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Abstract

In this paper we propose a novel semi-implicit Discontinuous Galerkin (DG) finite element scheme on staggered
meshes with a posteriori subcell finite volume limiting for the one and two dimensional Euler equations of compress-
ible gasdynamics. We therefore extend the strategy adopted by Dumbser and Casulli (2016), where the Euler equations
have been solved solved using a semi-implicit finite volume scheme based on the flux-vector splitting method recently
proposed by Toro and Vázquez-Cendón (2012). In our scheme, the nonlinear convective terms are discretized explic-
itly, while the pressure terms are discretized implicitly. As a consequence, the time step is restricted only by a mild
CFL condition based on the fluid velocity, which makes this method particularly suitable for simulations in the low
Mach number regime. However, the conservative formulation of the scheme, together with the novel subcell finite
volume limiter allows also the numerical simulation of high Mach number flows with shock waves. Inserting the
discrete momentum equation into the discrete total energy conservation law yields a mildly nonlinear system with the
scalar pressure as the only unknown. The resulting pressure system can be efficiently solved with modern iterative
methods.
In order to deal with shock waves or steep gradients, the new semi-implicit DG scheme proposed in this paper includes
an a posteriori subcell finite volume limiting technique. This strategy was first proposed by Dumbser et al. in 2014
for explicit DG schemes on collocated grids and is based on the a posteriori MOOD approach of Clain, Loubère and
Diot. Recently, this approach was also extended to semi-implicit DG schemes on staggered meshes for the shallow
water equations in [44]. Within the MOOD approach, an unlimited DG scheme first produces a so-called candidate
solution for the next time level tn+1. Later on, the control volumes with a non-admissible candidate solution are iden-
tified by using physical and numerical detection criteria, such as the positivity of the solution, the absence of floating
point errors and the satisfaction of a relaxed discrete maximum principle (DMP). Then, in the detected troubled cells a
more robust first order semi-implicit finite volume (FV) method is applied on a sub-grid composed of 2P +1 subcells,
where P denotes the polynomial degree used in the DG scheme. For that purpose, the nonlinear convective terms are
recomputed in the troubled cells using an explicit finite volume scheme on the subcell level. Also the linear system for
the pressure needs to be assembled and solved again, but where now a low order semi-implicit finite volume scheme
is used on the sub-cell level in all troubled DG cells, instead of the original high order DG method. Finally, the higher
order DG polynomials are reconstructed from the piecewise constant subcell finite volume averages and the scheme
proceeds to the next time step.
In this paper we present, discuss and test this novel family of methods and simulate a set of classical numerical bench-
mark problems of compressible gasdynamics. Great attention is dedicated to 1D and 2D Riemann problems and we
also show that for these test cases the scheme responds appropriately in the presence of shock waves and does not
produce any non-physical spurious numerical oscillations.
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1. Introduction

Computational fluid dynamics is a branch of applied mathematics that demands the development of advanced
accurate and efficient algorithms for the numerical solution of partial differential equations (PDEs) in multiple space
dimensions. These mathematical tools have become widespread in many scientific applications in the contexts of
computational physics, aerospace engineering and bio-medical sciences. Nowadays, there exist several dedicated5

solvers capable of simulating a large range of physical flow configurations. However, an ultimate numerical method
for all the possible flow conditions still does not exist. In this paper we develop a novel algorithm that is at the same
time suitable for low Mach number (or nearly incompressible) flows, where classical explicit methods are typically
not efficient due to the CFL timestep restriction based on the speed of sound, as well as for high Mach number flows
with shock waves and contact discontinuities. It is therefore our declared goal to develop a new all Mach number flow10

solver that is able to cope with a large range of different possible flow regimes of the compressible Euler equations.
The Discontinuous Galerkin (DG) method is a finite element method where the numerical solution is approximated
by high order piecewise polynomials. It was first developed by Reed and Hill for the discretization of the governing
equations of neutron transport phenomena [57]. Later on, this method rapidly gained popularity after the works of
Cockburn and Shu. In particular, in [19, 18, 17, 20, 20] the DG method was extended to general systems of nonlinear15

hyperbolic PDE. While the aforementioned DG schemes were based on TVD Runge-Kutta time integrators, space-
time DG methods were first developed by Van der Vegt in [73, 74]. DG schemes were applied for the first time to the
Navier-Stokes equations by Bassi and Rebay [3], Baumann and Oden [4, 5], Hartmann and Houston [39, 40], Gassner
et al. [36] and Klaij et al. [47]. Moreover, a new family of fully-discrete explicit one-step DG schemes was proposed
in [30] and [56]. A central DG method that employs overlapping meshes was introduced by Liu et al. in [51, 52]. Most20

of the DG methods mentioned so far, apart from the space-time DG approach, which is by construction fully implicit,
are characterized by an explicit time integration; this feature makes them inefficient for situations characterized by
very low Mach numbers. An implicit discretization allows to avoid this problem. In this framework, we mention the
implicit DG schemes on collocated grids developed by Bassi et al. [1, 2] and the semi-implicit DG scheme of Dolejsi
and Feistauer [23]. Other semi-implicit DG methods on collocated grids have been presented for the shallow water25

equations in [72, 71].
A particularly efficient family of semi-implicit finite volume and finite difference algorithms on staggered meshes for
computational fluid dynamics has been developed in a series of papers by Casulli et al. in [13, 7, 11, 15, 8, 14, 9].
Later, this family of algorithms was extended to incompressible and compressible fluid flow in elastic pipes, see e.g.
[12, 68, 35, 27, 45], and in [26, 24] these schemes were extended to the compressible Navier-Stokes equations and to30

viscous and resistive magnetohydrodynamics (MHD), respectively. The first high-order semi-implicit DG scheme on
staggered meshes for the shallow water equations has been proposed in [25] and was later successfully extended to
the compressible and incompressible Navier-Stokes equations on unstructured meshes [63, 62, 64, 65, 66], to adaptive
Cartesian grids (AMR) [33, 34], as well as to compressible fluid flow in elastic pipes [43] and linear elasticity [67]. A
drawback of high order DG schemes is the generation of spurious oscillations near discontinuities or strong gradients35

due to Gibbs’ phenomenon. This fact is justified by Godunov’s theorem [37], according to which linear monotone
schemes can be at most first order accurate. In order to overcome this problem, a simple strategy consists in adding
some artificial viscosity to the scheme [54]. However, determining the precise location and amount of the artificial
viscosity to be added is not a trivial task, and is the subject of many publications in the CFD literature. Recently, a
more sophisticated technique, called a posteriori subcell finite volume limiting, was presented in [32, 78, 29, 44]. This40

new limiter is based on the ideas of the a posteriori MOOD approach that was introduced in [16, 21, 22, 53] for finite
volume schemes.
In the present work we propose a novel high order semi-implicit DG finite element method on staggered meshes with a
posteriori subcell finite volume limiting for the Euler equations of compressible gasdynamics. The method represents
the natural high order extension to staggered Cartesian grids of the schemes proposed in [26, 66]. In addition, the45

limiting approach is carried out following the ideas introduced in [44] for the shallow water equations.
The rest of paper is structured as follows. In Sections 2 and 3 we derive the new a posteriori subcell finite

volume limiter for semi-implicit staggered DG methods for the Euler equations of gasdynamics in one and two space
dimensions. In Sections 4 and 5 the numerical method is validated for several classical benchmarks that involve
smooth and discontinuous solutions. Finally, in Section 6 we give some conclusions and provide an outlook to future50

research.
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2. Staggered semi-implicit DG schemes with a posteriori sub-cell finite volume limiting for the Euler equations
in 1D

In this section we introduce our staggered semi-implicit DG schemes with a posteriori subcell finite volume
limiting for the 1D Euler equations. For the sake of a comprehensive presentation, we first derive the unlimited semi-55

implicit 1D DG scheme in section 2.2; then in section 2.3 we introduce a semi-implicit FV method within a proper
subcell formulation. Later on, we recall the MOOD algorithm and we conclude in section 2.5 with the general scheme
that combines these two methods. In the following, several universal tensors will be used and we report them in the
Appendix A.

2.1. Governing equations of the 1D model60

The Euler equations of compressible gasdynamics in one space dimension are a well-known system of hyperbolic
PDEs and read as follows

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂

∂x
(ρu2 + p) = 0,

∂(ρE)

∂t
+

∂

∂x
(u(ρE + p)) = 0.

(1)

The equations (1) state the principles of mass, momentum and total energy conservation. The spatial and the temporal
coordinates are x and t and the computational domain is denoted by Ωx = [xL, xR] in the following. Furthermore,
ρ(x, t) is the fluid density, u(x, t) is the velocity, p(x, t) is the pressure and E(x, t) is the specific total energy.
Additionally, we have E = e + k, where e is the specific internal energy and k = 1

2u
2 is the specific kinetic energy.

We introduce another quantity called specific enthalpy h = e+p/ρ and consequently we rewrite the flux of the energy
equation as the sum of two different contributions u(ρE + p) = uρk + hρu, see [55, 70, 26]. In order to close the
system we use the equation of state (EOS) for an ideal gas, which reads

e = e(p, ρ) =
p

(γ − 1)ρ
. (2)

Here, γ = cp/cv is the ratio of specific heats, which typically lies in the range 1 < γ < 3. In this paper we will
consider this quantity as a constant and equal to γ = 1.4, which is the adiabatic index of a diatomic gas and thus a
reasonable value for air at moderate pressures and temperatures.
The system in eq. (1) can be written in more compact matrix-vector notation as

∂Q

∂t
+
∂F(Q)

∂x
= 0, (3)

where Q = [ρ, ρu, ρE]T is the vector of conserved variables and F = [ρu, ρu2 + p, u(ρE + p)]T is the physical flux
vector. In quasi-linear form the above system reads

∂Q

∂t
+ A(Q)

∂Q

∂x
= 0, (4)

where A(Q) = ∂F(Q)/∂Q is the Jacobian matrix of the system. For the Euler equations, A(Q) has three real
eigenvalues: λ1 = u − a, λ2 = u and λ3 = u + a, where a is the sound speed. For an ideal gas the sound speed
is equal to a =

√
γp/ρ. Moreover, the matrix A has a complete set of linearly independent eigenvectors, hence the

system is hyperbolic. For a thorough discussion of the Euler equations of gasdynamics and numerical methods for
their discretization, the reader is referred to the textbook of Toro [69]. Following the flux vector splitting proposed by
Toro and Vázquez-Cendón in [70] and the ideas outlined in [55, 26, 24], the PDE system (3) can now be rewritten as

∂Q

∂t
+
∂Fc(Q)

∂x
+
∂Fp(Q)

∂x
= 0, (5)
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with the nonlinear convective flux Fc(Q) = [ρu, ρu2, uρk]T that does not contain any pressure terms, and the pressure
flux Fp(Q) = [0, p, hρu]T . Following [26] and [24], in this paper we will discretize Fc explicitly and Fp implicitly.
In [70] it was shown that the Jacobian of the convective flux Ac(Q) = ∂Fc(Q)/∂Q has the eigenvalues λc1 = 0 and
λc2,3 = u, i.e. the CFL condition on the explicit part of the scheme will depend only on the bulk flow velocity u and
not on the sound speed a. For this reason, the method presented in this paper can also be used for the simulation of65

low Mach number flows.

2.2. Unlimited staggered semi-implicit DG scheme for the 1D Euler equations
We consider a computational domain Ωx = [xL, xR] composed of two overlapping grids (see Fig. 1). The first

one is called main grid, which contains Nx cells characterized by a constant length ∆x = L
Nx

= xR−xL
Nx

, while the
second grid is called dual mesh and it hasNx+1 elements. On this last grid there areNx−1 equally spaced elements,
while the length of the cells on the left and on the right boundary is only ∆x/2. A generic element of the main grid is
denoted by Ti = [xi− 1

2
, xi+ 1

2
], whereas a control volume on the staggered grid is indicated as Ti+ 1

2
= [xi, xi+1] and

its edges are the barycenters of two consecutive cells of the main grid. In order to represent our numerical solution

xi− 3
2

xi− 1
2

xi+ 1
2

xi+ 3
2

pi−1 pi pi+1

x

xi−1 xi xi+1

ρui− 1
2

ρui+ 1
2

x

Figure 1: Staggered grids for the one-dimensional DG scheme. Main grid used for the free surface (top) and dual mesh for the velocity (bottom).

via piecewise polynomials of degree P , we use a set of basis functions ϕ(ξ) defined on the reference element [0, 1].
In particular, we choose a nodal basis given by the Lagrange interpolation polynomials passing through the Gauss-
Legendre quadrature points of the reference element [0, 1]. This basis is by construction orthogonal. For any physical
control volume we generate the basis functions φl(x) on the main grid and the basis functions ψl(x) on the dual grid
from ϕl(ξ) as

φl(x) = ϕl(ξ) with x = xi− 1
2

+ ξ∆x, and ψl(x) = ϕl(ξ) with x = xi + ξ∆x, 0 ≤ ξ ≤ 1. (6)

Then, a quantity located on the main grid, for example the pressure, is approximated within Ti as follows

pi(x, t) =

P+1∑
l=1

φl(x)p̂i,l(t) := φ(x) · p̂i(t), (7)

while for variables that are defined on the staggered dual mesh, such as the fluid velocity, we have within Ti+ 1
2

ui+ 1
2
(x, t) =

P+1∑
l=1

ψl(x)ûi+ 1
2 ,l

(t) := ψ(x) · ûi+ 1
2
(t) (8)

4



where p̂ and û are the degrees of freedom for the pressure and for the velocity, respectively. Following the ideas of
semi-implicit methods, see e.g. [26, 70, 55], the Euler equations can be split into a convective sub-system, which
contains the non linear terms and into a quasi-linear pressure subsystem.70

2.2.1. Explicit discretization of the nonlinear convective terms
In the numerical scheme proposed in this paper, the convective subsystem

∂Q

∂t
+
∂Fc(Q)

∂x
= 0 (9)

is integrated using an explicit Runge-Kutta discontinuous Galerkin (RKDG) scheme on the main grid, based on a third
order TVD Runge-Kutta method [38]. For this purpose, we define the discrete solution for the vector Q within an
element Ti as

Qi(t) = φl(x)Q̂i,l(t), (10)

where we assume the Einstein summation convention over repeated indices. Multiplication of eq. (9) with a test
function φk, integration over the primary control volume Ti with subsequent integration by parts and introduction of
a numerical flux lead to the following semi-discrete method∫

Ti

φk(x)
∂Qi

∂t
dx+ φk(xi+ 1

2
)Fci+ 1

2
− φk(xi− 1

2
)Fci− 1

2
−
∫
Ti

∂φk
∂x

Fc(Qi)dx = 0. (11)

The numerical fluxes Fc
i± 1

2

at the cell interfaces xi± 1
2

are given by a local Lax-Friedrichs (Rusanov) Riemann solver

Fci+ 1
2

=
1

2

(
Fc
(
Q+
i+ 1

2

)
+ Fc

(
Q−
i+ 1

2

))
− 1

2
smax

(
Q+
i+ 1

2

−Q−
i+ 1

2

)
, (12)

where Q±
i+ 1

2

are the boundary extrapolated values at the element interfaces from the right and left, respectively. Since
in this explicit part of the scheme we only consider the convective subsystem, the maximal signal speed smax is given
by the eigenvalues λc of the convective flux Fc, i.e.

smax = max
(

max|λc
(
Q+
i+ 1

2

)
|,max|λc

(
Q−
i+ 1

2

)
|
)

= max
(
|u+
i+ 1

2

|, |u−
i+ 1

2

|
)
. (13)

After integration with a third order TVD Runge-Kutta scheme [38] the degrees of freedom of the conservative
variables of the convective subsystem at the new time are denoted by Q̂∗ and read as follows1:

k̂1 = Q̂n + ∆tLh

(
Q̂n
)
,

k̂2 =
3

4
Q̂n +

1

4
k̂1 +

1

4
∆tLh

(
k̂1

)
,

Q̂∗ =
1

3
Q̂n +

2

3
k̂2 +

2

3
∆tLh

(
k̂2

)
.

