting operator re : (L
2(Eh))

d →

Vh defined by ∫

Ω

re(w) · vh dx = −

∫

e

w · {vh} ds ∀vh ∈ Vh. (3.2)

Then, we have the following lemma (see also [9, 16]).

Lemma 3.1 For any edge e ∈ ∂K, it holds

‖re(w)‖0,Ω . h−1/2
e ‖w‖0,e. (3.3)

5



Proof. By taking vh = re(w) in (3.2) and applying the inverse inequality, we obtain

‖re(w)‖
2
0,Ω ≤

1

2
‖w‖0,e(‖re(w)

+‖0,e + ‖re(w)
−‖0,e) . h−1/2

e ‖w‖0,e‖re(w)‖0,Ω,

which gives rise to (3.3).

Lemma 3.2 It holds that

bh(τ , vh) . ‖τ‖∗,Ω‖vh‖0,Ω ∀τ ∈ Σh ∪Σ, ∀vh ∈ Vh, (3.4)

bh(τ , v) . ‖τ‖∗,Ω(‖v‖0,Ω + h|v|1,Ω,h) ∀τ ∈ Σh ∪Σ, ∀v ∈ V ∩H1(Ω;Rd). (3.5)

Proof. In light of Lemma 3.1, we have for any vh ∈ Vh

bh(τ , vh) =

∫

Ω


divhτ +

∑

e∈Ei

h

re([τ ])


 · vh dx

. ‖vh‖0,Ω

(
‖divhτ‖

2
0,Ω +

∫

Ei

h

h−1
e |[τ ]|2 ds

)1/2

≤ ‖vh‖0,Ω‖τ‖∗,Ω.

Furthermore, for any v ∈ V ∩H1(Ω;Rd),

bh(τ , v) ≤ ‖divhτ‖0,Ω‖v‖0,Ω +
∑

e∈Ei

h

h−1/2
e ‖[τ ]‖0,eh

1/2
e ‖{v}‖0,e . ‖τ‖∗,Ω(‖v‖0,Ω + h|v|1,Ω,h).

Here, we use the trace inequality in the last step.

Stability. According to the theory of mixed method, the stability of the saddle point problem (2.9) is the

corollary of the following two conditions [13, 15]:

1. K-ellipticity: There exists a constant C > 0, independent of the grid size such that

ah(τ h, τh) ≥ C‖τh‖
2
∗,Ω ∀τ h ∈ Zh, (3.6)

where Zh = {τh ∈ Σh | bh(τ h, vh) = 0 ∀vh ∈ Vh}.

2. The discrete inf-sup condition: There exists a constant C > 0, independent of the grid size such that

inf
vh∈Vh

sup
τh∈Σh

bh(τ h, vh)

‖τh‖∗,Ω‖vh‖0,Ω
≥ C. (3.7)

First, we prove the inf-sup condition (3.7) in the following lemma.

Lemma 3.3 (Inf-sup condition) When choosing Σh × Vh = Σk+1
h × V k

h for k ≥ 0, the discrete inf-sup

condition (3.7) holds true for mixed LDG method (2.9) of linear elasticity problem.

6



Proof. In [40], Wu, Gong, and Xu introduced a class of nonconforming finite element spaces for k ≥ 0 that

Σ
(1)
k+1,h := {τ | τ |K ∈ Pk+1(K; S), and the moments of τn

up to degree k are continuous across the interior edges}.

Thanks to the Lemma 3.3 and Lemma 4.1 in [40], we know that for any vh ∈ Vh, there exists a τ̄ h ∈ Σ
(1)
k+1,h

such that

divτ̄ h = vh and ‖τ̄h‖∗,Ω . ‖vh‖0,Ω. (3.8)

Note that Σ
(1)
k+1,h ⊂ Σk+1

h and the property of Σ
(1)
k+1,h implies that

∫

Ei

h

[τ̄h] · {vh} ds = 0 ∀vh ∈ Vh.

Here, we use the fact that {vh} is of degree k on the edge. Therefore, for any vh ∈ V k
h

sup
τh∈Σ

k+1
h

bh(τh, vh)

‖τh‖∗,Ω
≥

bh(τ̄ h, vh)

‖τ̄h‖∗,Ω
=

∫
Ω divτ̄h · vh dx

‖τ̄h‖∗,Ω
& ‖vh‖0,Ω.

