Skip to main content
Log in

Group Sparse Representation for Restoring Blurred Images with Cauchy Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For the image restoration problem, recent variational approaches exploiting nonlocal information of an image have demonstrated significant improvements compared with traditional methods utilizing local features. Hence, we propose a new variational model based on the sparse representation of image groups, to recover blurred images with Cauchy noise. To achieve efficient and stable performance, an alternating optimization scheme with a novel initialization technique is used. Experimental results suggest that the proposed method outperforms other methods in terms of both visual perception and numerical indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Achim, A., Kuruoglu, E.E.: Image denoising using bivariate \(\alpha \)-stable distributions in the complex wavelet domain. IEEE Signal Process. Lett. 12(1), 17–20 (2004)

    Article  Google Scholar 

  2. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu, S., Fletcher, T., Whitaker, R.: Rician noise removal in diffusion tensor mri. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp 117–125 (2006)

  5. Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.: Spatially adaptive wavelet-based method using the cauchy prior for denoising the sar images. IEEE Trans. Circuits Syst. Video Technol. 17(4), 500–507 (2007)

    Article  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  7. Buades, A., Coll, B., Morel, JM.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, vol 2, pp 60–65 (2005a)

  8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, J.F., Osher, S., Shen, Z.: Linearized bregman iterations for frame-based image deblurring. SIAM J Imaging Sci. 2(1), 226–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.F., Shen, J.: Variational image inpainting. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 58(5), 579–619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  14. Davis, PJ.: Circulant matrices (1979)

  15. Deledalle, CA., Tupin, F., Denis, L.: Patch similarity under non gaussian noise. In: 2011 18th IEEE International Conference on Image Processing, IEEE, pp 1845–1848 (2011)

  16. Deledalle, C.A., Denis, L., Tupin, F.: How to compare noisy patches? patch similarity beyond gaussian noise. Int. J. Comput. Vis. 99(1), 86–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, M., Huang, T.Z., Wang, S., Mei, J.J., Zhao, X.L.: Total variation with overlapping group sparsity for deblurring images under cauchy noise. Appl. Math. Comput. 341, 128–147 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  21. Foi, A.: Noise estimation and removal in mr imaging: The variance-stabilization approach. In: 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro, IEEE, pp 1809–1814 (2011)

  22. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numeri. Anal. 49(6), 2543–2563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frieden, B.R.: A new restoring algorithm for the preferential enhancement of edge gradients. JOSA 66(3), 280–283 (1976)

    Article  Google Scholar 

  24. Getreuer, P., Tong, M., Vese, L.: Total variation based rician denoising and deblurring model. UCLA CAM Rep. 11, 67 (2011)

    Google Scholar 

  25. Idan, M., Speyer, J.L.: Cauchy estimation for linear scalar systems. IEEE Trans. Autom. Control 55(6), 1329–1342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuruoglu, E.E., Fitzgerald, W.J., Rayner, P.J.: Near optimal detection of signals in impulsive noise modeled with a symmetric/spl alpha/-stable distribution. IEEE Commun. Lett. 2(10), 282–284 (1998)

    Article  Google Scholar 

  27. Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for cauchy noise removal. J. Math. Imaging Vis. 60(8), 1324–1354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, S., Zhang, G., Soon, Y.T.: An over-complete dictionary design based on gsr for sar image despeckling. IEEE Geosci. Remote Sens. Lett. 14(12), 2230–2234 (2017)

    Article  Google Scholar 

  29. Loza, A., Bull, D., Canagarajah, N., Achim, A.: Non-gaussian model-based fusion of noisy images in the wavelet domain. Comput. Vis. Image Underst. 114(1), 54–65 (2010)

    Article  Google Scholar 

  30. Mei, J.J., Dong, Y., Huang, T.Z., Yin, W.: Cauchy noise removal by nonconvex admm with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oliveira, J.P., Bioucas-Dias, J.M., Figueiredo, M.A.: Adaptive total variation image deblurring: a majorization-minimization approach. Sig. Process. 89(9), 1683–1693 (2009)

    Article  MATH  Google Scholar 

  33. Osher, S., Shi, Z., Zhu, W.: Low dimensional manifold model for image processing. SIAM J. Imaging Sci. 10(4), 1669–1690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal sar image denoising algorithm based on llmmse wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2011)

    Article  Google Scholar 

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sadreazami, H., Ahmad, MO., Swamy, M.: Ultrasound image despeckling in the contourlet domain using the cauchy prior. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp 33–36 (2016)

  37. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shi, W., Chen, C., Jiang, F., Zhao, D., Shen, W.: Group-based sparse representation for low lighting image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), IEEE, pp 4082–4086 (2016)

  40. Tong, M., Kim, Y., Zhan, L., Sapiro, G., Lenglet, C., Mueller, B., Thompson, P., Vese, L.: A vectorial total variation model for denoising high angular resolution diffusion images corrupted by rician noise. Methods Appl. Anal. 21(1), 151–176 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  43. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  44. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, J.H., Zhao, X.L., Mei, J.J., Wang, S., Ma, T.H., Huang, T.Z.: Total variation and high-order total variation adaptive model for restoring blurred images with cauchy noise. Comput. Math. Appl. 77(5), 1255–1272 (2019)

    Article  MathSciNet  Google Scholar 

  46. Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336–3351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, J., Ma, S., Zhang, Y., Gao, W.: Image deblocking using group-based sparse representation and quantization constraint prior. In: 2015 IEEE International Conference on Image Processing (ICIP), IEEE, pp 306–310 (2015)

  48. Zwillinger, D.: CRC Stand. Math. Tables Formulae. Chapman and Hall, London (2002)

    Book  Google Scholar 

Download references

Acknowledgements

Myungjoo Kang was supported by the National Research Foundation of Korea (2015R1A5A1009350, 2017R1A2A1A17069644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungjoo Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kang, M. Group Sparse Representation for Restoring Blurred Images with Cauchy Noise. J Sci Comput 83, 41 (2020). https://doi.org/10.1007/s10915-020-01227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01227-8

Keywords

Navigation