(14)

In eq. (14) the spatial discretization operator Lh
(
Q̂
)

is defined for each element Ti as

Lh

(
Q̂
)∣∣∣
Ti

= − 1

∆x
M−1

(
ϕ(1)Fci+ 1

2
−ϕ(0)Fci− 1

2
−
∫ 1

0

ϕ′(ξ)ϕ(ξ)dξ · F̂ci
)
, (15)

with the element mass matrix on the reference element given by

M =

∫ 1

0

ϕϕdξ =

∫ 1

0

ϕkϕldξ, (16)

and the vector of degrees of freedom of the convective flux simply defined as F̂ci = Fc
(
Q̂i

)
, since we use an

orthogonal nodal basis.

1when the index i is omitted in the vector of degrees of freedom we intend the entire set of all degrees of freedom of all elements
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2.2.2. Derivation of the semi-implicit staggered DG scheme in 1D
We first discretize the total energy equation obtained after the flux splitting procedure (5). We multiply the total

energy equation by the vector of test functions φ and we integrate over a control volume of the main grid Ti:

x
i+1

2∫
x
i− 1

2

φ

(
∂

∂t
(ρe+ ρk) +

∂

∂x
(ρku+ hρu)

)
dx = 0. (17)

In the time derivative, the term of the total energy term at tn+1 is divided considering the contribution of the specific
internal energy and the one of the kinetic energy; in addition we make use of the term ρ̂E

∗
i that has been obtained after

the explicit discretization of the nonlinear convective terms discussed before. Then, we integrate the spatial derivative
by parts in space and, in order to achieve second order of accuracy in time, we use the so-called θ-method. This leads
to 

x
i+1

2∫
x
i− 1

2

φφdx

 ·
(
ρ̂e

n+1
i + ρ̂k

n+1

i − ρ̂E
∗
i

∆t

)

+ φ(x−
i+ 1

2

)ψ(xi+ 1
2
)ψ(xi+ 1

2
) · ĥ

n+θ
i+1

2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

− φ(x+
i− 1

2

)ψ(xi− 1
2
)ψ(xi− 1

2
) · ĥ

n+θ
i− 1

2

i− 1
2

ρ̂u
n+θ

i− 1
2

i− 1
2

−


xi∫

x+

i− 1
2

∂φ

∂x
ψψdx

 · ĥn+θi− 1
2

i− 1
2

ρ̂u
n+θ

i− 1
2

i− 1
2

−


x−
i+1

2∫
xi

∂φ

∂x
ψψdx

 · ĥn+θi+1
2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

= 0,

(18)

where ρ̂u
n+θ

i+1
2

i+ 1
2

= (1 − θi+ 1
2
)ρ̂u

n
i+ 1

2
+ θi+ 1

2
ρ̂u

n+1
i+ 1

2
and 0.5 ≤ θ ≤ 1 is an implicitness parameter. When θ = 1

the scheme is the implicit Euler scheme which is first order accurate in time; when θ = 0.5 we have the second-order
Crank-Nicolson time discretization [10]. According to the Godunov theorem [37], in this last case the method is not
monotone and can generate unphysical oscillations in the vicinity of strong discontinuities. As we will see later, in the
framework of sub-cell FV limiters for semi-implicit DG schemes (see [44]) we therefore want to vary the parameter
θ in the domain and this is done assigning different values of θ on the dual mesh. Eq (18) can be rewritten in the
compact matrix-vector form

M · (ρ̂en+1
i + ρ̂k

n+1

i − ρ̂E
∗
i ) +

∆t

∆x
(RDG

e · ĥ
n+θ

i+1
2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

− LDG
e · ĥ

n+θ
i− 1

2

i− 1
2

ρ̂u
n+θ

i− 1
2

i− 1
2

) = 0. (19)

where RDG
e ·ĥ

n+θ
i+1

2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

is the product of a rank 3 tensor RDG
e with the degrees of freedom ĥ

n+θ
i+1

2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

.
Moving the quantities of eq. (19) at time tn to the right hand side yields

M · p̂
n+1
i

γ − 1
+ M · ρ̂k

n+1

i +
∆t

∆x
(θi+ 1

2
RDG

e · ĥ∼
n+1

i+ 1
2

ρ̂u
n+1
i+ 1

2
− θi− 1

2
LDG
e · ĥ∼

n+1

i− 1
2

ρ̂u
n+1
i− 1

2
) =

M · ρ̂E
∗
i −

∆t

∆x
((1− θi+ 1

2
)RDG

e · ĥni+ 1
2
ρ̂u

n
i+ 1

2
− (1− θi− 1

2
)LDG

e · ĥni− 1
2
ρ̂u

n
i− 1

2
)

(20)

where we expressed the internal energy e as function of p using the ideal gas equation of state. In addition, the
meaning of the symbol under-tilde will be clarified later. The momentum equation is multiplied by the test function
ψ and it is integrated over a control volume Ti+ 1

2
that belongs to the dual grid∫ xi+1

xi

ψ

(
∂ρu

∂t
+
∂ρu2

∂x

)
dx = −

∫ xi+1

xi

ψ
∂p

∂x
dx. (21)

6



We carry out the integration of (21) following the same procedure used in [25, 66, 43, 44]. The nonlinear convective
terms have already been discretized explicitly, leading to ρ̂u∗i+ 1

2
, while the pressure gradient is approximated by

splitting it into a smooth contribution and a jump term across the interfaces of the primary grid, which are located in
the interior of the dual mesh. This yields xi+1∫

xi

ψψdx

 ·
 ρ̂un+1

i+ 1
2
− ρ̂u∗i+ 1

2

∆t

 = −ψ(xi+ 1
2
)

(
φ(x+

i+ 1
2

) · p̂
n+θ

i+1
2

i+1 − φ(x−
i+ 1

2

) · p̂
n+θ

i− 1
2

i

)

−


x−
i+1

2∫
xi

ψ
∂φ

∂x
dx

 · p̂n+θi− 1
2

i −


xi+1∫

x+

i+1
2

ψ
∂φ

∂x
dx

 · p̂n+θi+1
2

i+1

(22)

and the more compact matrix-tensor formulation of the same equation reads as follows:

M · (ρ̂un+1
i+ 1

2
− ρ̂u∗i+ 1

2
) +

∆t

∆x

(
RDG

p · p̂
n+θ

i+1
2

i+1 − LDG
p · p̂

n+θ
i+1

2
i

)
= 0. (23)

Later on, we introduce the term Ĝn
i+ 1

2

that collects the convective terms of the momentum equation and the discrete
pressure gradient at the time level tn

Ĝn
i+ 1

2
= ρ̂u

∗
i+ 1

2
− ∆t

∆x
(1− θi+ 1

2
)M−1 · (RDG

p · p̂ni+1 − LDG
p · p̂ni ), (24)

so that the final semi-implicit momentum equation reads

ρ̂u
n+1
i+ 1

2
= Ĝn

i+ 1
2
− ∆t

∆x
θi+ 1

2
M−1 · (RDG

p · p̂n+1
i+1 − LDG

p · p̂n+1
i ). (25)

Later, we will insert the discrete momentum equation (25) into the discrete total energy equation (20). However, the
enthalpy h is a function of the pressure, and in order to avoid a strongly non-linear system in p we adopt an iterative
Picard technique. Hence, the symbol under-tilde means that a variable is evaluated at the previous Picard iteration.
In the following we will use the superscript r as the iteration index of the Picard process. For the sake of clarity we
rewrite eq. (20) as

M · p̂
n+1,r+1
i

γ − 1
+

∆t

∆x
(θi+ 1

2
RDG

e · ĥ
n+1,r

i+ 1
2
ρ̂u

n+1,r+1

i+ 1
2

− θi− 1
2
LDG
e · ĥ

n+1,r

i− 1
2
ρ̂u

n+1,r+1

i− 1
2

) =

M · (ρ̂E
∗
i − ρ̂k

n+1,r

i )− ∆t

∆x
((1− θi+ 1

2
)RDG

e · ĥni+ 1
2
ρ̂u

n
i+ 1

2
− (1− θi− 1

2
)LDG

e · ĥni− 1
2
ρ̂u

n
i− 1

2
).

(26)

The discrete momentum equation (25) becomes

ρ̂u
n+1,r+1

i+ 1
2

= Ĝn
i+ 1

2
− ∆t

∆x
θi+ 1

2
M−1 · (RDG

p · p̂
n+1,r+1
i+1 − LDG

p · p̂
n+1,r+1
i ). (27)

Therefore, after inserting (27) into (26) one gets a discrete wave equation for the unknown pressure pn+1,r+1 at the
next Picard iteration, which can be solved by using a Thomas algorithm for linear block three-diagonal systems, and
which reads

LDG
i · p̂

n+1,r+1
i−1 + CDG

i · p̂
n+1,r+1
i +RDG

i · p̂
n+1,r+1
i+1 = b̂ri . (28)

Here, b̂ri is the known right hand side term

b̂ri = M · (ρ̂E
∗
i − ρ̂k

n+1,r

i )− ∆t

∆x
(θi+ 1

2
RDG

e · ĥ
n+1,r

i+ 1
2
ρ̂u
∗
i+ 1

2
− θi− 1

2
LDG
e · ĥ

n+1,r

i− 1
2
ρ̂u
∗
i− 1

2
)

− ∆t

∆x
((1− θi+ 1

2
)RDG

e · ĥni+ 1
2
ρ̂u

n
i+ 1

2
− (1− θi− 1

2
)LDG

e · ĥni− 1
2
ρ̂u

n
i− 1

2
).

(29)
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The block matrices LDG
i , CDG

i andRDG
i read

LDG
i = −∆t2

∆x2
θ2i− 1

2
LDG
e ĥ

n+1,r

i− 1
2

M−1LDG
p , (30)

CDG
i =

1

γ − 1
M +

∆t2

∆x2
θ2i+ 1

2
RDG

e ĥ
n+1,r

i+ 1
2

M−1LDG
p +

∆t2

∆x2
θ2i− 1

2
LDG
e ĥ

n+1,r

i− 1
2

M−1RDG
p , (31)

RDG
i = −∆t2

∆x2
θ2i+ 1

2
RDG

e ĥ
n+1,r

i+ 1
2

M−1RDG
p . (32)

For every Picard iteration, once the pressure is known, the momentum update is done using eq. (27). Subsequently,
also the enthalpy ĥn+1,r+1

i+ 1
2

has to be computed and, in order to get a quantity from the main grid to the dual one and
back, we use the following averaging operator based on L2 projection:

p̂i+ 1
2

= M−1 · (MDG
L · p̂i + MDG

R · p̂i+1). (33)

In addition, since in eq. (29) the kinetic energy is needed on the main grid, we first compute the degrees of freedom
of the velocity as ûn+1,r+1

i+ 1
2

= ρ̂u
n+1,r+1

i+ 1
2

/ρ̂n+1
i+ 1

2

and then we apply the L2 averaging operator from the dual to the
main grid

ûi = M−1 · (MDG
L · ûi− 1

2
+ MDG

R · ûi+ 1
2
). (34)

Numerical experiments indicate that only very few Picard iterations, typically 2 or 3, are enough to obtain a good
solution. Finally, at the end of the Picard loop the update of the total energy is carried out and from eq. (19) we get

ρ̂E
n+1

i = ρ̂E
∗
i −

∆t

∆x
M−1 · (RDG

e · ĥ
n+θ

i+1
2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

− LDG
e · ĥ

n+θ
i− 1

2

i− 1
2

ρ̂u
n+θ

i− 1
2

i− 1
2

). (35)

For this semi-implicit DG scheme, the maximum time step is given by the usual CFL condition of the RKDG scheme
which reads

∆t < CFL
∆x

max(|u|)
with CFL < (2P + 1)−1. (36)

Note that this is the stability condition due to the explicit discretization of the nonlinear convective terms and which75

is based only on the fluid velocity. Due to the implicit treatment of the pressure terms, the speed of sound does not
influence the choice of ∆t. Consequently, this method becomes suitable for the numerical simulation of low Mach
number flows. However, due to its conservative formulation, the method is also able to deal with shock waves, as
shown later. For other types of semi-implicit DG schemes on staggered meshes, the reader is referred to [25, 43, 63,
65, 66, 33, 34]. In addition, the scheme derived here represents the natural extension to arbitrary order of accuracy in80

space of the semi-implicit 1D finite volume method introduced in [26].