Then, we finish the proof.

Theorem 3.4 The mixed LDG scheme (2.9) is well-posed for (Σk+1
h , ‖ · ‖∗,Ω) and (V k

h , ‖ · ‖0,Ω).

Proof. In light of the boundedness and Lemma 3.3, we only need to prove the K-ellipticity (3.6). By the

definition of lifting operator (3.2), we have

bh(τh, vh) =

∫

Ω


divhτh +

∑

e∈Ei

h

re([τ h])


 · vh dx,

which implies that

Zh = {τh ∈ Σk+1
h | divhτ h +

∑

e∈Ei

h

re([τh]) = 0}.

With the help of the Lemma 3.1, we see that

‖divhτh‖0,Ω = ‖
∑

e∈Ei

h

re([τ h])‖0,Ω .
∑

e∈Ei

h

h−1/2
e ‖[τh]‖0,e ∀τh ∈ Zh.

Let η0 = infe∈Ei

h

ηe be a positive constant that independent of the grid size. Then,

ah(τ h, τh) ≥ ‖τh‖
2
0,Ω + η0

∑

e∈Ei

h

h−1
e ‖[τh]‖

2
0,e & ‖τh‖

2
∗,Ω ∀τh ∈ Zh. (3.9)

Then, we finish the proof.

Remark 3.5 From Lemma 3.1, we, Gong, can see that the penalty term
∫
Ei

h

ηeh
−1
e [σh] · [τ h] ds can be

replaced by
∑

e∈Ei

h

∫
Ω ηere([σh]) · re([τh]) dx, and the well-posedness of the corresponding scheme can be

proved similarly with a modified norm ‖τ‖2∗,Ω :=
∫
Ω(|τ |

2 + |divhτ |
2 +

∑
e∈Ei

h

|re([τ ])|
2) dx.

7



4 A priori error estimates in energy norms

Lemma 4.1 Assume the solution (σ, u) ∈ Σ×H1(Ω;Rd), we have
{
ah(σ − σh, τh) + bh(τ h, u− uh) = 0 ∀τ h ∈ Σh,

bh(σ − σh, vh) = 0 ∀vh ∈ Vh.
(4.1)

Proof. It can be seen that [σ] = 0 and JuK = 0 on E i
h as (σ, u) ∈ Σ×H1(Ω;Rd). Therefore,

ah(σ, τ h) + bh(τ h, u) =

∫

Ω

Aσ : τh dx+

∫

Ω

u · divhτ h dx−

∫

Ei

h

{u} · [τh] ds

=

∫

Ω

Aσ : τh dx−

∫

Ω

ε(u) : τh dx+

∫

Eh

JuK : {τh} ds

=

∫

Ω

(Aσ − ε(u)) : τh dx = 0.

Hence, we prove the first equality in (4.1). On the other hand,

bh(σ, vh) =

∫

Ω

divσ · vh dx−

∫

Ei

h

[σ] · {vh} ds =

∫

Ω

divσ · vh dx =

∫

Ω

f · vh dx,

which implies the second equality in the lemma.

By combining Lemma 4.1 and the well-posedness of mixed LDG formulation (2.9), we have the following

a priori error estimates.

Theorem 4.2 Let (σh, uh) be the solution of the mixed LDG problem (2.9), and (σ, u) ∈ Σ×H1(Ω;Rd) be

the solution of (1.1). Then,

‖σ − σh‖∗,Ω + ‖u− uh‖0,Ω . inf
τh∈Σ

k+1

h

‖σ − τh‖∗,Ω + inf
vh∈V k

h

(‖u− vh‖0,Ω + h|u− vh|1,Ω,h). (4.2)

Proof. Define

Lh(τ h, vh; θh, wh) = ah(τh, θh) + bh(θh, vh) + bh(τ h, wh),

which satisfies discrete inf-sup condition based on the well-posedness of (2.9). In the light of Lemma 4.1 and

the boundedness (3.1), (3.4) and (3.5), we have for any (τ h, vh) ∈ Σk+1
h × V k

h ,

‖τh − σh‖∗,Ω + ‖vh − uh‖0,Ω . sup
(θh,wh)∈Σ

k+1

h
×V k

h

Lh(τh − σh, vh − uh; θh, wh)

