Skip to main content
Log in

Cauchy Noise Removal by Weighted Nuclear Norm Minimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recently, weighted nuclear norm minimization (WNNM), which regularizes singular values of an input matrix with different strengths according to given weights, has demonstrated impressive results in low-level vision tasks such as additive Gaussian noise removal, deblurring and image inpainting [14, 15, 33]. In this study, we apply WNNM to remove additive Cauchy noise in images. A variational model is adopted based on maximum a posteriori estimate, which contains a data fidelity term that is appropriate for noise following the Cauchy distribution. Weighted nuclear norm is used as a regularizer in the proposed algorithm, and we utilized similar patches in the image by nonlocal similarity. We adopted the nonconvex alternating direction method of multiplier to solve the problem iteratively. Numerical experiments are presented to demonstrate the superior denoising performance of our algorithm compared with other existing methods in terms of quantitative measure and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Achim, A., Kuruoglu, E.E.: Image denoising using bivariate \(\alpha \)-stable distributions in the complex wavelet domain. IEEE Signal Process. Lett. 12(1), 17–20 (2004)

    Article  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE (2005)

  3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  Google Scholar 

  4. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \({l}_{1}\) minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chang, Y.C., Kadaba, S.R., Doerschuk, P.C., Gelfand, S.B.: Image restoration using recursive markov random field models driven by cauchy distributed noise. IEEE Signal Process. Lett. 8(3), 65–66 (2001)

    Article  Google Scholar 

  6. Chitre, M.A., Potter, J.R., Ong, S.H.: Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise. IEEE J. Ocean. Eng. 31(2), 497–503 (2006)

    Article  Google Scholar 

  7. Curtiss, J.: On the distribution of the quotient of two chance variables. Ann. Math. Stat. 12(4), 409–421 (1941)

    Article  MathSciNet  Google Scholar 

  8. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3d transform-domain collaborative filtering. In: 2007 15th European Signal Processing Conference, pp. 145–149. IEEE (2007)

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. El Ghannudi, H., Clavier, L., Azzaoui, N., Septier, F., Rolland, P.A.: \(\alpha \)-stable interference modeling and cauchy receiver for an ir-uwb ad hoc network. IEEE Trans. Commun. 58(6), 1748–1757 (2010)

    Article  Google Scholar 

  11. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  12. Feller, W.: An Introduction To Probability Theory And Its Applications, vol. 2. John Wiley & Sons, New York (2008)

    MATH  Google Scholar 

  13. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  Google Scholar 

  15. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

  16. Idan, M., Speyer, J.L.: Cauchy estimation for linear scalar systems. IEEE Trans. Autom. Control 55(6), 1329–1342 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kassam, S.A.: Signal Detection in Non-Gaussian Noise. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  18. Kuruoglu, E.E., Fitzgerald, W.J., Rayner, P.J.: Near optimal detection of signals in impulsive noise modeled with a symmetric/spl alpha/-stable distribution. IEEE Commun. Lett. 2(10), 282–284 (1998)

    Article  Google Scholar 

  19. Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for cauchy noise removal. J. Math. Imaging Vision 60(8), 1324–1354 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mei, J.J., Dong, Y., Huang, T.Z., Yin, W.: Cauchy noise removal by nonconvex admm with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)

    Article  MathSciNet  Google Scholar 

  21. Nolan, J.P.: Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Models 13(4), 759–774 (1997)

    Article  MathSciNet  Google Scholar 

  22. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  23. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  25. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tsihrintzis, G., Tsakalides, P., Nikias, C.: Signal detection in severely heavy-tailed radar clutter. In: Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 865–869. IEEE

  27. Tsihrintzis, G.A., Nikias, C.L.: Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process. IEEE Trans. Commun. 43(2/3/4), 904–914 (1995)

    Article  Google Scholar 

  28. Vadali, S.R.K., Ray, P., Mula, S., Varshney, P.K.: Linear detection of a weak signal in additive cauchy noise. IEEE Trans. Commun. 65(3), 1061–1076 (2017)

    Article  Google Scholar 

  29. Wang, S., Zhang, L., Liang, Y.: Nonlocal spectral prior model for low-level vision. Asian Conference on Computer Vision, pp. 231–244. Springer, Berlin (2012)

    Google Scholar 

  30. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1096–1104 (2017)

  33. Yair, N., Michaeli, T.: Multi-scale weighted nuclear norm image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3165–3174 (2018)

  34. Zha, Z., Yuan, X., Li, B., Zhang, X., Liu, X., Tang, L., Liang, Y.C.: Analyzing the weighted nuclear norm minimization and nuclear norm minimization based on group sparse representation. arXiv preprint arXiv:1702.04463 (2017)

  35. Zimmermann, M., Dostert, K.: Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat. 44(1), 249–258 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Myungjoo Kang was supported by the National Research Foundation of Korea (2015R1A5A1009350, 2017R1A2A1A17069644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungjoo Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Cho, J. & Kang, M. Cauchy Noise Removal by Weighted Nuclear Norm Minimization. J Sci Comput 83, 15 (2020). https://doi.org/10.1007/s10915-020-01203-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01203-2

Keywords

Navigation