2.3. A sub-cell formulation for the semi-implicit finite volume method for the 1D Euler equations

In this subsection we introduce a sub-cell formulation of the semi-implicit finite volume method for the 1D Euler
equations. In particular this approach was adopted in [44] for the shallow water equations but other similar methods
have been proposed also in [7, 61, 48]. The computational domain is Ωx = [xL, xR] and, similarly to the method in
subsection 2.2, we consider two staggered meshes. For an element Ti of the main grid, given a positive integer P ,
there are 2P +1 piecewise constant sub-cell averages that represent the FV data on 2P +1 sub-cells Ti,s characterized
by length ∆xs = ∆x/(2P + 1). Consequently we have that Ti = ∪sTi,s with s = 1, .., (2P + 1). Hence, for P = 2,
pi = [pi,1, pi,2, pi,3, pi,4, pi,5] denotes the set of sub-cell data in the cell Ti. For a schematic representation of these
grids see Fig.2˙ The quantities assigned to the main grid and to the dual grid are the same discussed in the previous
section 2.2. For the convective sub-system, the explicit finite volume update on a collocated grid at the subcell level
is given by

Q
∗
i,s = Q

n

i,s −
∆t

∆xs
(Fci,s+ 1

2
− Fci,s− 1

2
), (37)
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x

x

xi−3/2 xi−1/2 xi+1/2 xi+3/2

xi+1xixi−1

pi−1 pi pi+1

ρui− 1
2 ρui+ 1

2

Figure 2: Staggered grids for the sub-cell finite volume scheme in one dimension in the case P = 2 (Ns = 5). Main grid used for the free surface
(top) and staggered dual mesh for the velocity (bottom).

where we used again the Rusanov method in order to evaluate the numerical fluxes Fc
i,s± 1

2

. We start with the semi-
implicit approximation of the momentum equation. Using the adaptive θ-method, the discretization reads as follows

(ρun+1
i+ 1

2

− ρu∗i+ 1
2
) +

∆t

∆x
(RFV · p

n+θ
i+1

2
i+1 − LFV · p

n+θ
i+1

2
i )= 0 (38)

where ρu∗
i+ 1

2
is the contribution of the explicit discretization of the nonlinear convective term; in addition, the tensors

RFV and LFV (see Appendix Appendix A.2) approximate the derivative in x-direction. For the sake of clarity, we give
the approximation of the pressure gradient ∆x∂p/∂x with P = 2 and θi± 1

2
= 1:

RFV·pn+1
i+ 1

2

−LFV·pn+1
i− 1

2

= 5(pn+1
i− 1

2 ,4
−pn+1

i− 1
2 ,3
pn+1
i− 1

2 ,5
−pn+1

i− 1
2 ,4
, pn+1
i+ 1

2 ,1
−pn+1

i− 1
2 ,5
, pn+1
i+ 1

2 ,2
−pn+1

i+ 1
2 ,1
, pn+1
i+ 1

2 ,3
−pn+1

i+ 1
2 ,2

). (39)

The semi-implicit sub-cell finite volume discretization of the total energy equation takes the form

1

γ − 1
pn+1,r+1
i +

∆t

∆x

(
θi+ 1

2
RFV · hn+1,r

i+ 1
2
ρun+1,r+1

i+ 1
2

− θi− 1
2
LFV · hn+1,r

i− 1
2
ρun+1,r+1

i− 1
2

)
=(

ρE
∗
i − ρk

n+1,r

i

)
− ∆t

∆x

(
(1− θi+ 1

2
)RFV · hni+ 1

2
ρuni+ 1

2
− (1− θi− 1

2
)LFV · hni− 1

2
ρuni− 1

2

)
.

(40)

Inserting eq. (38) into eq. (40) yields a linear three-diagonal system which at each Picard level reads

LFV
i · p

n+1,r+1
i−1 + CFV

i · p
n+1,r+1
i +RFV

i · p
n+1,r+1
i+1 = b

r

i , (41)

and which can be solved either by a Thomas algorithm or by an iterative conjugate gradient method. In each Picard
iteration the enthalpy, which is defined on the staggered mesh, has to be updated and one can use the following FV
average in order to interpolate the pressure from the main grid to the dual mesh

pi+ 1
2

= (MFV
L · pi + MFV

R · pi+1). (42)

Similarly, the kinetic energy is discretized on the main grid. So, in order to get the degrees of freedom of the velocity
ui, the projection from the dual grid to main one reads

ui = (MFV
L · ui− 1

2
+ MFV

R · ui+ 1
2
). (43)
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For the matrices introduced in equations (42) and (43), see appendix Appendix A.2. Finally, the total energy update
reads

ρE
n+1

i = ρE
∗
i −

∆t

∆x
· (RFV · h

n+θ
i+1

2

i+ 1
2

ρu
n+θ

i+1
2

i+ 1
2

− LFV · h
n+θ

i− 1
2

i− 1
2

ρu
n+θ

i− 1
2

i− 1
2

). (44)

In this case, the CFL condition of the scheme is given by the stability condition for the computation of the explicit
nonlinear convective terms:

∆t < CFL
∆xs

max(|u|)
with CFL < 1. (45)

We remind that here we introduced an alternative data representation for the FV method which is necessary in order
to combine the DG and FV schemes on staggered meshes for the a posteriori limiting strategy introduced in the next
section. For the method discussed in this subsection, the solution algorithm is the same adopted for the 1D pure DG85

scheme in Section 2.2. For a better understanding of this particular semi-implicit FV method see [26, 44].

2.4. MOOD algorithm and detection criteria - 1D case

In this paper, we employ the limiting strategy proposed in [44] for staggered SIDG schemes in the context of the
shallow water equations. Similarly to the a posteriori sub-cell limiter for explicit DG schemes exposed in [32, 29, 6],
the starting point is the MOOD paradigm [16, 21, 22, 53]: at each time step the algorithm is composed of two90

stages. In the first one, the unlimited DG scheme presented in section 2.2 generates a so-called candidate solution
Q◦,n+1 = (ρ◦,n+1, ρu◦,n+1, ρE◦,n+1)T at time tn+1. Then, the troubled zones are detected using physical and
numerical admissibility criteria. In the cells flagged as troubled zones, the more robust staggered semi-implicit finite
volume subcell scheme introduced in the previous section 2.3 is used, while we continue using the unlimited high
order DG method in those control volumes which are not troubled. Afterwards, in the second part of the procedure,95

a valid solution at time tn is recovered and then the update is carried out by a mixed scheme, which uses the more
robust subcell finite volume method in troubled cells and the unlimited DG method in the other ones. To do this, the
linear system for the pressure is reassembled and solved again. Moreover, if no troubled cells have been identified
after the first stage of the algorithm, the scheme directly proceeds to the next time level.

2.4.1. Data representation, projection and reconstruction100

For a generic variable q of the approximated solution given by the DG scheme in the cell Ti at time tn, the
degrees of freedom used for the piecewise polynomial data representation are denoted by q̂ni . Similarly qni denote
the piecewise constant cell averages in the subcells Ti,s. These subcell averages qni are computed from q̂ni using the
following L2 projection

qni,s =
1

|Ti,s|

∫
Ti,s

φl(x)dx q̂ni,l, ∀Ti,s ∈ Ti, (46)

and consequently we introduce the projection operator P so that qni = P · q̂ni .
Then, one can gather back the piecewise constant sub-cell averages qni,s into the degrees of freedom q̂ni,l of a high order
DG polynomial by solving again (46). However, these procedure leads to an over-determined system because there
are 2P + 1 equations for P + 1 unknowns. In order to overcome this problem a constrained least-squares approach
(see [28, 46]) is adopted. In particular, the linear constraint is integral conservation on the big cell Ti (see [32]), i.e.∑

j

|Ti,s|qni,s =

∫
Ti

φl(x)dx q̂ni,l. (47)

This operation is expressed in a tensorial formulation as q̂ni =W · qni , withW · P = I, where I denotes the identity
matrix. Moreover, in some situations we will need to recover a polynomial from P + 1 piecewise constant sub-cell
data. Here we consider two situations: one is at the left part, TLi =

⋃P+1
s=1 Ti,s (see 3b), and the other at the right

side, TRi =
⋃2P+1
s=P+1 Ti,s (see 3c). So we introduce the matricesWL andWR that are computed using reconstruction

procedure (46) only on the left and right part of cell Ti. Note that here the least squares procedure is not necessary105

because now the number of equations is equal to the number of unknowns. For a schematic summary of the projection
and reconstruction procedures described above, see Figure 3a.
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2.4.2. Detection criteria
In this subsection we discuss the physical and numerical admissibility criteria. All the quantities are analyzed on

the main grid and those variables which are located on the staggered dual grid are extrapolated onto the main grid.
This operation is done by using the algorithm given in eq. (33).
At first, we want that the candidate solution, given numerically by the unlimited staggered DG scheme, satisfies some
physical admissibility criteria (PAD). For the Euler equations we check that both density and pressure are positive,
hence we require

ρ̂◦,n+1
i,l > 0 and p̂◦,n+1

i,l > 0. (48)

In addition, similarly to [32, 29, 6], the detector is supplemented by numerical admissibility criteria (NAD) based on
a relaxed version of the discrete maximum principle (DMP). For a generic variable q this criterion reads as follows

min
∀Tj∈Vi

(q̂nj,l)−δ ≤ q̂
◦,n+1
i,l ≤ max

∀Tj∈Vi
(q̂nj,l)+δ, (49)

where Vi = {Ti−1, Ti, Ti+1} is the set of neighbour cells of Ti, which is the set of Voronoi neighbours in the
multidimensional case. In equation (49) we introduce two tolerances: δ is a relaxation parameter that allows some
very small oscillations or numerical noise; it reads

δ = max[δ0, ε( max
∀Tj∈Vi

(q̂nj,l)− min
∀Tj∈Vi

(q̂nj,l))] (50)

where δ0 is chosen in the interval [10−4, 10−3] and typically ε = 5 · 10−4. In this algorithm we check the DMP
componentwise for all conserved variables. Moreover, an additional detection of troubled cells is carried out by110

projecting all numerical quantities from the main grid to the dual mesh and then projecting them back onto the main
grid. This procedure creates non-physical oscillations near discontinuities and thus leads to a more robust detection
of troubled cells, especially for the initial condition.
Successively, a cell is flagged as troubled if it does not respect the a posteriori admissibility criteria applied to the
candidate solution Q◦,n+1. We therefore introduce a troubled cell indicator parameter βi. If βi = 1 then a cell is115

marked as troubled and the solution at time tn+1 will be recomputed using the more robust subcell finite volume
scheme presented in Section 2.3. On the contrary, if βi = 0 in Ti it means that the cell is not troubled. In addition, if
the cell Ti is flagged as troubled we also mark both dual control volumes Ti− 1

2
and Ti+ 1

2
as troubled control volumes,

see Figure 4. As consequence, we impose βi− 1
2

= 1 and βi+ 1
2

= 1.
Finally, for the sake of clarity we remind that in the first MOOD iteration the implicitness parameter θ is a constant120

value θDG in the whole domain. It is a user-defined parameter which is typically chosen very close to 1/2 in order to
minimize the effects of the numerical viscosity caused by the time integration. At the second MOOD level, the value
of the parameter θ in the troubled cells of dual grid is imposed equal to 1. Consequently, the new numerical solution
is given by using a monotone and robust finite volume method in the troubled cells.

2.5. Sub-cell limiting of the semi-implicit DG scheme for the 1D Euler equations125

Finally, we complete the derivation of the 1D algorithm for the finite volume limiting of the Euler equations.
The computation of the nonlinear convective terms is carried out according to the MOOD strategy used for explicit
high order schemes, see [16, 21, 22, 53, 32, 29, 6]. Hence, at the beginning of the first MOOD step all the cells are
flagged with βi = 0 and the nonlinear convective terms are computing via the high order unlimited RKDG algorithm
explained in subsection 2.2.1. Later on, after the detection of the troubled control volumes, we use the explicit finite
volume update given in 2.3 in order to recompute the solution in the cells marked with βi = 1, while for the cells
which are not troubled we keep the results of the first MOOD step.
Now, we consider the semi-implicit approximation of the one-dimensional total energy and momentum equations for
the complete algorithm. For the general case we distinguish four situations. The first one is when the control volume
Ti and the corresponding dual cells Ti± are not marked as troubled. In this case βi− 1

2
= βi = βi+ 1

2
= 0 and the

equations are discretized using the pure DG method introduced in subsection 2.2. The opposite case is when the
troubled cell indicator βi− 1

2
= βi = βi+ 1

2
= 1 is equal to one in all the control volumes Ti− 1

2
, Ti, Ti+ 1

2
; for this

situation, we use the finite volume method discussed in 2.3.

11



P W

q̂

q

(a) Operators P and W

WL

(b) Operator WL

WR
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Figure 3: Projection and reconstruction operators.

x

x

xi−3/2 xi−1/2 xi+1/2 xi+3/2

xi+1 xi+2xixi−1xi−2

βi−3/2 = 0 βi−1/2 = 1 βi+1/2 = 1 βi+3/2 = 0

βi−1 = 0 βi = 1 βi+1 = 0

Figure 4: Staggered grids for the semi-implicit staggered DG scheme with sub-cell limiter active in cell Ti. Main grid used for the free surface
(top) and staggered dual mesh for the velocity (bottom). If a cell Ti on the main grid is flagged as troubled, then also the two overlapping staggered
velocity control volumes Ti± 1

2
are flagged as troubled. The data representation in troubled cells is changed from high order polynomials to

piecewise constant subcell averages.
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xi

xi+1/2xi−1/2

(a) DG method used in Ti and Ti− 1
2

; finite volumes in Ti+ 1
2

xi

xi+1/2xi−1/2

(b) DG method used in Ti and Ti+ 1
2

; finite volumes in Ti− 1
2

.

Figure 5: Control volumes for the total energy equation for the staggered semi-implicit DG scheme in the limited case using P = 2, i.e. Ns =
2P + 1 = 5. Finite volume method used in Ti+ 1

2
(left) and in Ti− 1

2
(right).

In the following we provide two examples when cell Ti is not troubled but one of its neighbors is marked as troubled.
In this case, the discrete energy conservation law reads

M · ( ρ̂E
n+1

i − ρ̂E
∗
i

∆t
)+

RDG
e · ĥ

n+θ
i+1

2

i+ 1
2

ρ̂u
n+θ

i+1
2

i+ 1
2

− LLim
e · h

n+θ
i+1

2

i− 1
2

ρu
n+θ

i+1
2

i− 1
2

∆x
= 0, with LLim

e = L′
DG
e · WR

(51)
for βi = 0, βi−1 = 0 and βi+1 = 1 and

M · ( ρ̂E
n+1

i − ρ̂E
∗
i

∆t
)+

RLim
e · h

n+θ
i+1

2

i+ 1
2

ρu
n+θ

i+1
2

i+ 1
2

− LDG
e · ĥ

n+θ
i− 1

2

i− 1
2

ρ̂u
n+θ

i− 1
2

i− 1
2

∆x
= 0, with RLim

e = R′
DG
e · WL.

