Skip to main content
Log in

Optimal Error Estimates of the Discontinuous Galerkin Method with Upwind-Biased Fluxes for 2D Linear Variable Coefficients Hyperbolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the discontinuous Galerkin method with upwind-biased numerical fluxes for two-dimensional linear hyperbolic equations with degenerate variable coefficients on Cartesian meshes. The \(L^2\)-stability is guaranteed by the numerical viscosity of the upwind-biased fluxes, and the adjustable numerical viscosity is useful in resolving waves and is beneficial for long time simulations. To derive optimal error estimates, a new projection is introduced and analyzed, which is the tensor product of the corresponding one-dimensional piecewise global projection for each variable. The analysis of uniqueness and optimal interpolation properties of the proposed projection is subtle, as the projection requires different collocations for the projection errors involving the volume integral, the boundary integral and the boundary points. By combining the optimal interpolation estimates and a sharp bound for the projection errors, optimal error estimates are obtained. Numerical experiments are shown to confirm the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comp. 82(283), 1401–1432 (2013). https://doi.org/10.1090/S0025-5718-2013-02661-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    Book  Google Scholar 

  3. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017). https://doi.org/10.1051/m2an/2016026

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comp. 86(305), 1233–1267 (2017). https://doi.org/10.1090/mcom/3141

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comp. 77(262), 699–730 (2008). https://doi.org/10.1090/S0025-5718-07-02045-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV. The multidimensional case. Math. Comp. 54(190), 545–581 (1990). https://doi.org/10.2307/2008501

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39(1), 411–435 (2001). https://doi.org/10.1137/S0036142900371544

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11. Springer, Berlin (2012)

    Google Scholar 

  9. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework. Math. Comp. 52(186), 411–435 (1989). https://doi.org/10.2307/2008474

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.5892

    Article  MathSciNet  MATH  Google Scholar 

  13. Frean, D., Ryan, J.: Superconvergence and the numerical flux: A study using the upwind-biased flux in discontinuous Galerkin methods. Commun. Appl. Math. Comput. (to appear). https://doi.org/10.1007/s42967-019-00049-2

  14. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009). https://doi.org/10.1007/s10915-008-9239-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of discontinuous Galerkin methods with upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. J. Sci. Comput. 78(3), 1305–1328 (2019). https://doi.org/10.1007/s10915-018-0831-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math. Comput. 2020, accepted

  17. Li, J., Zhang, D., Meng, X., Wu, B., Zhang, Q.: Discontinuous Galerkin methods for nonlinear scalar conservation laws: generalized local Lax–Friedrichs numerical fluxes. SIAM J. Numer. Anal. 58(1), 1–20 (2020). https://doi.org/10.1137/19M1243798

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H., Ploymaklam, N.: A local discontinuous Galerkin method for the Burgers–Poisson equation. Numer. Math. 129(2), 321–351 (2015). https://doi.org/10.1007/s00211-014-0641-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X., Zhang, D., Meng, X., Wu, B.: Superconvergence of local discontinuous Galerkin methods with generalized alternating fluxes for 1D linear convection-diffusion equations. Sci. China Math. (2020). https://doi.org/10.1007/s11425-019-1627-7

  20. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016). https://doi.org/10.1090/mcom/3022

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

  22. Shu, C.W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Springer, pp. 371–399 (2016)

  23. Wang, H., Zhang, Q., Shu, C.W.: Implicit explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection–diffusion problems. J. Sci. Comput. 81(3), 2080–2114 (2019). https://doi.org/10.1007/s10915-019-01072-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank referees for their valuable suggestions that result in the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Boying Wu was supported by NSFC Grants U1637208 and 71773024. The research of Xiong Meng was supported by NSFC Grant 11971132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wu, B. & Meng, X. Optimal Error Estimates of the Discontinuous Galerkin Method with Upwind-Biased Fluxes for 2D Linear Variable Coefficients Hyperbolic Equations. J Sci Comput 83, 9 (2020). https://doi.org/10.1007/s10915-020-01197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01197-x

Keywords

Mathematics Subject Classification

Navigation