Skip to main content
Log in

Robust Equilibrated Error Estimator for Diffusion Problems: Mixed Finite Elements in Two Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper introduces and analyzes an equilibrated a posteriori error estimator for mixed finite element approximations to the diffusion problem in two dimensions. The estimator, which is a generalization of those in Braess and Schöberl (Math Comput 77:651–672, 2008) and Cai and Zhang (SIAM J Numer Anal 50(1):151–170, 2012), is based on the Prager–Synge identity and on a local recovery of a gradient in the curl free subspace of the \(H(\text {curl})\)-confirming finite element spaces. The resulting estimator admits guaranteed reliability, and its robust local efficiency is proved under the quasi-monotonicity condition of the diffusion coefficient. Numerical experiments are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039–1062 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  6. Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  7. Braess, D., Fraunholz, T., Hoppe, R.H.W.: An equilibrated a posteriori error estimator for the Interior Penalty Discontinuous Galerkin method. SIAM J. Numer. Anal. 52, 2121–2136 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77, 651–672 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Cai, Z., He, C., Zhang, S.: Discontinuous finite element Methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55(1), 400–418 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: mixed and nonconforming elements. SIAM J. Numer. Anal. 48(1), 30–52 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50(1), 151–170 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J. Numer Anal. 43, 1651–1672 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35(5), 2099–2115 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68, 1379–1396 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Ern, A., Vohralik, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Kim, K.-Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76, 43–66 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Nédélec, J.C.: Mixed finite elements in \(\Re ^3\). Numer. Math. 35, 315–341 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Nédélec, J.C.: A new family of mixed finite elements in \(\Re ^3\). Numer. Math. 50, 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation: Error Control and A Posteriori Estimates. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  25. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 286–292 (1947)

    MathSciNet  MATH  Google Scholar 

  27. Repin, S.: A Posteriori Error Estimation Methods for Partial Differential Equations. Walter de Gruyter, Berlin (2008)

    MATH  Google Scholar 

  28. Vejchodský, T.: Local a posteriori error estimator based on the hypercircle method. In: Proceedings of of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyvaskylä, Finland (2004)

  29. Vejchodský, T.: Guaranteed and locally computable a posteriori error estimate. IMA J. Numer. Anal. 26, 525–540 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Verfürth, R.: A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47, 3180–3194 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Cai: This work was supported in part by the National Science Foundation under Grant DMS-1522707. S. Zhang: This work was supported in part by Research Grants Council of the Hong Kong SAR, China under the GRF Grant Project No. 11305319, CityU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Cai, Z. & Zhang, S. Robust Equilibrated Error Estimator for Diffusion Problems: Mixed Finite Elements in Two Dimensions. J Sci Comput 83, 22 (2020). https://doi.org/10.1007/s10915-020-01199-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01199-9

Navigation