(52)
for βi = 0, βi−1 = 1 and βi+1 = 0. These two approximations are very similar to eq. (19) the discretization of the
energy equation in the pure DG case. In fact, considering the scheme in Figure 5a, the operatorWL reconstructs the
polynomial data using the first P + 1 subcell averages of the cell Ti+ 1

2
. SimilarlyWR reconstructs the polynomial

data from the last P + 1 piecewise constant data of the control volume Ti− 1
2

, see Figure 52. In addition, in equations

(51) and (51) we introduced the matrices R′
DG
e and L′

DG
e that are rank 2 tensors and which are explicitly given in

Appendix Appendix A.3.
Now we discuss the two limited cases of the discrete momentum equation. Here, we consider the cases when Ti+ 1

2

is a troubled cell and only one of the control volumes Ti and Ti+1 is a limited control volume. Hence the numerical
approximation of the momentum equation reads as follows

ρun+1
i+ 1

2

= ρu∗i+ 1
2
− ∆t

∆x
(RLim

u · p̂
n+θ

i+1
2

i+1 − LFV · p
n+θ

i+1
2

i ) with RLim
u = RFV · P (53)

when βi = 0 and βi+1 = 1 (see Fig. 6a) and

ρun+1
i+ 1

2

= ρu∗i+ 1
2
− ∆t

∆x
(RFV · p

n+θ
i+1

2
i+1 − LLim

u · p̂
n+θ

i+1
2

i ) with LLim
u = LFV · P (54)

when βi = 1 and βi+1 = 0 (see Fig. 6b). Note that equations (53) and 53 can be seen as particular case of the discrete

momentum equation (38) for the sub-cell finite volume method. In addition, in eq. (53), the product RLim
u · p̂

n+θ
i+1

2
i+1 =

RFV · p
n+θ

i+1
2

i+1 is equal to the multiplication of the tensor RFV with the vector of piecewise constant subcell averages
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2

xi xi+1
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(b) DG in Ti+1; FV in Ti and in Ti+ 1
2

Figure 6: Control volumes for the momentum equation for the staggered semi-implicit DG scheme in the limited case using P = 2 (Ns = 5).

p
n+θ

i+1
2

i+1 = P · p̂
n+θ

i+1
2

i+1 given by the projection of the DG degrees of freedom onto the set of the subcell finite volume

degrees of freedom. This observation is valid also for the tensor product LLim
u · p̂

n+θ
i+1

2
i = LFV ·p

n+θ
i+1

2
i in eq. (54).

The substitution of the momentum equation into the energy equation yields the following block three-diagonal linear
system (55):

LLim
i · p̃n+1,r+1

i−1 + CLim
i · p̃n+1,r+1

i +RLim
i · p̃n+1,r+1

i+1 = b̃ri . (55)

We denote with the symbol p̃n+1
i the generic degrees of freedom of the pressure which represent either a DG polyno-

mial or a set of subcell averages depending on the value of the troubled cell indicator β.
In the following, we will give the expressions for the blocks LLim

i , CLim
i ,RLim

i and for the right hand side term b̃ri . For
clarity, CLim

i is divided in two contributions

CLim
i = C0,Lim

i + Cx,Lim
i , (56)

where C0,Lim
i is equal to the mass matrix in the DG case or equal to the identity for the subcell FV scheme:

C0,Lim
i =

{
M if βi = 0,

I if βi = 1.
(57)

The remaining blocks LLim
i ,Cx,Lim

i , LLim
i can be expressed considering four different cases depending on the value of

β:

LLim
i = −∆t2

∆x2
θ2i− 1

2



LDG
e · ĥ∼

n+1

i− 1
2

·M−1 · LDG
u if βi−1 = βi = 0,

LFV · diag(h
∼

n+1

i− 1
2

) · LFV if βi−1 = βi = 1,

LLim
e · diag(h

∼

n+1

i− 1
2

) · LFV if βi−1 = 1, βi = 0,

LFV · diag(h
∼

n+1

i− 1
2

) · LLim
u if βi−1 = 0, βi = 1,

(58)
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Cx,Lim
i =

∆t2

∆x2



θ2
i− 1

2

RDG
e · ĥ∼

n+1

i− 1
2

·M−1 · LDG
u + θ2

i+ 1
2

LDG
e · ĥ∼

n+1

i+ 1
2

·M−1 ·RDG
u if βi = βi− 1

2
= βi+ 1

2
= 0,

θ2
i− 1

2

LFV · diag(h
∼

n+1

i− 1
2

) ·RFV + θ2
i+ 1

2

RFV · diag(h
∼

n+1

i+ 1
2

) · LFV if βi = βi− 1
2

= βi+ 1
2

= 1,

θ2
i− 1

2

RDG
e · ĥ∼

n+1

i− 1
2

·M−1 · LDG
u + θ2

i+ 1
2

RLim
e · diag(h

∼

n+1

i+ 1
2

) · LLim
u if βi = βi− 1

2
= 0, βi+ 1

2
= 1,

θ2
i− 1

2

LLim
e · diag(h

∼

n+1

i− 1
2

) ·RLim
u + θ2

i+ 1
2

LDG
e · ĥ∼

n+1

i+ 1
2

·M−1 ·RDG
u if βi = βi+ 1

2
= 0, βi− 1

2
= 1,

(59)

RLim
i = −∆t2

∆x2
θ2i+ 1

2



RDG
e · ĥ∼

n+1

i+ 1
2

·M−1 ·RDG
u if βi+1 = βi = 0,

RFV · diag(h
∼

n+1

i+ 1
2

) ·RFV if βi+1 = βi = 1,

RLim
e · diag(h

∼

n+1

i+ 1
2

) ·RFV if βi+1 = 1, βi = 0,

RFV · diag(h
∼

n+1

i+ 1
2

) ·RLim
u if βi+1 = 0, βi = 1.

(60)

Finally the right hand side term reads
b̃ni = b̃0,ni + b̃x,ni (61)

with

b̃0,ni =


M · (ρ̂E

∗
i − ρ̂k

∼

n+1

i

) if βi = 0,

ρE
∗
i − ρk

∼

n+1

i

if βi = 1,
(62)

and with

b̃x,ni = −∆t

∆x



(θi+ 1
2
RDG

e · ĥ∼
n+1

i+ 1
2

Ĝn
i+ 1

2

− θi− 1
2
LDG
e · ĥ∼

n+1

i− 1
2

Ĝn
i− 1

2

)

+((1− θi+ 1
2
)RDG

e · ĥni+ 1
2

ρ̂u
n
i+ 1

2
− (1− θi− 1

2
)LDG

e · ĥni− 1
2

ρ̂u
n
i− 1

2
) if βi = βi− 1

2
= βi+ 1

2
= 0,

(θi+ 1
2
RFV · h

∼

n

i+ 1
2

G
n

i+ 1
2
− θi− 1

2
LFV · h

∼

n

i− 1
2

G
n

i− 1
2
)

+((1− θi+ 1
2
)RFV · hρuni+ 1

2
− (1− θi− 1

2
)LFV · hρuni− 1

2
) if βi = βi− 1

2
= βi+ 1

2
= 1,

(θi+ 1
2
RLim

e · h
∼

n+1

i+ 1
2

G
n

i+ 1
2
− θi− 1

2
LDG
e · ĥ∼

n+1

i− 1
2

Ĝn
i− 1

2

)

+((1− θi+ 1
2
)RLim

e · hρuni+ 1
2
− (1− θi− 1

2
)LDG

e · ĥni− 1
2

ρ̂u
n
i− 1

2
) if βi = βi− 1

2
= 0, βi+ 1

2
= 1,

(θi+ 1
2
RDG

e · ĥ∼
n+1

i+ 1
2

Ĝn
i+ 1

2

− θi− 1
2
LLim
e · h

∼

n+1

i− 1
2

G
n

i− 1
2
)

+((1− θi+ 1
2
)RDG

e · ĥni+ 1
2

ρ̂u
n
i+ 1

2
− (1− θi− 1

2
)LLim

e · hρuni− 1
2
) if βi = βi+ 1

2
= 0, βi− 1

2
= 1.

(63)
We conclude with the algorithms for the interpolation from the main grid to the dual mesh

ρ̃i+ 1
2

=


M−1 · (MDG

L · ρ̂i + MDG
R · ρ̂i+1) if βi+ 1

2
= βi = βi+1 = 0,

(MFV
L · ρi + MFV

R · ρi+1) if βi+ 1
2

= βi = βi+1 = 1,

(MFV
L · P · ρ̂i + MFV

R · ρi+1) if βi+ 1
2

= βi+1 = 1, βi = 0,

(MFV
L · ρi + MFV

R · P · ρ̂i+1) if βi+ 1
2

= βi = 1, βi+1 = 0

(64)

and with the one for the opposite projection from the staggered grid to main one

Ũi =


M−1 · (MDG

L · Ûi− 1
2

+ MDG
R · Ûi+ 1

2
) if βi = βi− 1

2
= βi+ 1

2
= 0,

(MFV
L ·U i− 1

2
+ MFV

R ·U i+ 1
2
) if βi = βi− 1

2
= βi+ 1

2
= 1,

M−1 · (MDG
L · Ûi− 1

2
+ MDG

R · WL ·U i+ 1
2
) if βi = βi− 1

2
= 0, βi+ 1

2
= 1,

M−1 · (MDG
L · WR ·U i− 1

2
+ MDG

R · Ûi+ 1
2
) if βi = βi+ 1

2
= 0, βi− 1

2
= 1,

(65)
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Finally note that, due to the choice of Ns = 2P + 1 subcell averages, the CFL condition for the explicit part of the
high order DG scheme and the CFL condition for the explicit part of the subgrid finite volume method yield the same
maximum admissible time step size ∆t for both semi-implicit schemes.

3. Staggered semi-implicit DG schemes with sub-cell finite volume limiting for the Euler equations in 2D

In this section we now present the staggered semi-implicit DG scheme with a posteriori subcell finite volume130

limiter for the two-dimensional compressible Euler equations. We start by introducing the unlimited semi-implicit
DG scheme in Section 3.2.2; then in Section 3.3 we briefly focus the attention on the subcell formulation for the
semi-implicit FV method in 2D. Later on, we discuss the a posteriori subcell limiter for the 2D case, which is again
based on the MOOD paradigm (see subsection 3.4) and which combines the two methods previously mentioned (see
subsection 3.5).135

3.1. Governing equations of the 2D model
The two dimensional Euler equations are a nonlinear system of four PDEs

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0,

∂ρu

∂t
+
∂ρuu

∂x
+
∂ρuv

∂y
+
∂p

∂x
= 0,

∂ρv

∂t
+
∂ρuv

∂x
+
∂ρvv

∂y
+
∂p

∂y
= 0,

∂ρE

∂t
+

∂

∂x
u(ρE + p) +

∂

∂y
v(ρE + p) = 0,

(66)

where Q is the vector of the conserved variables Q = [ρ, ρu, ρv, ρE]T . The total energy is split into two contributions
ρE = ρe + ρk, where k = 1

2 (u2 + v2) is the specific kinetic energy. In order to close the system we use again the
ideal gas equation of state; hence, similar to the 1D case the internal energy is expressed as e = p

(γ−1)ρ . The system
of PDEs (66) is written in the quasi-linear form

∂Q

∂t
+ A(Q)

∂Q

∂x
+ B(Q)

∂Q

∂y
= 0 (67)

where A(Q) and B(Q) are the two Jacobian matrices expressed as A(Q) = ∂F(Q)/∂Q and B(Q) = ∂G(Q)/∂Q
where F = [ρu, ρu2 + p, ρuv, u(E + p)]T and G = [ρv, ρuv, ρv2 + p, v(E + p)]T are the physical fluxes in x and
y direction, respectively. Also in this case it is possible to verify that eq. (66) is a hyperbolic system of PDEs, see
[69]. In the two dimensional case the flux splitting of Toro and Vázquez yields the following PDE for the total energy
equation.

∂

∂t
(ρe+ ρk) +

∂

∂x
(ρku+ hρu) +

∂

∂y
(ρkv + hρv) = 0. (68)

3.2. Unlimited staggered semi-implicit DG scheme for the 2D Euler equations
First we introduce the main grid for the computational domain Ωxy = [xL, xR] × [yB , yT ] which is divided into

Nx × Ny control volumes denoted as Ti,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, jj+ 1

2
], see Fig. 7a. In addition, the lengths of

the elements Ti,j are ∆x = xR−xL
Nx

and ∆y = yT−yB
Ny

for the x and y directions, respectively. Later on we consider
two staggered grids and their cells are denoted by Ti+ 1

2 ,j
= [xi, xi+1]× [yj− 1

2
, jj+ 1

2
] and Ti,j+ 1

2
= [xi− 1

2
, xi+ 1

2
]×

[yj , jj+1], see Fig. 7b. Now we consider the same polynomial basis functions φ and ψ of degree P used in the 1D
semi-implicit DG scheme. Hence, a quantity defined on the main grid, for example the pressure, is represented within
element the Ti,j as follows

pi,j(x, y, t) =

P+1∑
l

P+1∑
m

φl(x)φm(y)p̂i,j,l,m(t) = φ(x)φ(y) · p̂i,j(t), (69)
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η̂i,j

η̂i,j+1

η̂i+1,jη̂i−1,j

η̂i,j−1

(a) Main grid for η

V̂i.j+ 1
2

V̂i,j− 1
2

Ûi− 1
2 ,j

Ûi+ 1
2 ,j

(b) Staggered dual meshes for U and V

Figure 7: Computational grids for the 2D semi-implicit staggered DG scheme.

then, according to the philosophy of staggered methods the velocities are located on the dual meshes and they are
defined as

ui+ 1
2 ,j

(x, y, t) =

P+1∑
l

P+1∑
m

φl(x)ψm(y)ûi+ 1
2 ,j,l,m

(t) = φ(x)ψ(y) · ûi+ 1
2 ,j

(t) (70)

vi,j+ 1
2
(x, y, t) =

P+1∑
l

P+1∑
m

ψl(x)φm(y)v̂i,j+ 1
2 ,l,m

(t) = ψ(x)φ(y) · v̂i,j+ 1
2
(t). (71)

3.2.1. Convective terms
Similar to the 1D staggered semi-implicit DG method, also in the 2D case the nonlinear convective terms are

updated on the main grid and integrated using the RKDG method where the spatial operator Lh
(
Q̂
)

reads

Lh

(
Q̂
)
|Ti= Lxh

(
Q̂
)
|Ti+Lyh

(
Q̂
)
|Ti (72)

with

Lxh

(
Q̂
)
|Ti= −

∆t

∆x∆y
(Mxy)

−1

 ∫
∂Ti,j

φFu · ndS −
∫
Ti,j

∇φ · Fudxdy

 , (73)

Lyh

(
Q̂
)
|Ti= −

∆t

∆x∆y
(Mxy)

−1

 ∫
∂Ti,j

φFv · ndS −
∫
Ti,j

∇φ · Fvdxdy

 , (74)

where Fu = [ρu, ρuu, ρuv, ρku] and Fv = [ρv, ρuv, ρvv, ρkv] are the physical convective fluxes and for the com-
putation of the mass matrix Mxy we will give more explanations in the next subsection. In addition, the numerical
fluxes are computed using the Rusanov method