‖θh‖∗,Ω + ‖wh‖0,Ω

= sup
(θh,wh)∈Σ

k+1

h
×V k

h

ah(τ h − σ, θh) + bh(θh, vh − u) + bh(τ h − σ, wh)

‖θh‖∗,Ω + ‖wh‖0,Ω

. ‖τh − σ‖∗,Ω + sup
θh∈Σ

k+1

h

bh(θh, vh − u)

‖θh‖∗,Ω

. ‖τh − σ‖∗,Ω + ‖vh − u‖0,Ω + h|vh − u|1,Ω,h.

By triangle inequality, we finish the proof.

For (σ, u) ∈ Hk+2(Ω; S) × Hk+1(Ω;Rd), it is well-known that the Scott-Zhang interpolation [39] Irh
satisfies:

|σ − Irhσ|s,Ω . hr+1−s|σ|r+1,Ω 0 ≤ s ≤ r + 1 ≤ k + 2,

|u− Irhu|s,Ω . hr+1−s|u|r+1,Ω 0 ≤ s ≤ r + 1 ≤ k + 1.

Hence, we have the following theorem.
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Theorem 4.3 Assume that the solution of (1.1) satisfies (σ, u) ∈ Hk+2(Ω; S) × Hk+1(Ω;Rd). Then, the

solution of the mixed LDG problem (2.9) satisfies

‖σ − σh‖∗,Ω + ‖u− uh‖0,Ω . hk+1(|σ|k+2,Ω + |u|k+1,Ω). (4.3)

5 L
2 error estimate of stress

In this section, we prove the optimal L2 error estimate of σ provided that the Stokes pair Pk+2 − P−1
k+1 is

stable and k ≥ d.

First, we recall the definition of classical BDM projection ΠBDM
h [14]. Given a function q ∈ H(div,Ω;Rd),

the restriction of ΠBDM
h to K is defined as the element of Pk+1(K;Rd) such that

∫

e

(ΠBDM
h q − q) · npk+1 ds = 0 ∀pk+1 ∈ Pk+1(e),

∫

K

(ΠBDM
h q − q) · ∇pk dx = 0 ∀pk ∈ Pk(K),

∫

K

(ΠBDM
h q − q) · pk+1 dx = 0 ∀pk+1 ∈ Φk+1(K),

(5.1)

where

Φk+1(K) = {v ∈ Pk+1(K;Rd) : divv = 0, v · n|∂K = 0}.

Let M be the space of real matrices of order d× d. In light of the BDM projection (5.1), on each K ∈ Th, we

first define a matrix-valued function σ̃h as the only element of Pk+1(K;M) through the numerical solution

σh and σ̂h in (2.8): ∫

e

(σ̃h − σ̂h)n · pk+1 ds = 0 ∀pk+1 ∈ Pk+1(e;R
d),

∫

K

(σ̃h − σh) : ∇pk dx = 0 ∀pk ∈ Pk(K;Rd),

∫

K

(σ̃h − σh) : pk+1 dx = 0 ∀pk+1 ∈ Φk+1(K),

(5.2)

where

Φk+1(K) = {τ ∈ Pk+1(K;M) : divτ = 0, τn|∂K = 0}.

Here, the ∇ is regarded as the row-wise operator, i.e.,

∇p =



(∇p1)

t

...

(∇pd)
t


 , p = (p1, · · · , pd)

t.

Define the following space

BDMd×d
k+1 := {τ ∈ H(div,Ω;M) : τ |K ∈ Pk+1(K;M) ∀K ∈ Th}.

Then, we have the following lemma.

