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Abstract In this work, we perform an extensive numerical investigation of the heat transfer
behavior of nanofluid laminar flows, in wavy-wall channels. The adopted computational ap-
proach is based on a finite-volume formulation of the lattice Boltzmann method constructed
on a fully-unstructured mesh. We show the validity and effectiveness of this numerical ap-
proach to deal with realistic problems involving nanofluid flows, and we employ it to analyze
the effects of the wavy-wall channel geometry on the rate of heat transfer, thus providing
useful information to the design of efficient heat transfer devices.
Results show that an increasing of the wavy surface amplitude has a positive effect on the
heat transfer rate, while a phase shift between the wavy walls leads to a decreasing of the
mean Nusselt number along the channel. The addition of solid nanoparticles within a base
liquid significantly contributes to increase the rate of heat transfer, especially when a rela-
tively high value of nanoparticles volume fraction is employed. The present analysis then
suggests that the use of nanofluids within an axis-symmetric configuration of the wavy-wall
channel, with high wavy surface amplitude, may represent an optimal solution to enhance
the thermal performances of heat transfer devices.

Keywords Nanofluids · wavy-wall channel · unstructured lattice Boltzmann method.

1 Introduction

The low thermal conductivity of common heat transfer fluids such as water, oil and ethylene
glycol represents a major limitation to the development of high-efficient heat exchangers,
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that are required in many industrial applications. Enhancing the thermal performance of
heat transfer devices is instrumental to reduce both the energy consumptions and the associ-
ated operating costs. Therefore, a significant effort has been making to design and develop
advanced heat transfer fluids that exhibit improved thermal behavior. In this sense, an inter-
esting solution is represented by nanofluids [1], that are colloidal suspensions of nanometer
sized particles. Since their first introduction by Choi [2] few decades ago, nanofluids have
continued to attract the research interest of the scientific community due to their remarkable
thermophysical properties. Commonly used nanofluids present solid particles of three kinds,
mainly: metal oxides, pure metal and carbon-based materials, such as graphene. The disper-
sion of these solid nanoparticles in a base liquid leads indeed to superior characteristics
compared to conventional heat transfer fluids, as demonstrated by several experimental [3,
4] and numerical studies [5,6]. A review on the application of nanofluids in heat exchangers
can be found in [7]. The application of nanoparticles to a liquid matrix has a great potential
for the energy management and control in a variety of application cases. Among these, the
use of nanofluids in thermal energy storage systems operating with phase change materials
[8,9,10] or involving the use of open-cell metal foams structures [11,12,13,14,15,16] rep-
resents one of the most interesting topic in the field of engineering research [17,18].
The numerical methods adopted to investigate the heat transfer mechanisms in nanofluids
can be divided into two main classes: single phase (homogeneous) and multiphase (sus-
pended particles) [19,20]. In the first one, the liquid carrier and the solid nanoparticles are
assumed to be in thermal equilibrium to each other and, therefore, the nanofluid is treated as
an homogeneous fluid with thermophysical properties determined on the basis of empirical
or theoretical models [21,22]. Differently, in the multiphase approach, both the base fluid
and the solid nanoparticles are modeled individually, thus allowing a detailed analysis of
their interaction [23,24]. Most of the studies available in literature make use of the single
phase method, which is often accurate enough for engineering problem with a higher sim-
plicity and a lower computational cost with respect to the multiphase approach [1]. In this
paper we employ the single-phase approach with the Brinkman model [25] and the Maxwell-
Garnetts model [26] to estimate the thermophysical properties of the considered nanofluids,
as will be detailed later.
Relatively recent advances in computational fluid dynamics have lead to the development
of high efficient numerical methods based on the kinetic theory of gases. Among these, the
lattice Boltzmann methods (LBMs) [27,28,29,30,31,32,33] have been successfully used
in a broad range of engineering applications, such as, for instance, free-surface water entry
problems [34,35], turbulent flows [36,37,38], reactive flows [39] and multiphase flows [40,
41,42]. Different LBM realizations have been also applied to study the thermal behavior of
nanofluids, either by using the single phase or the multiphase approach [43,44,45,46,47,
48]. The majority of these works adopt the original formulation of LBMs, which is based on
a uniform space discretization. This feature represents, however, a strict limitation for those
problems involving complex domain geometries. This is the case, for instance, of the heat
exchangers design. To cope with this issue, several extensions of the LBM have been pro-
posed in literature, which are based on body-fitted mesh approaches. These includes finite-
differences [49], finite-element [50], finite-volume [51,52,53,54], semi-lagrangian [55] and
hybrid [56,57,58] methods. In particular, in [59] and in [60] finite-volume formulations of
the lattice Boltzmann equation on non-uniform structured meshes are proposed and applied
to model the thermo-fluid behavior of nanofluids.
Despite the numerous studies on off-lattice Boltzmann methods, there is still a lack of re-
search in the field of nanofluids to deal with realistic problems. Therefore, in this paper, we
extend a fully-unstructured method based on a finite-volume lattice Boltzmann formulation,
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originally developed by the the authors in [51], to account for the thermo-fluid dynamics
phenomena occurring within nanofluid flows. We then apply the validated method to study
a nanofluid flow through a wavy-wall channel. We perform an extensive parametric analysis
by considering two types of water-based nanofluids, with aluminium oxide (Al2O3) and cop-
per oxide (CuO) nanoparticles, respectively. For each type of nanofluid we consider three
concentration levels of nanoparticles within the base fluid, namely 2%, 5% and 10% and we
analyze the heat transfer behavior of the nanofluids in different geometrical configurations
of the channel, which are obtained by varying both the phase shift between the walls and the
amplitude of the wavy walls themselves.
The adopted numerical approach is meant to represent a viable option, within the LBM
realm, to deal with the geometrical complexity of practical engineering problems involving
heat transfer in nanofluids. The fully-unstructured mesh allows indeed for a more efficient
geometrical representation of complex boundaries, with respect to the original Cartesian
formulation of LBM, while keeping the computational burden at a relatively low level. In
this sense, the inherent geometrical complexity of the wavy-wall channel does represent
an interesting benchmark problem to evaluate the capability of the proposed approach of
capturing the relevant physics behind heat transfer in nanofluids. The results show that our
method has significant potential for the accurate calculation of nanofluid flows in complex
geometries domain.
The remaining part of the paper is organized as follows. In Section 2 we present the mathe-
matical model and the numerical formulation of the thermal lattice Boltzmann finite-volume
approach used in this work. In Section 3 we provide the thermophysical properties of the
considered nanofluids. In Section 4 we describe the problem under investigation and we
provide details on the adopted numerical setup. In Section 5 the results of this work are pre-
sented and discussed, while in Section 6 we summarize the key points and the main findings
of the study.