Fu · n =
1

2
(F+

u + F−u ) · n− 1

2
sq(q

+ − q−), with sq = 2 max(|u+|, |u−|). (75)
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3.2.2. Derivation of the 2D semi-implicit staggered DG scheme
The integration of the energy equation is carried out by multiplying eq. (68) with the test functions φφ and

integrating over a control volume Ti,j of the main grid

x
i+1

2
,j∫

x
i− 1

2
,j

y
i,j+1

2∫
y
i,j− 1

2

φφ

(
∂

∂t
(ρe+ ρk) +

∂

∂y
(ρkv + hρv)

)
dxdy = 0. (76)

Similarly, the momentum equations in x and y direction are discretized on the dual meshes as follows

xi+1,j∫
xi,j

y
i,j+1

2∫
y
i,j− 1

2

ψφ

(
∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y

)
dxdy = −

xi+1,j∫
xi,j

y
i,j+1

2∫
y
i,i− 1

2

ψφ
∂p

∂x
dxdy. (77)

x
i+1

2
,j∫

x
i− 1

2
,j

yi,j+1∫
yi,j

φψ

(
∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2

∂y

)
dxdy = −

x
i+1

2
,j∫

x
i− 1

2
,j

yi,j+1∫
yi,j

φψ
∂p

∂y
dxdy. (78)

We proceed with eq. (76) by splitting the integration of the time derivative in three contributions
x
i+1

2∫
x
i− 1

2

φφdx

 ·


y
j+1

2∫
y
j− 1

2

φφdy

 ·
 ρ̂en+1

i,j + ρ̂k
n+1

i,j − ρ̂E
∗
i,j

∆t

 (79)

where ρ̂E
n+1

i,j = ρ̂e
n+1
i,j + ρ̂k

n+1

i,j is the total energy density at the new time and the term ρ̂E
∗
i,j is the result of the

explicit discretization of the convection of the kinetic energy. Now we consider the integration of the derivative in x
direction ∂hρu

∂x . In this case it is possible to isolate the integral of the basis functions that depends on y while for the
remaining part the procedure is carried out similarly to eq. (18); hence integration by parts and the adaptive θ-method
in order to get second order of accuracy in time yield(

+ φ(x−
i+ 1

2

)ψ(xi+ 1
2
)ψ(xi+ 1

2
) · ĥ

n+θ
i+1

2
,j

i+ 1
2 ,j

ρ̂u
n+θ

i+1
2
,j

i+ 1
2 ,j

− φ(x+
i− 1

2

)ψ(xi− 1
2
)ψ(xi− 1

2
) · ĥ

n+θ
i− 1

2
,j

i− 1
2 ,j

ρ̂u
n+θ

i− 1
2
,j

i− 1
2 ,j

−


xi∫

x+

i− 1
2

∂φ

∂x
ψψdx

 · ĥn+θi− 1
2
,j

i− 1
2 ,j

ρ̂u
n+θ

i− 1
2
,j

i− 1
2 ,j

−


x−
i+1

2∫
xi

∂φ

∂x
ψψdx

 · ĥn+θi+1
2
,j

i+ 1
2 ,j

ρ̂u
n+θ

i+1
2
,j

i+ 1
2 ,j

)
y
j+1

2∫
y
j− 1

2

φφdy

 .

(80)

The integration of the the derivative ∂hρv
∂y can be done in the same way. Later on, we continue the integration of

eq. (77). The time derivative is discretized introducing the nonlinear convective term ρ̂u
∗
i+ 1

2 ,j
and separating the

integrals in x and y direction. Then, the contribution of the pressure gradient is approximated by splitting it into a
smooth contribution and a jump term across the interface of the primary grid, which is located in the interior of the
dual mesh. Furthermore, we use a spatially adaptive θ-method. The same procedure can be properly repeated for eq.
(78).
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 xi+1∫
xi

ψψdx




y
i+1

2∫
y
i− 1

2

φφdy

 ·
 ρ̂un+1

i+ 1
2 ,j
− ρ̂u∗i+ 1

2 ,j

∆t

 = −


y
i+1

2∫
y
i− 1

2

φφdy

 ·
ψ(xi+ 1

2
)

(
φ(x+

i+ 1
2

) · p̂
n+θ

i+1
2
,j

i+1,j − φ(x−
i+ 1

2

) · p̂
n+θ

i− 1
2
,j

i,j

)
−


x−
i+1

2∫
xi

ψ
∂φ

∂x
dx

 · p̂n+θi− 1
2
,j

i,j −


xi+1∫

x+

i+1
2

ψ
∂φ

∂x
dx

 · p̂n+θi+1
2
,j

i+1,j


(81)

Finally, the integration of equations (76), (77) and (78) is completed and written in the compact matrix-vector notation
as follows

Mxy · (ρ̂en+1
i,j + ρ̂k

∼

n+1

i,j

− ρ̂E
∗
i,j)

+
∆t

∆x
My · (Rx,DG

e · ĥ
n+θ

i+1
2
,j

i+ 1
2 ,j

ρ̂u
n+θ

i+1
2
,j

i+ 1
2 ,j

− Lx,DG
e · ĥ

n+θ
i− 1

2
,j

i− 1
2 ,j

ρ̂u
n+θ

i− 1
2
,j

i− 1
2 ,j

)

+
∆t

∆y
Mx · (Ry,DG

e · ĥ
n+θ

i,j+1
2

i,j+ 1
2

ρ̂v
n+θ

i,j+1
2

i,j+ 1
2

− Ly,DG
e · ĥ

n+θ
i,j− 1

2

i,j− 1
2

ρ̂v
n+θ

i,j− 1
2

i,j− 1
2

) = 0

(82)

Mxy · (ρ̂un+1
i+ 1

2 ,j
− ρ̂u∗i+ 1

2 ,j
) +

∆t

∆x
My · (Rx,DG

p · p̂
n+θ

i+1
2
,j

i+1,j − Lx,DG
p · p̂

n+θ
i+1

2
,j

i,j )= 0 (83)

Mxy · (ρ̂vn+1
i,j+ 1

2
− ρ̂v∗i,j+ 1

2
) +

∆t

∆y
Mx · (Ry,DG

p · p̂
n+θ

i,j+1
2

i,j+1 − Ly,DG
p · p̂

n+θ
i,j+1

2
i,j )= 0 (84)

The matrices used in eq. (82), (83), (84), (73), (74) are obtained using the following tensor products and assuming the
Einstein convection of summation over repeated indexes

Zx = ZmnIm′n′Xnn′ , Zy = ImnZm′n′Xnn′ , Zxy = Zx · Zy, (85)

where X̂ is a generic vector of degrees of freedom, Z is a square matrix and I is the identity matrix. Consequently,
these tensor products are carried out involving the same tensors introduced in the 1D case for the unlimited semi-
implicit staggered DG scheme. See also [33] for a similar notation employed in the context of high order semi-implicit
staggered DG methods for the incompressible Navier-Stokes equations.
Then, from equations (83) and (84) one can get an expression of the degrees of freedom of ρ̂un+1

i,j± 1
2

and ρ̂vn+1
i,j± 1

2
and

cast them into eq. (82). Later on, similar to the 1D case, an iterative Picard procedure is introduced in order to avoid
the solution of a strongly nonlinear system of equations. Consequently, the linear system reads

Lx,DG
i,j · p̂n+1,r+1

i−1,j + Ly,DG
i,j · p̂n+1,r+1

i,j−1 + CDG
i,j · p̂

n+1,r+1
i,j +Rx,DG

i,j · p̂n+1,r+1
i+1,j +Ry,DG

i,j · p̂n+1,r+1
i,j+1 = b̂ri,j , (86)

and is solved using modern iterative Krylov subspace methods based on a matrix-free implementation. Numerical
experiments have shown that system 86 can be solved using the conjugate gradient method, but we stress that we do
not have a rigorous proof yet that the system is symmetric and positive definite. A deeper analysis will be carried out
in further works.
Once the pressure in known, in the Picard loop the degrees of freedom of the momentum in x and y direction are
readily updated as follows

ρ̂u
n+1
i+ 1

2 ,j
= Ĝu

n+1

i+ 1
2 ,j
− θi+ 1

2 ,j

∆t

∆x
(Mx−1) · (Rx,DG

p · p̂n+1,r+1
i+1,j − Lx,DG

p · p̂n+1,r+1
i,j ) (87)

ρ̂v
n+1
i,j+ 1

2
= Ĝv

n+1

i,j+ 1
2
− θi,j+ 1

2

∆t

∆y
(My−1) · (Ry,DG

p · p̂n+1,r+1
i,j+1 − Ly,DG

p · p̂n+1,r+1
i,j ) (88)
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and the two components of the velocity vector are computed component-wise as

ûn+1
i+ 1

2 ,j
=
ρ̂u

n+1
i+ 1

2 ,j

ρ̂n+1
i+ 1

2 ,j

, v̂n+1
i,j+ 1

2

=
ρ̂v

n+1
i,j+ 1

2

ρ̂n+1
i,j+ 1

2

. (89)

In the previous equation the density is extrapolated on the staggered meshes using the following L2-based projection

ρ̂i+ 1
2 ,j

= (Mx)−1 · (Mx,DG
L · ρ̂i,j + Mx,DG

R · ρ̂i+1,j) (90)

ρ̂i,j+ 1
2

= (My)−1 · (My,DG
L · ρ̂i,j + My,DG

R · ρ̂i,j+1). (91)

Similarly, we interpolate the velocities on the main grid from the dual control volumes

ûi,j = (Mx)−1 · (Mx,DG
L · ûi− 1

2 ,j
+ Mx,DG

R · ûi+ 1
2 ,j

) (92)

v̂i,j = (My)−1 · (My,DG
L · v̂i,j− 1

2
+ My,DG

R · v̂i,j+ 1
2
) (93)

and then it is possible to compute the kinetic energy as

k̂i,j =
1

2
(û2

i,j + v̂2i,j). (94)

Finally, once the Picard loop is terminated, it is possible to update the degrees of freedom of the total energy density
by the following expression

ρ̂E
n+1

i,j = ρ̂E
∗
i,j

− ∆t

∆x
Mx−1 · (Rx,DG

e · ĥ
n+θ

i+1
2
,j

i+ 1
2 ,j

ρ̂u
n+θ

i+1
2
,j

i+ 1
2 ,j

− Lx,DG
e · ĥ

n+θ
i− 1

2
,j

i− 1
2 ,j

ρ̂u
n+θ

i− 1
2
,j

i− 1
2 ,j

)

− ∆t

∆y
My−1 · (Ry,DG

e · ĥ
n+θ

i,j+1
2

i,j+ 1
2

ρ̂v
n+θ

i,j+1
2

i,j+ 1
2

− Ly,DG
e · ĥ

n+θ
i,j− 1

2

i,j− 1
2

ρ̂v
n+θ

i,j− 1
2

i,j− 1
2

),

(95)

which is easily obtained modifying properly eq. (82). We conclude discussing the stability condition of the method.
The maximum time step is given by the classical CFL condition of the DG method based on the maximum velocities
|umax| and |vmax|

∆t = CFL
(
|umax|

∆x
+
|vmax|
∆ys

)−1
, with CFL <

1

2P + 1
. (96)

This is possible due to the implicit treatment of the pressure system and, as we will see later, this makes the staggered140

semi-implicit 2D DG scheme a good candidate for solving the 2D Euler equations in the low Mach number regime.

3.3. A sub-cell formulation for the semi-implicit finite volume method for the 2D Euler equations

Now the two dimensional case of the semi-implicit sub-cell finite volume scheme is presented. This method
represents the two dimensional extension of the method proposed in sub-section 2.3. Similarly to the previous sub-
section the control volumes of the the grids are Ti,j , Ti+ 1

2 ,j
and Ti,j+ 1

2
see Figs. 8 and 9. The sub-grid is composed of

(2P + 1)2 finite volume sub-elements of size ∆xs = ∆x/(2P + 1) and ∆ys = ∆y/(2P + 1), where P is a positive
integer, see Fig. 8b.
Here the quantities assigned to the main grid and to the the dual meshes are chosen in the same way discussed in the

previous subsection 3.2.2. Then, the explicit convective terms are updated at the subcell level using a first order finite
volume scheme on collocated grids with a simple Rusanov-type method for the numerical fluxes

Q
∗
i,j,p,q = Q

n

i,j,p,q −
∆t

∆xs
(Fci,j,p+ 1

2 ,q
− Fci,j,p− 1

2 ,q
)− ∆t

∆ys
(Gc

i,j,p,q+ 1
2
−Gc

i,j,p,q− 1
2
). (97)
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pi, jpi− 1, j pi+ 1, j

pi, j − 1

pi, j + 1

(a) Stencil

pi,j,h,k

h = 1, k = 1

pi,j,h,k

h = 2, k = 1

pi,j,h,k

h = 3, k = 1

pi,j,h,k

h = 1, k = 2

pi,j,h,k

h = 2, k = 2

pi,j,h,k

h = 3, k = 2

pi,j,h,k

h = 1, k = 3

pi,j,h,k

h = 2, k = 3

pi,j,h,k

h = 3, k = 3

(b) Ordering of the subcell degrees of freedom within one cell

Figure 8: Main grid and sub-cells for the 2D semi-implicit sub-cell finite volume scheme.

U i− 1
2 ,j

U i+ 1
2 ,j

(a) Staggered mesh in x-direction

V i.j+ 1
2

V i,j− 1
2

(b) Staggered mesh in y-direction

Figure 9: Staggered grids for the 2D semi-implicit sub-cell finite volume scheme.
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Later on, the semi-implicit discretization of the energy equation is carried out on the main grid and it reads

(ρen+1
i,j + ρk

∼

n+1

i,j

− ρE∗i,j)

+
∆t

∆x
(Rx,FV · hρu

n+θ
i+1

2
,j

i+ 1
2 ,j

− Lx,FV · hρu
n+θ

i− 1
2
,j

i− 1
2 ,j

)

+
∆t

∆y
(Ry,FV · hρv

n+θ
i,j+1

2

i,j+ 1
2

− Ly,FV · hρv
n+θ

i,j− 1
2

i,j− 1
2

) = 0.