Lemma 5.1 The σ̃h in (5.2) is well-defined, and

σ̃h ∈ BDMd×d
k+1, (5.3a)

‖σ̃h − σh‖L2(K) . h
1/2
K ‖(σ̂h − σh)n‖L2(∂K). (5.3b)
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Proof. Since (5.2) can be viewed as the row-wise BDM projection, then the well-posedness and (5.3a)

follows directly by the definition of ΠBDM
h , and by the fact that the normal component of the numerical trace

for the flux is single-valued. Let δ = σ̃h − σh, then
∫

e

δn · pk+1 ds =

∫

e

(σ̂h − σh)n · pk+1 ds ∀pk+1 ∈ Pk+1(e;R
d),

∫

K

δ : ∇pk dx = 0 ∀pk ∈ Pk(K;Rd),

∫

K

δ : pk+1 dx = 0 ∀pk+1 ∈ Φk+1(K).

Then, (5.3b) follows easily by the standard scaling argument; see [12].

Next, we symmetrize σ̃h by the Stokes pair Pk+2−P−1
k+1. A similar technique can be found in [25, 29, 27].

Lemma 5.2 Suppose that the Stokes pair Pk+2−P−1
k+1 is stable on the grid Th. Having σ̃h defined in (5.2),

there exists a matrix-valued function τ̃h ∈ BDMd×d
k+1 such that σ⋆

h := σ̃h + τ̃h ∈ H(div,Ω; S), and

divτ̃h = 0 and ‖τ̃h‖0,Ω . ‖σh − σ̃h‖0,Ω. (5.4)

Proof. We construct a divergence-free term τ̃ h = curlρh where ρh satisfies

1. For d = 2: ρh ∈ H1(Ω;R2) is a vector-valued function and ρh|K ∈ Pk+2(K;R2);

2. For d = 3: ρh ∈ H1(Ω;M) is a matrix-valued function and ρh|K ∈ Pk+2(K;M).

For the 2D case, the curl operator is a rotation of the operator ∇ (i.e., curl = (−∂y, ∂x)) and applies on each

entry of the vector ρh. For the 3D case, the curl operator applies on each row of the matrix ρh. By direct

calculation, the symmetry of σ̃h + τ̃h is equivalent to the following equation,

skw(curlρh) = −skwσ̃h, (5.5)

where skwτ := (τ − τT )/2. For a scalar function v or a vector-valued function v = (v1, v2, v3)
T , we further

define

Skw2(v) :=

[
0 v

−v 0

]
and Skw3(v) :=




0 v3 −v2
−v3 0 v1
v2 −v1 0


 .

Then, the proof can be divided into the following two cases:

1. For n = 2: from [10], we have skw(curlρh) =
1
2Skw2(divρh). Thus, (5.5) can be written as:

divρh = σ̃h,21 − σ̃h,12. (5.6)

The stability of Stokes pair Pk+2 −P−1
k+1 then implies that there exists a ρh ∈ {v ∈ H1(Ω;R2) : v|K ∈

Pk+2(K;R2)} satisfying (5.6) and

‖ρh‖1,Ω . ‖σ̃h,21 − σ̃h,12‖0,Ω ≤ ‖σ̃h,21 − σh,21‖0,Ω + ‖σ̃h,12 − σh,12‖0,Ω ≤ ‖σh − σ̃h‖0,Ω.

2. For n = 3: from [10], we have skw(curlρh) = − 1
2Skw3(div Ξρh), where Ξ is an algebraic operator

defined as Ξρh = ρTh − tr(ρh)I. Denoting ηh = Ξρh, it is obvious that ρh = Ξ−1ηh = ηTh − 1
2 tr(ηh)I .

Thus, (5.5) can be written as:

divηh = (σ̃h,23 − σ̃h,32, σ̃h,31 − σ̃h,13, σ̃h,12 − σ̃h,21)
T . (5.7)

10



Again, there exists a ηh ∈ {τ ∈ H1(Ω;M) : τ |K ∈ Pk+2(K;M)} satisfying (5.7) and

‖ρh‖1,Ω . ‖ηh‖1,Ω . ‖(σ̃h,23 − σ̃h,32, σ̃h,31 − σ̃h,13, σ̃h,12 − σ̃h,21)
T ‖0,Ω . ‖σh − σ̃h‖0,Ω.

To summarize, we obtain the desired τ̃ h = curlρh that satisfies (5.4). This completes the proof.

We are now in the position to prove the optimal L2 error estimate.