(98)

while the momentum equations are approximated on the control volumes of the dual grids as follows

(ρun+1
i+ 1

2 ,j
− ρu∗i+ 1

2 ,j
) +

∆t

∆x
(Rx,FV · p

n+θ
i+1

2
,j

i+1,j − Lx,FV · p
n+θ

i+1
2
,j

i,j )= 0 (99)

(ρvn+1
i,j+ 1

2

− ρv∗i,j+ 1
2
) +

∆t

∆y
(Ry,FV · p

n+θ
i,j+1

2
i,j+1 − Ly,FV · p

n+θ
i,j+1

2
i,j )= 0 (100)

The tensor products in equations (98), (99), (100) are carried out using the same approach explained in the previous
subsection. So matrix multiplications involve only the tensors introduced for the 1D case of the subcell finite volume
method and they are reported in Appendix Appendix A.2.
Then, at every iteration of the Picard loop we solve the following linear system

Lx,FV
i,j · p

n+1,r+1
i−1,j + Ly,FV

i,j · p
n+1,r+1
i,j−1 + CFV

i,j · p
n+1,r+1
i,j +Rx,FV

i,j · p
n+1,r+1
i+1,j +Ry,FV

i,j · p
n+1,r+1
i,j+1 = b

r

i,j , (101)

which is obtained coupling the energy equation (98) with the momentum equations (99) and (100). System in eq.
(101) is symmetric and positive definite since that the method presented in this subsection is an extension at the
subgrid level of the FV method proposed [26]. Hence a conjugate gradient method gives efficiently the pressure
pn+1,r+1 and then the momentum is readily updated using equation (99) and 100. Then, one can compute the kinetic
energy where the velocities are extrapolated from the dual grid using the following projections

ui,j = (Mx,FV
L · ui− 1

2 ,j
+ My,FV

R · ui+ 1
2 ,j

) (102)

vi,j = (My,FV
L · vi,j− 1

2
+ My,FV

R · vi,j+ 1
2
). (103)

where ui+ 1
2 ,j

= ρui+ 1
2 ,j
/ρi+ 1

2 ,j
and vi,j+ 1

2
= ρvi,j+ 1

2
/ρi,j+ 1

2
are computed component-wise, respectively. Sim-

ilarly, the densities on the dual grids ρi+ 1
2 ,j

and ρi,j+ 1
2

are computed from pi,j using these subcell finite volume
averages

ρi+ 1
2 ,j

= (Mx,FV
L · ρi,j + Mx,FV

R · ρi+1,j) (104)

ρi,j+ 1
2

= (My,FV
L · ρi,j + My,FV

R · ρi,j+1). (105)

Finally, the update for the total energy reads

ρE
n+1

i,j − ρE
∗
i,j = −∆t

∆x
(Rx,FV · hρu

n+θ
i+1

2
,j

i+ 1
2 ,j

− Lx,FV · hρu
n+θ

i− 1
2
,j

i− 1
2 ,j

)

− ∆t

∆y
(Ry,FV · hρv

n+θ
i,j+1

2

i,j+ 1
2

− Ly,FV · hρv
n+θ

i,j− 1
2

i,j− 1
2

)
(106)

In this method, ∆t is computed according to the following expression for the CFL condition

∆t = CFL
(
|umax|
∆xs

+
|vmax|
∆ys

)−1
, with CFL < 1. (107)
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3.4. MOOD algorithm and detection criteria - 2D case

The MOOD algorithm for the two-dimensional case is based on the same approach of Section 2.4. Consequently,
the two dimensional extension of the considerations made in Section 2.4 is straightforward. We introduce the pro-
jection and reconstruction matrices Pxy and Wxy for a generic variable q. Hence, we have qni,j = Pxy · q̂ni,j ,
q̂ni,j =Wxy · qni,j .
In addition, we introduce also the operators Wx, Wy , Px, Py and, for the sake of simplicity, their role will be explained
in the next subsection. The detection criteria are based on the positivity of the density and of the pressure and on the
relaxed discrete maximum principle (DMP), i.e.

ρ̂◦,n+1
i,j,m > 0, p̂◦,n+1

i,j,l,k > 0, and min
∀Tk,l∈Vi,j

(q̂nk,l,m)−δ ≤ q̂◦,n+1
i,j,m ≤ max

∀Tk,l∈Vi,j
(q̂nk,l,m)+δ, (108)

where Vi,j = {Ti−1,j−1, Ti,j−1, Ti+1,j−1, Ti−1,j , Ti,j , Ti+1,j , Ti−1,j+1, Ti,j+1, Ti+1,j+1} is the set of Voronoi neigh-
bours of Ti,j and δ is the same relaxation parameter for the DMP as in the 1D case. The DMP is applied to the set of145

conserved variables ρ, ρu, ρv, ρE as well to the primitive variables ρ, u, v, p. The control volumes that do not pass the
admissibility criteria outlined in eq. (108) are marked as a troubled cells by assigning a limiter status βi,j = 1, while
in the cells that do not need to be limited we impose βi,j = 0. Then, similarly to the 1D case we limit properly also the
cells of the staggered dual grids. For example, if the control volume Ti,j is flagged as limited zone with βi,j = 1, then
also the four corresponding cells on the dual grids Ti+ 1

2 ,j
, Ti− 1

2 ,j
, Ti,j+ 1

2
and Ti,j− 1

2
need to be limited by assigning150

βi+ 1
2 ,j

= 1, βi− 1
2 ,j

= 1, βi,j+ 1
2

= 1 and βi,j− 1
2

= 1. Finally, in the first MOOD step the implicitness parameter θ
is chosen between 0.5 and 1. In general, in order to reduce the numerical viscosity of the time integration, we impose
θDG = 0.55 in the entire domain. However, at the second MOOD phase θ is changed and imposed equal to θ = 1 in
the troubled control volumes, in order to avoid the generation of Gibbs oscillations, while it is kept equal to θ = θDG
in all the unlimited cells.155

3.5. Sub-cell limiting of the semi-implicit DG scheme for the 2D Euler equations

Now, the total energy equation is discretized in the presence of subcell limiter, where we have consider four
possible configurations. In all cases Ti,j is unlimited (βi,j = 0), but one of its edge neighbours is a troubled cell. We
write the equation as follows

Mxy · (ρ̂en+1
i,j + ρ̂k

∼

n+1

i,j

− ρ̂E
∗
i,j)+

∆t

∆x
My ·∆ĥρu

n+θi,j

i,j +
∆t

∆y
My ·∆ĥρv

n+θi,j

i,j = 0. (109)

We distinguish two cases for ∆ĥρu
n+θi,j

i,j :

∆ĥρu
n+θi,j

i,j =

Rx,Lim
e ·Wy(hρu

n+θ
i+1

2
,j

i+ 1
2 ,j

)−Lx,DG
e · ĥ

n+θ
i− 1

2
,j

i− 1
2 ,j

ρ̂u
n+θ

i− 1
2
,j

i− 1
2 ,j

if βi+ 1
2 ,j

= 1, βi− 1
2 ,j

= 0,

Rx,DG
e · ĥ

n+θ
i+1

2
,j

i+ 1
2 ,j

ρ̂u
n+θ

i+1
2
,j

i+ 1
2 ,j

− Lx,Lim
e ·Wy(hρu

n+θ
i− 1

2
,j

i− 1
2 ,j

) if βi+ 1
2 ,j

= 0, βi− 1
2 ,j

= 1.

(110)
The first corresponds to the case when the cell Ti+1,j is troubled and consequently βi+1,j = βi+ 1

2 ,j
= 1; on the con-

trary the other situation is when the control volume Ti−1,j is a troubled cell. Similarly, the two cases for ∆ĥρv
n+θi,j

i,j

read

∆ĥρv
n+θi,j

i,j =

Ry,Lim
e ·Wx(hρv

n+θ
i,j+1

2

i,j+ 1
2

)−Ly,DG
e · ĥ

n+θ
i,j− 1

2

i,j− 1
2

ρ̂v
n+θ

i,j− 1
2

i,j− 1
2

if βi,j+ 1
2

= 1, βi,j− 1
2

= 0,

Ry,DG
e · ĥ

n+θ
i,j+1

2

i,j+ 1
2

ρ̂v
n+θ

i,j+1
2

i,j+ 1
2

− Ly,Lim
e ·Wx(hρv

n+θ
i,j− 1

2

i,j− 1
2

) if βi,j+ 1
2

= 0, βi,j− 1
2

= 1.

(111)
In equations (110) and (111) we used the two operators Wx and Wy that are used in order to have consistent tensor
products. Looking at Fig. 10 the operator Wy works on the finite volume subcell averages and does a reconstruction
of the DG polynomial only y direction producing the red symbols. The operator Wy does a similar reconstruction in
x direction. We remind that when all the four control volumes Ti± 1

2 ,j
and Ti,j± 1

2
are not marked the discrete total
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Ti,j

Ti− 1
2 ,j

Ti+ 1
2 ,j

Figure 10: Reconstruction done by the operator Wy used in the continuity equation of the limited scheme. The red crosses in Ti+ 1
2
,j are the new

degrees of freedom obtained applying the Wy operator the DG degrees of freedom in Ti+ 1
2
,j

energy equation is discretized using the pure DG scheme and it corresponds to eq. (82) derived in subsection 3.2.2.
On the contrary, if all the four cells are troubled control volumes, then the subcell averages of the total energy are
given by eq. (98), see subsection 3.3.
Now we consider the limited case of the momentum equation in x direction. When Ti+ 1

2 ,j
is limited (βi+ 1

2 ,j
= 1),

we consider two cases. If βi+ 1
2 ,j

= βi,j = 1 and βi+1,j = 0, the momentum update reads

ρun+1
i+ 1

2 ,j
= ρu∗i+ 1

2 ,j
− ∆t

∆x
(Rx,Lim

u · Py(p̂
n+θ

i+1
2
,j

i+1,j )−Lx,FV · p
n+θ

i+1
2
,j

i,j ) (112)

while for the other case, βi+ 1
2 ,j

= βi+1,j = 1 and βi,j = 0, we have

ρun+1
i+ 1

2 ,j
= ρu∗i+ 1

2 ,j
− ∆t

∆x
(Rx,FV · p

n+θ
i+1

2
,j

i+1,j − Lx,Lim
u · Py(p̂

n+θ
i+1

2
,j

i,j )). (113)

Similarly in y direction the two possibilities of the momentum equation are

ρvn+1
i,j+ 1

2

= ρv∗i,j+ 1
2
− ∆t

∆y
(Ry,Lim

u · Px(p̂
n+θ

i,j+1
2

i,j+1 )−Ly,FV · p
n+θ

i,j+1
2

i,j ) (114)

if βi,j+ 1
2

= βi,j = 1 and βi,j+1 = 0, and for the other case

ρvn+1
i,j+ 1

2

= ρv∗i,j+ 1
2
− ∆t

∆y
(Ry,FV · p

n+θ
i,j+1

2
i,j+1 − Ly,Lim

u · Px(p̂
n+θ

i,j+1
2

i,j )) (115)
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Ti,j Ti+1,j

Ti+ 1
2 ,j

Figure 11: Projection done by the operator Py used in the momentum equation of the limited scheme. The red crosses in Ti,j are the new degrees
of freedom obtained applying the Py operator the DG degrees of freedom in Ti,j

if βi,j+ 1
2

= βi,j+1 = 1 and βi,j = 0. Also for the limited momentum equations we introduced the operators Py
and Px that are necessary in order to multiply properly the tensors and the degrees of freedom. See Figure 11 for a
schematic representation of the projection done in y direction by Py . Then, the linear system for the 2D semi-implicit
limited staggered DG reads

Lx,Lim
i,j · p̃n+1,r+1

i−1,j + Ly,Lim
i,j · p̃n+1,r+1

i,j−1 + CLim
i,j · p̃

n+1,r+1
i,j +Rx,Lim

i,j · p̃n+1,r+1
i+1,j +Ry,Lim

i,j · p̃n+1,r+1
i,j+1 = b̃ri,j , (116)
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which appears to be symmetric in practice, but we are not able to provide a rigorous proof of this property yet. The
blocksRx,Lim

i,j , Lx,Lim
i,j ,Ry,Lim

i,j , Ly,Lim
i,j are computed as follows

Rx,Lim
i,j = −∆t2

∆x2
θ2i+ 1

2 ,j



My ·Rx,DG
e · ĥ

∼

n+1

i+ 1
2 ,j
· (Mx)

−1·Rx,DG
u if βi+1,j = βi,j = 0,

Rx,FV · Dx(h
∼

n+1

i+ 1
2 ,j

)·Rx,FV if βi+1,j = βi,j = 1,

My ·Rx,Lim
e · Dx(Wy(h

∼

n+1

i+ 1
2 ,j

))·Rx,FV if βi+1,j = 1, βi,j = 0,

Rx,FV · Dx(h
∼

n+1

i+ 1
2 ,j

)·Rx,Lim
u if βi+1,j = 0, βi,j = 1.

(117)

Ry,Lim
i,j = −∆t2

∆y2
θ2i,j+ 1

2



Mx ·Ry,DG
e · ĥ

∼

n+1

i,j+ 1
2

· (My)
−1·Ry,DG

u if βi,j+1 = βi,j = 0,

Ry,FV · Dy(h
∼

n+1

i,j+ 1
2

)·Ry,FV if βi,j+1 = βi,j = 1,

Mx ·Ry,Lim
e · Dy(Wx(h

∼

n+1

i,j+ 1
2

))·Ry,FV if βi,j+1 = 1, βi,j = 0,

Ry,FV · Dy(h
∼

n+1

i,j+ 1
2

)·Ry,Lim
u if βi,j+1 = 0, βi,j = 1.

(118)

Lx,Lim
i,j = −∆t2

∆x2
θ2i− 1

2 ,j



My · Lx,DG
e · ĥ

∼

n+1

i− 1
2 ,j
· (Mx)

−1·Lx,DG
u if βi−1,j = βi,j = 0,

Lx,FV · Dx(h
∼

n+1

i− 1
2 ,j

)·Lx,FV if βi−1,j = βi,j = 1,

My · Lx,Lim
e · Dx(Wy(h

∼

n+1

i− 1
2 ,j

))·Lx,FV if βi−1,j = 1, βi,j = 0,

Lx,FV · Dx(h
∼

n+1

i− 1
2 ,j

)·Lx,Lim
u if βi−1,j = 0, βi,j = 1.

(119)

Ly,Lim
i,j = −∆t2

∆x2
θ2i,j− 1

2



Mx · Ly,DG
e · ĥ

∼

n+1

i,j− 1
2

· (My)
−1·Ly,DG

u if βi,j−1 = βi,j = 0,

Ly,FV · Dy(h
∼

n+1

i,j− 1
2

)·Ly,FV if βi,j−1 = βi,j = 1,

Mx · Ly,Lim
e · Dy(Wx(h

∼

n+1

i,j− 1
2

))·Ly,FV if βi,j−1 = 1, βi,j = 0,

Ly,FV · Dy(h
∼

n+1

i,j− 1
2

)·Ly,Lim
u if βi,j−1 = 0, βi,j = 1.

(120)

while a proper splitting for CLim
i,j yields

CLim
i,j = C0,Lim

i,j + Cx,Lim
i,j + Cy,Lim

i,j , (121)

with

C0,Lim
i,j =

{
Mxy if βi,j = 0,

I if βi,j = 1.
(122)

Cx,Lim
i,j =

∆t2

∆x2



My(θ2
i− 1

2 ,j
·Rx,DG

e · ĥ
∼

n+1

i− 1
2 ,j
· (Mx)

−1·Lx,DG
u + θ2

i+ 1
2 ,j

Lx,DG
e · ĥ

∼

n+1

i+ 1
2 ,j
· (Mx)

−1·Rx,DG
u )

if βi,j = βi− 1
2 ,j

= βi+ 1
2 ,j

= 0,

θ2
i− 1

2 ,j
Lx,FV · Dx(h

∼

n+1

i− 1
2 ,j

) ·Rx,FV + θ2
i+ 1

2 ,j
Rx,FV · Dx(h

∼

n+1

i+ 1
2 ,j

) · Lx,FV

if βi,j = βi− 1
2 ,j

= βi+ 1
2 ,j

= 1,

My(θ2
i− 1

2 ,j
Rx,DG

e · ĥ
∼

n+1

i− 1
2 ,j
· (Mx)−1 · Lx,DG

u + θ2
i+ 1

2 ,j
Rx,Lim

e · Dx(Wy(h
∼

n+1

i+ 1
2 ,j

)) · Lx,Lim
u )

if βi,j = βi− 1
2 ,j

= 0, βi+ 1
2 ,j

= 1,

My(θ2
i− 1

2 ,j
Lx,Lim
e · Dx(Wy(h

∼

n+1

i− 1
2 ,j

)) ·RLim
u + θ2

i+ 1
2 ,j

Lx,DG
e · ĥ

∼

n+1
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Cy,Lim
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∆t2

∆y2
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∼
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2
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We consider three contributions for the right hand side term

b̃ri,j = b̃0,ni,j + b̃x,ni,j + b̃y,ni,j (125)

with

b̃0,ri,j =


Mxy · (ρ̂E

∗
i,j − ρ̂k

∼

n+1

i,j

) if βi,j = 0,

ρE
∗
i,j − ρk

∼

n+1

i,j

if βi,j = 1,
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b̃x,ri,j = −∆t

∆x
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Ĝn
i− 1

2 ,j
)

+((1− θi+ 1
2 ,j

)Rx,DG
e · ĥn
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b̃y,ri,j = −∆t

∆y
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Ĝn
i,j+ 1

2

− θi,j− 1
2
Ly,DG
e · ĥ
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∼

n+1

i,j+ 1
2

Ĝn
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Then, the projections from the main grid to staggered grids in x and y direction are

ρ̃i+ 1
2 ,j

=


(Mx)−1 · (Mx,DG

L · ρ̂i,j + Mx,DG
R · ρ̂i+1,j) if βi+ 1

2 ,j
= βi,j = βi+1,j = 0,

(Mx,FV
L · ρi,j + Mx,FV

R · ρi+1,j) if βi+ 1
2 ,j

= βi,j = βi+1,j = 1,

(Mx,FV
L · Pxy(ρ̂i,j) + Mx,FV

R · ρi+1,j) if βi+ 1
2 ,j
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(Mx,FV
L · ρi,j + Mx,FV
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2 ,j

= βi,j = 1, βi+1,j = 0.

(129)

ρ̃i,j+ 1
2

=


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(130)

Reciprocally, the projections from the staggered grids to the main mesh are

ũi,j =


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ṽi,j =


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2
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(132)
The description of the two-dimensional limited method is concluded by discussing the CFL stability condition. The
restriction on the time step is given by the stability condition for the explicit update of the nonlinear convective terms.
We can easily verify that ∆xs = ∆x(2P + 1)−1 and ∆ys = ∆y(2P + 1)−1. Consequently, the time step ∆t given
in 107 for the subcell finite volume scheme is equivalent to the one expressed in 96 for the pure unlimited high order160

DG method. Moreover the 2D limited method acknowledges the same time step restriction.
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4. Numerical tests for the one-dimensional method

In this section we simulate several test cases in order to validate the new staggered semi-implicit discontinuous
Galerkin method presented in section 2 and referred to as SIDG in the following. The aim of the first test, which is
reported in subsection 4.1, is to verify the correctness of the implementation of the high order unlimited DG scheme.165

Then, in subsection 4.2 the numerical results are compared against the exact solution of the Riemann problem in order
to check the robustness of the limiter in presence of discontinuities. We remind that in all the benchmarks we do
neither use artificial viscosity nor any smoothing or filtering of the solution. All numerical solutions are displayed on
the figures as a set of equidistant samples in the DG cell by evaluating the underlying DG polynomial. More precisely
N sample points are displayed in 1D for a PN DG polynomial. For a FV subcell one sample centered point is plotted.170

Moreover each troubled DG cell and its 2P + 1 FV subcells, are colored in red, while unlimited DG cells are either
plotted in blue or in black. When available, the numerical results are compared to an exact solution.

4.1. Advection of a smooth density wave in 1D

Here, we consider a sanity test used to validate the correctness of the formulation of the pure DG scheme derived
in subsection 2.2. As initial condition, in the computational domain Ωx = [−1,+1] we impose a smooth Gaussian
profile for the density

ρ(x, 0) = ρ0(1 + e−
0.5x2

0.12 ) (133)

with ρ0 = 0.01 and a constant value for the velocity u(x, 0) = u0 = 2 and for the pressure p(x, 0) = p0 = 1.
Consequently, the density wave is transported without deformation. If we prescribe periodic boundary conditions, the175

exact solution at the final time tend = 1 coincides with the initial condition. Two simulations are performed: first
with a grid made of 50 cells with a polynomial degree P = 5 while, in the second case with 300 control volumes and
P = 0 corresponding to a low order finite volume scheme. Note that in both cases the degrees of freedom are equal to
300. The implicitness parameter θ is fixed equal to 0.55. The results for density, velocity and pressure are presented
in Fig. 12. It is possible to observe, that for this smooth test the results obtained using the high order semi-implicit DG180

scheme are extremely accurate and they reach an excellent agreement with the analytical solution. On the contrary,
for the finite volume case we notice that the numerical solution for the density is drastically diffused. In addition, in
the plots for the velocity and for the pressure, the numerical noise of the FV method is several orders of magnitude
bigger than the noise produced by the DG scheme with P = 5.
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Figure 12: Reference and numerical solutions for the Advection of a smooth density wave in 1D problem at tend = 1.

4.2. One-dimensional Riemann problems185

Here we apply the novel semi-implicit DG scheme to a set of Riemann problems taken from [69, 26, 66]. These
simulations are carried out in order to check the correct propagation of the shock waves and to verify that the new
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method does not produce spurious or dispersive oscillations in the vicinity of discontinuities.
The computational domain is Ωx = [−0.5,+0.5] and the initial condition consists in a discontinuity centred in x0

V(x, 0) =

{
VL if x ≤ x0,
VR if x > x0,

(134)

where V indicates the vector of primitive variables V = [ρ, u, p]. In addition the simulation run up to t = tend.
The parameters for the initial conditions are listed in Table 1 and the results are shown in Figs. 13,14,15,16,17,18 and
19 respectively. RP1 (see Fig. 13) is known as Sod shock tube [60]. We observe an excellent agreement with the

Case ρL uL pL ρR uR pR x0 Nx ∆x tend
RP1 1.0 0.0 1.0 0.125 0.0 0.1 0.0 100 0.01 0.2

RP2 0.445 0.698 3.528 0.5 0.0 0.571 0.0 100 0.01 0.14

RP3 1.0 0.0 1000.0 1.0 0.0 0.01 0.1 100 0.01 0.012

RP4 5.99924 19.5975 460.894 5.99924 -6.19633 46.095 0.0 100 0.01 0.035

RP5 1.0 -1.0 0.4 1.0 +1.0 0.4 0.0 100 0.01 0.15

RP6 1.0 +2.0 0.1 1.0 -2.0 0.1 0.0 100 0.01 0.5

RP7 1.0 0.75 1.0 0.125 0.0 0.1 -0.1 100 0.01 0.2

Table 1: Initial and scheme conditions for the Riemann problems for semi-implicit DG schemes on staggered grid with subcell limiter - Left and
right states for ρ,U and p, initial discontinuity location x0, number of control volumes Nx, cell size ∆x and final time of the simulations tend.

reference solution and, moreover, the limiter is activated in the region of the shock wave while the rarefaction and the
contact waves are solved only by using the pure DG method.190

RP2 (see Fig. 14) is called Lax problem [50]. Also here we see a good fit with the exact solution The new staggered
semi-implicit DG scheme activates the a posteriori subcell FV limiter appropriately only at the shock wave.
RP3 and RP4 (see Figs. 15 and 16) are taken from the well-known textbook of Toro [69]; these test cases involve
strong shock waves and consequently they are suitable for checking the robustness of the scheme. In RP3 despite
a small overshoot on the shock wave, in the other parts of the domain the agreement is excellent. Also in RP4 (see195

Fig. 16) the shocks are very well resolved but we observe some additional troubled cells, probably because of some
numerical noise in the plateau region.
RP5 (see Fig. 17) consists of two symmetric rarefaction waves. We notice a small spurious peak close to the origin
but elsewhere the numerical solution agrees with the exact one. Moreover, troubled cells are detected only in the first
part of the simulation because the initial condition is discontinuous.200

In RP6 (see Fig. 18) two jets collide and a double shock is generated; we observe that the waves are perfectly sym-
metric and the troubled cell are optimally detached and solved without occurrence of any Gibbs phenomena. Note
that the glitch in the density has been observed also in [26]
RP7 (see Fig. 19) is a modified Sod problem proposed by Toro in [69] used to verify the presence of an entropy glitch
inside the left moving rarefaction, sometimes observed in some entropy-violating approximate Riemann solver [58].205

Again, the agreement is good and we can conclude that the semi-implicit finite volume subcell limiter applied to the
staggered semi-implicit DG scheme is an appropriate shock capturing strategy. Moreover, our numerical experiments
have shown that the use of the limiter was necessary for all these test cases in order to successfully reach the final
time tend. The unlimited DG scheme alone produces strong spurious oscillations in the vicinity of discontinuities that
may lead to negative densities and pressures, which then make the code crash. Contrarily, our a posteriori subcell210

finite volume limiter successfully cures these spurious oscillations and renders the code at the same time robust and
accurate on these demanding test cases.

5. Numerical tests for the two-dimensional method

Finally, we carry out the numerical validation of the two-dimensional semi-implicit staggered DG scheme with
a posteriori subcell finite volume limiting. First we consider two smooth problems: in section 5.1 we compute the215
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Figure 13: RP1 - Reference and numerical solutions for ρ, u and p at tend = 0.2
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Figure 14: RP2 - Reference and numerical solutions for ρ, u and p at tend = 0.14
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Figure 15: RP3 - Reference and numerical solutions for ρ, u and p at tend = 0.012
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Figure 16: RP4 - Reference and numerical solutions for ρ, u and p at tend = 0.035
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Figure 17: RP5 - Reference and numerical solutions for ρ, u and p at tend = 0.15
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Figure 18: RP6 - Reference and numerical solutions for ρ, u and p at tend = 0.5
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Figure 19: RP7 - Reference and numerical solutions for ρ, u and p at tend = 0.2

convergence table and the numerical order of convergence of the 2D scheme; then the test case in section 5.3 can be
considered as a sanity check analogous to the one of section 4.1, while, in section 5.4, some low Mach number regime
simulations are run. We conclude this test suite with the 2D Riemann problems in section 5.6 where the use of the
limiter is fundamental in order to complete the simulations, and, obtain a clean, robust and accurate solution of the
PDEs.220

5.1. Isentropic vortex

The first two-dimensional test is the well known isentropic vortex (see [41]). For the 2D Euler equations, this is a
fundamental benchmark because this test checks the correctness of the implementation and the numerical convergence.
In addition, the boundary conditions can be either set to periodic or transmissive. The initial condition for the density
and for the pressure are ρ(x, y, 0) = ρ∞ + δρ, p(x, y, 0) = p∞ + δp, where δρ and δp read as follows

δρ = (1 + δT )
1

γ−1 − 1, δp = (1 + δT )
γ
γ−1 − 1, with δT =

(γ − 1)β2

8γπ2
e1−r

2

, (135)

where we have introduced the radial coordinate r =
√

(x− x0)2 + (y − y0)2, the vortex center (x0, y0) = (0, 0) and,
β, the vortex strength, here imposed equal to 5. The initial velocity is [u(x, y, 0), v(x, y, 0)] = [u∞ + δu, v∞ + δv]
where δu and δv are given as

δu = − β

2π
e

1−r2
2 (y − y0), δv =

β

2π
e

1−r2
2 (x− x0). (136)

If the undisturbed velocity components u∞ and v∞ are imposed equal to 0, then the vortex is stationary. In this
particular case we computed the L2 error between the numerical and the exact solutions on a series of successively
refined grids characterized by square cells in a domain Ωxy = [−5,+5] × [−5,+5] with Nx = Ny . For this steady
state test, the choice of θ = 1 makes sense because the problem is stationary. The results for the errors and for the225

convergence rates are reported in the following table and it is possible to state that the semi-implicit DG method on
staggered meshes is indeed arbitrary high order accurate in space, see also [25] for the shallow water equations. In
particular for a given polynomial degree P , we observe that the convergence rate is equal to P + 1 for the absolute
value of the velocity (V =

√
u2 + v2). For the pressure, an optimal convergence rate is reported for P even while

sub-optimal for P odd. We attribute this behaviour to the choice of the basis functions; more detailed analyses will be230

carried out in the future.
Later on, we impose the components of the velocity [u∞, v∞] equal to [1, 1]. The computational grid is composed
of 625 square cells with Nx = Ny = 25, the degree of the polynomial basis functions is P = 5 and Ωxy =
[−5,+5] × [−5,+5]. We impose the implicitness parameter equal to θ = 0.7 and periodic boundary conditions are
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P Nx = Ny εPL2
εVtL2

OPL2
OVtL2

0

100 1.94E-2 3.90E-2 — —

200 9.69E-3 1.71E-2 0.99 1.18

300 6.58E-3 1.10E-2 0.95 1.09

400 4.99E-3 8.10E-3 0.95 1.06

1

100 2.44E-2 3.14E-3 — —

200 1.25E-2 9.83E-4 0.96 1.67

300 8.40E-3 4.64E-4 0.98 1.85

350 7.21E-3 3.52E-4 0.99 1.77

400 6.32E-3 2.77E-4 0.99 1.80

2

50 3.43E-3 1.67E-3 — —

100 6.31E-4 2.76E-4 2.44 2.59

150 1.79E-4 9.03E-5 3.10 2.75

200 7.69E-5 3.88E-5 2.93 2.93

3

25 8.89E-4 2.90E-4 — —

50 1.14E-4 2.49E-5 2.96 3.53

75 3.35E-5 6.36E-6 3.02 3.36

100 1.41E-5 2.51E-6 3.01 3.23

4

15 9.82E-4 3.42E-4 — —

30 7.67E-5 2.14E-5 3.67 4.00

45 1.73E-5 3.04E-6 3.66 4.86

60 5.58E-6 1.03E-6 3.93 3.75

5

15 8.39E-4 3.35E-4 — —

30 4.97E-5 5.27E-6 4.07 5.98

45 7.02E-6 5.89E-7 4.82 5.40

60 1.46E-6 2.85E-7 5.44 2.52

Table 2: Shu-Osher vortex — Numerical convergence rates computed with respect to the L2 error norms of the pressure and velocity for the
two-dimensional semi-implicit staggered DG scheme.

prescribed. Hence, at the final time tend = 10 the vortex is centred again at its initial position at (x0, y0) = (0, 0)235

and the exact solution corresponds to the initial one (see (135) and (136)). In Fig. 20 we report the contour plots for
the density and pressure where it can be observed that the numerical solution is symmetric and free from spurious
oscillations.