Theorem 5.3 Assume that the Stokes pair Pk+2−P−1
k+1 is stable on Th and k ≥ d. Assume further that the

solution of (1.1) satisfies (σ, u) ∈ Hk+2(Ω; S)×Hk+1(Ω;Rd). Then, the solution of the mixed LDG problem

(2.9) satisfies

‖σ − σh‖A,Ω . hk+2(|σ|k+2,Ω + |u|k+1,Ω), (5.8)

where ‖σ‖2A,Ω := (Aσ,σ)
1/2
Ω .

Proof. By (2.6), (5.2) and Lemma 5.1, we have that for any vh ∈ Vh,

(f, vh)Ω = −(σh, εh(vh))Ω + 〈σ̂hn, vh〉∂Th
= −(σh,∇hvh)Ω + 〈σ̂hn, vh〉∂Th

= −(σ̃h,∇hvh)Ω + 〈σ̃hn, vh〉∂Th
= (divσ̃h, vh)Ω.

By Lemma 5.2, the symmetrized variable σ⋆
h = σ̃h+ τ̃h is piecewise Pk+1(K; S) and belongs to H(div,Ω; S).

Further, the divergence-free of τ̃ h implies that

(divσ⋆
h, vh)Ω = (f, vh)Ω. (5.9)

In [33, 34], Hu and Zhang constructed the conforming Pk+1 − P−1
k mixed methods for linear elasticity on

simplicial grids when k ≥ d. Hu also show that (cf. [32, Remark 3.1]), when k ≥ d, there exists a projection

Πc
h such that,

(div(τ −Πc
hτ ), vh)Ω = 0 ∀τ ∈ H1(Ω; S), (5.10a)

‖τ −Πc
hτ‖0,Ω . hk+2|τ |k+2,Ω ∀τ ∈ Hk+2(Ω; S). (5.10b)

By (5.9) and (5.10a), we have

(div(σ⋆
h −Πc

hσ), vh) = 0 ∀vh ∈ Vh.

Taking τ h = σ⋆
h −Πc

hσ in the error equation (4.1), we immediately have the A-orthogonality condition:

(A(σ − σh),σ
⋆
h −Πc

hσ) = 0. (5.11)

Hence, by the energy estimate (4.3), (5.3b) and (5.10b),

‖σ − σh‖A,Ω ≤ ‖σ −Πc
hσ‖A,Ω + ‖σ⋆

h − σh‖A,Ω

. ‖σ −Πc
hσ‖0,Ω + ‖τ̃h‖0,Ω + ‖σ̃h − σh‖0,Ω

. ‖σ −Πc
hσ‖0,Ω + h1/2‖(σ̂h − σh)n‖∂Th

. ‖σ −Πc
hσ‖0,Ω + h1/2‖[σh]‖Ei

h

. ‖σ −Πc
hσ‖0,Ω + h‖σ − σh‖∗,Ω

. hk+2(|σ|k+2,Ω + |u|k+1,Ω).

This completes the proof.

Remark 5.4 In the 2D case, the Scott-Vogelius elements Pk+2 − P−1
k+1 are stable when k ≥ 2 and the grid

does not contain singular vertices (cf. [38, 30]). Hence, in the 2D case, we have the optimal L2 estimate

when k ≥ 2 with some mild constrain pertaining to the grids.
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6 Numerical examples

In this section, we present some numerical results of the mixed LDG method for linear elasticity problem.

The compliance tensor is given by

Aσ =
1

2µ

(
σ −

λ

2µ+ dλ
tr(σ)Id

)
,

where Id is the d × d identity matrix. In the computation, the Lamé constants are set to be µ = 1/2 and

λ = 1. The parameter in (2.10a) is chosen as ηe = 1 on all e ∈ E i
h.

2D example. The 2D problem is computed on the unit square Ω = (0, 1)2 with a homogeneous boundary

condition that u = 0 on ∂Ω. Let the exact solution be

u =

(
ex−yxy(1− x)(1 − y)

sin(πx) sin(πy)

)
.

The exact stress function σ and the load function f can be analytically derived from (1.1) and for a given

u. Uniform grids with different grid sizes are adopted in the computation.