5.2. Steady Taylor-Green vortex at low Mach number240

Here, we carry out a benchmark characterized by nearly incompressible regime which is the stationary and inviscid
case of the well known Taylor-Green vortex (see e.g. [63, 33, 31, 76]). The initial condition is given as follows

ρ(x, y, t) = ρ0

u(x, y, t) = sin(x)cos(y)

v(x, y, t) = −cos(x)sin(y)

p(x, y, t) = C +
1

4
(cos(2x) + sin(2y))

(137)

with ρ0 = 1 and C = 104. With this choice of parameters, the Mach number of this test case is of the order
M ≈ 10−2, i.e. the use of an explicit scheme would be computationally very inefficient due to the CFL condition
on the time step based on the sound speed, while the time step of our semi-implicit staggered DG scheme is only
limited by a CFL condition based on the flow velocity. We consider a computational domain Ωxy = [0, 2π]× [0, 2π]
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Figure 20: Shu-Osher vortex - Contour plots for the density and the pressure at time tend = 10.

composed of 502 cells (Nx = Ny = 50) and a polynomial approximation degree of P = 5. The final time of the245

simulation is tend = 10 and the reference solution at this time is equal to the initial condition, since the inviscid Taylor
Green vortex is a stationary solution of the incompressible Euler equations. In Fig. 21 we report the contour plots for
the components of the velocity and for the pressure and we can observe a very clean solution for all the quantities. In
addition, in Fig. 22 we expose 1D cuts along the x and the y axis for the velocity components u and v and for the
pressure p. For all quantities we note an excellent agreement between our numerical results and the reference solution.250
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Figure 21: Taylor-Green vortex - Contour plots for u, v and p at time tend = 10.0.

5.3. Advection of a smooth density bell in 2D

Similarly to the 1D method in 4.1, this test consists in a two dimensional smooth Gaussian bell moving in a
uniform pressure and velocity flow. Hence the initial condition reads as follows

ρ(x, y, 0) = ρ0(1 + e−
0.5r2

0.12 ), p(x, y, 0) = 1, u(x, y, 0) = 2, v(x, y, 0) = 2. (138)
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Figure 22: Taylor-Green vortex - Reference and cut-of the numerical solutions along the x axis for u, v and p at time tend = 10.0.

The computational domain is Ωxy = [−1,+1] × [−1,+1] and tend = 1; consequently, when imposing periodic
boundary conditions the reference solution at the final time coincides with the initial condition in (138). We consider
two configurations both with θ = 0.55; in the first one the polynomial degree is P = 5 and Nx = Ny = 50 and
for the second case Nx = Ny = 300 using P = 0, which corresponds to the piece-wise constant finite volume data.255

Note that in both situations the number of degrees of freedom is the same and equal to Nx × Ny × P 2 = 9 × 104.
The results for the contour plot at time tend = 1 are shown in Fig. 23. Here we observe that for the high order DG
case the solution is centred and symmetric, while we can see the spurious effects of the numerical viscosity in the first
order situation. Moreover, in Fig. 24, we report a comparison between the numerical and the exact solutions both for
a slice along the x axis. Similarly to the 1D case in section 4.1, in the FV case the dissipation is important while the260

semi-implicit staggered DG scheme produces a very accurate solution. Consequently, this underlines the importance
of the high order approach for the numerical solution of nonlinear partial differential equations.

Figure 23: Advection of a smooth density bell in 2D - Density for P = 5 (high order DG) and for P = 0 (first order FV) at time tend = 1.
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Figure 24: Advection of a smooth density bell in 2D - Reference and numerical solutions along the x axis for ρ, velocity component u and p at
time tend = 1.

5.4. Two-dimensional smooth acoustic wave propagation
Let us consider another smooth test for the two-dimensional Euler equations. The initial pressure is a smooth

surface, p(x, y, 0) = 1 + e−αr
2

, while the density is constant, ρ(x, y, 0) = 1, and both components of velocity265

are null, u(x, y, 0) = 0, v(x, y, 0) = 0. For this test α = 40 and r =
√
x2 + y2 is the radial coordinate. This

simulation is characterized by a cylindrically symmetric solution with a low Mach number. However, because the
stability condition of the semi-implicit DG scheme is based on the fluid velocity, consequently this scheme is not
overly constrained by these kind of acoustic regimes. On the contrary, the same test solved numerically by an explicit
method would be very inefficient; in fact, for this last case the stability condition is based on the maximum eigenvalue270

‖U‖+c.
For this simulation the computational domain is Ωxy = [−2,+2]× [−2,+2] and we use Nx = Ny = 25 with a total
number of 625 cells using a polynomial degree P equal to 5. Hence, the total number of degrees of freedom is 22500
and the final time is set to 1. The implicitness parameter θ is chosen equal to 0.55 in order to get as close as possible
to the second order accurate Crank-Nicholson scheme in time.275

In Fig. 25 we can observe that the color contour plots for the density and the pressure perfectly respect the cylindrical
symmetry. In addition, in Fig. 26 we compare the numerical results against a reference solution obtained running a
second order explicit TVD scheme on a very fine mesh. Except for some slight numerical dissipation close the to
peaks, the agreement is excellent and all the acoustic waves travel with the proper speed. According to [66], we can
state that the semi-implicit staggered DG is a very suitable numerical method for CFD simulation in the low Mach280

number regime.

5.5. Circular explosion
Here we consider a well known two dimensional Riemann problem characterized by a cylindrical symmetry.

Given a computational domain Ωxy = [−1,+1]× [−1,+1] the initial condition reads

Q(x, y, 0) =

{
Qin if r ≤ rc
Qout if r > rc.

(139)

where r =
√
x2 + y2 is the radial coordinate and Q = [ρ, u, v, p] is state vector. For this simulation we impose the

polynomial degree P equal to 5 and we use Nx = Ny = 100 with θDG = 0.55 and tend = 0.2. In Fig. 27 we see that
the density has a very clean contour plot. In addition we report a map of the troubled cells; most of them are located285

in the vicinity of the shock wave and few other control volumes are limited in the zone of the contact wave. We
can observe that a vast majority of the cells are dealt with the unlimited optimal DG scheme,while few troubled cells
demand a re-calculation. Moreover, a cut of the solution along the x axis is compared against the reference solution
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Figure 25: Two-dimensional smooth acoustic wave propagation - Contour plots for the density and pressure at time tend = 1.
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Figure 26: Two-dimensional smooth acoustic wave propagation - Reference and numerical solutions along the x axis for ρ, u and p at time
tend = 1.

in Fig. 28. These last data are obtained using a robust second order TVD scheme (see [75]) on a fine grid solving an
equivalent 1D Euler system of PDEs with a source term taking into account the effect of the radial symmetry [69].290

We observe an excellent agreement between the solutions; furthermore in the numerical solution no oscillation is
observed, and, all waves are solved with their correct speed of propagation.

5.6. Two dimensional Riemann problems
For the last benchmarks we consider a class of two dimensional Riemann problems presented in [59] and studied

in detail in [49]. The computational domain Ωxy = [−0.5,+0.5]× [−0.5,+0.5] is paved using Nx = Ny = 50 cells
with a polynomial degree P = 5. The initial condition reads as follows

(ρ, u, v, p) =


(ρ1, u1, v1, p1) if x > 0 ∧ y > 0,
(ρ2, u2, v2, p2) if x ≤ 0 ∧ y > 0,
(ρ3, u3, v3, p3) if x ≤ 0 ∧ y ≤ 0,
(ρ4, u4, v4, p4) if x > 0 ∧ y ≤ 0,

(140)
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Figure 27: Circular explosion - Contour plots for the density and map of the troubled zones (red cells) at time tend = 0.2.
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Figure 28: Circular explosion - Reference and cut-of the numerical solutions along the x axis for ρ, u and p at time tend = 0.2.

We consider four initial configurations, the same ones carried out in [26], the initial parameters of which are listed in
Table 3. From Figs. 29,30,31, 32 we can state that the numerical result are in good agreement when compared to the295

simulations carried out in [49, 26]. In addition we observe that most of the troubled control volumes are located on
the discontinuities but, probability due to numerical noise, few bad cells are also detected in the plateau regions and
at boundaries. Moreover, since this method is at most second order accurate in time we observe a relevant numerical
viscosity which, here, is clearly higher than the one observed in explicit DG schemes with a posteriori subcell WENO
limiter, see [32, 78]. In order to achieve higher order in time, the present staggered semi-implicit DG scheme could300

be extended to a semi-implicit staggered space-time DG method, see [33, 64, 66].

6. Conclusions and outlook

In this paper we have proposed a novel family of semi-implicit DG schemes on staggered meshes with a posteriori
subcell finite volume limiter applied to the 1D and 2D Euler equations of gasdynamics. In particular, we have extended
to high order of accuracy the FV method presented in [26] and then, in order to develop a robust shock-capturing305
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Configuration C4

ρ u v p
(x > 0, y > 0) 1.1 0.0 0.0 1.1

(x < 0, y > 0) 0.5065 0.8939 0.0 0.35

(x < 0, y < 0) 1.1 0.8939 0.8939 1.1

(x > 0, y < 0) 0.5065 0.0 0.8939 0.35

Configuration C7

ρ U V p
(x > 0, y > 0) 0.5197 -0.6259 0.1 0.4

(x < 0, y > 0) 1.0 0.1 0.1 1.0

(x < 0, y < 0) 0.8 0.1 0.1 0.4

(x > 0, y < 0) 0.5197 0.1 -0.6259 0.4

Configuration C8

ρ U V p
(x > 0, y > 0) 0.5197 0.1 0.1 0.4

(x < 0, y > 0) 1.0 -0.6259 0.1 1.0

(x < 0, y < 0) 0.8 0.1 0.1 1.0

(x > 0, y < 0) 1.0 0.1 -0.6259 1.0

Configuration C16

ρ U V p
(x > 0, y > 0) 0.5313 0.1 0.1 0.4

(x < 0, y > 0) 1.0222 -0.6179 0.1 1.0

(x < 0, y < 0) 0.8 0.1 0.1 1.0

(x > 0, y < 0) 1.0 0.1 0.8276 1.0

Table 3: Initial conditions for the 2D Riemann problems.
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Figure 29: Two dimensional Riemann problem RP2D C4 - Contour plots for the density, map of the troubled zones (red cells) and contour lines at
time tend = 0.2.
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Figure 30: Two dimensional Riemann problem RP2D C7 - Contour plots for the density, map of the troubled zones (red cells) and contour lines at
time tend = 0.2.

strategy, we followed the approach used in [44] where the a posteriori subcell liming was extended to staggered semi-
implicit schemes for the first time.
Similarly to the other a posteriori subcell finite volume limiters for explicit DG schemes on collocated grids developed
in [32, 29, 6], this approach is based on the MOOD paradigm introduced in [16, 21, 22, 53]. Hence, an unlimited
semi-implicit staggered DG method is first applied in order to produce a so-called discrete candidate solution at310

time tn+1. Then, applying physical and numerical admissibility criteria, troubled cells characterized by a non-valid
solution are detected. Then, a more robust first order semi-implicit staggered finite volume scheme is applied in the
control volumes flagged as troubled cells. Successively, the linear system for the pressure is solved again involving
the unlimited DG cells together with the finite volume subcells. The algorithm is concluded with the reconstruction
of the DG polynomial from the piecewise constant subcell averages in the troubled cells.315

Several benchmarks have been carried out in order to confirm that the new schemes behave well both for the low Mach
number regime, due to the implicit treatment of the pressure term, and for several kinds of Riemann problems, since
the a posteriori finite volume limiter stabilizes the DG scheme in the presence of shock waves and steep gradients.
In further works we will consider the investigation of cavitating compressible flows for industrial applications, see
[27, 45], implementing the a posteriori subcell finite volume limiting for the semi-implicit DG proposed in [43]. In320

addition, we will extend the present subcell FV limiter for semi-implicit staggered DG schemes to adaptive Cartesian
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Figure 31: Two dimensional Riemann problem RP2D C8 - Contour plots for the density, map of the troubled zones (red cells) and contour lines at
time tend = 0.2.
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Figure 32: Two dimensional Riemann problem RP2D C16 - Contour plots for the density, map of the troubled zones (red cells) and contour lines
at time tend = 0.2.

meshes (AMR), see [78, 77, 77, 34]. Finally, another path to explore consists in the extension of the present staggered
semi-implicit FV and DG methods to the compressible Navier-Stokes equations and to other nonlinear hyperbolic
systems, such as the Baer-Nunziato model for compressible multi-phase flows and the unified first order hyperbolic
GPR model proposed in [42, 31], which unifies a large range of different models of continuum mechanics.325
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Appendix A. Matrices and tensors for the 1D semi-implicit schemes

Appendix A.1. Matrices and tensors for the 1D semi-implicit DG method

M =

1∫
0

ϕ(ξ)ϕ(ξ)dξ (A.1)

K =
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MDG
R =
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Appendix A.2. Matrices and tensors for the 1D semi-implicit sub-cell FV method for P=2

RFV =


0 0 0 0 0
0 0 0 0 0
5 0 0 0 0
−5 5 0 0 0
0 −5 5 0 0

 LFV =


0 0 5 −5 0
0 0 0 5 −5
0 0 0 0 5
0 0 0 0 0
0 0 0 0 0

 (A.9)

MFV
R =


0 0 0 0 0
0 0 0 0 0

0.5 0 0 0 0
0.5 0.5 0 0 0
0 0.5 0.5 0 0

 MFV
L =


0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 0.5
0 0 0 0 0
0 0 0 0 0

 (A.10)

Appendix A.3. Tensors for the limited 1D semi-implicit DG method490
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