(a) Linear elasticity: P
−1

1 − P
−1

0 , 2D uniform grids

1/h ‖u− uh‖0,Ω hn ‖σ − σh‖0,Ω hn ‖divh(σ − σh)‖0,Ω hn

4 0.135877 — 0.445892 — 3.839803 —

8 0.067302 1.01 0.177473 1.33 1.936584 0.99

16 0.033543 1.00 0.080752 1.14 0.970346 1.00

32 0.016757 1.00 0.039257 1.04 0.485431 1.00

(b) Linear elasticity: P
−1

2 − P
−1

1 , 2D uniform grids

1/h ‖u− uh‖0,Ω hn ‖σ − σh‖0,Ω hn ‖divh(σ − σh)‖0,Ω hn

4 0.0198206 — 0.0425699 — 0.5850957 —

8 0.0050264 1.98 0.0079777 2.42 0.1483264 1.98

16 0.0012616 1.99 0.0017692 2.17 0.0372321 1.99

32 0.0003158 2.00 0.0004284 2.05 0.0093191 2.00

(c) Linear elasticity: P−1

3 − P
−1

2 , 2D uniform grids

1/h ‖u− uh‖0,Ω hn ‖σ − σh‖0,Ω hn ‖divh(σ − σh)‖0,Ω hn

4 0.00217252 — 0.00341919 — 0.06370927 —

8 0.00027548 2.98 0.00024533 3.80 0.00805005 2.98

16 0.00003456 2.99 0.00001627 3.91 0.00100892 3.00

32 0.00000432 3.00 0.00000104 3.96 0.00012620 3.00

Table 1: Linear elasticity: the convergence order for 2D example

We list the errors and the rates of convergence of the computed solution in Table 1. The (k+1)-th order

convergence is observed for both the L2 error of u and the Hh(div) error of σ, which is in agreement with

Theorem 4.3. Further, we see from Table 1c that ‖σ − σh‖0,Ω = O(h4) when k = 2. This convergence rate

coincides with the statements in Theorem 5.3, which is also shown sharp from the L2 errors of stress in Table

1a-1b.
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3D example. Let the exact solution on the unit cube be

u =



24

25

26


 x(1− x)y(1 − y)z(1− z).

Again, the true stress function σ and the load function f are defined by the relations in (1.1), for the given

solution u. In Table 2, the errors and the convergence order in various norms are listed when k = 0, 1. The

optimal orders of convergence are achieved respectively under the Hh(div) norm for the stress and L2 norm

for the displacement, which confirms Theorem 4.3.

(a) Linear elasticity: P
−1

1 − P
−1

0 , 3D uniform grids

1/h ‖u− uh‖0,Ω hn ‖σ − σh‖0,Ω hn ‖divh(σ − σh)‖0,Ω hn

2 0.235741 — 1.221265 — 7.534218 —

4 0.127481 0.89 0.536012 1.19 4.420875 0.77

8 0.063704 1.00 0.210303 1.35 2.294909 0.95

(b) Linear elasticity: P
−1

2 − P
−1

1 , 3D uniform grids

1/h ‖u− uh‖0,Ω hn ‖σ − σh‖0,Ω hn ‖divh(σ − σh)‖0,Ω hn

2 0.0831048 — 0.3641751 — 2.8564400 —

4 0.0227446 1.87 0.0664638 2.45 0.7833919 1.87

8 0.0058207 1.97 0.0123827 2.42 0.2007023 1.96

Table 2: Linear elasticity: the convergence order for 3D example

7 Concluding remarks

In this paper, we present the first a priori error analysis of mixed DG method for solving the linear elasticity

problem. We provide numerical evidence indicating the sharpness of our estimates, namely, the convergence

order of k + 1 both stress in Hh(div)-norm and displacement in L2-norm with the elements pair (σh, uh) ∈

Σk+1
h × V k

h . The estimate holds for any k ≥ 0 in arbitrary dimension, making the MDG more meaningful

for the linear elasticity as the lower order conforming Pk+1-P
−1
k elasticity element does not exist on general

simplicial grids [40]. Since there is a close connection between elasticity elements and Stokes elements, we

also prove the optimal L2 error estimate for the stress provided that the Pk+2 − P−1
k+1 Stokes pair is stable

and k ≥ d.
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