2 Thermal lattice Boltzmann finite-volume formulation

2.1 Mathematical model

We model the nanofluid through a single phase approach, that is the base fluid and the
nanoparticles are assumed to be in thermal equilibrium between each other and to move
with the same local velocity. Therefore, we consider the nanofluid flow to be incompress-
ible, Newtonian and to have homogeneous and constant thermophysical properties. Thus,
the problem is described by the following governing equations, that are the Navier-Stokes
momentum equations and the advection-diffusion heat transfer equation, respectively:

ρ
∂u
∂ t

+ρ (u ·∇)u =−∇p+µ∇
2u (1)

ρcp
∂T
∂ t

+ρcpu ·∇T = k∇
2T (2)

where ρ is the fluid density, u is the velocity vector, p is the pressure, cp is the specific heat,
k is the thermal conductivity and µ is the dynamic viscosity. Instead of numerically solving
the macroscopic equations (1) and (2), the lattice Boltzmann method deals with a specific
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discretization of the Boltzmann kinetic equation. Thus, in its differential form, the lattice
Boltzmann equation that recovers the physics described by (1) reads as follows:

∂ fi (x, t)
∂ t

+ ci ·∇ fi (x, t) =−
1
τ
[

fi (x, t)− f eq
i (x, t)

]
. (3)

In equation 3, x represents the position of a particle in the discretized space at time t, while
fi (x, t) and ci are the density distribution functions and the set of discrete speeds, respec-
tively, along the i-th allowed lattice directions. The collision operator is characterized here
by a single parameter, that is the relaxation time τ (Bhatnagar-Gross-Krook approximation).
The equilibrium density distribution function f eq

i (x, t) is given by:

f eq
i (x, t) = wiρ (x, t)

{
1+

ci ·u(x, t)
c2

s
+

[ci ·u(x, t)]2
2c4

s
− [u(x, t)]2

2c2
s

}
(4)

with being wi a set of weight parameters normalized to unity, while cs indicates the lattice
speed of sound. Heat transfer phenomena in the fluid flow are here modelled through the
thermal lattice Boltzmann method based on the double distribution function model [61],
where the temperature is considered as a passive scalar. Therefore, denoting by gi (x, t) the
energy distribution function, we introduce the following equation:

∂gi (x, t)
∂ t

+ ci ·∇gi (x, t) =−
1
τg

[
gi (x, t)−geq

i (x, t)
]
. (5)

where τg is the thermal relaxation time. The energy equilibrium distribution function takes
the same form of equation 4, therefore:

geq
i (x, t) = wiT (x, t)

{
1+

ci ·u(x, t)
c2

s
+

[ci ·u(x, t)]2
2c4

s
− [u(x, t)]2

2c2
s

}
(6)

where T is the temperature. The macroscopic variables, that are ρ , u and T , in lattice units,
are calculated as follows:

ρ (x, t) =
Q

∑
i=1

fi (x, t)

ρu(x, t) =
Q

∑
i=1

ci fi (x, t)

T (x, t) =
Q

∑
i=1

gi (x, t)

(7)

where Q denotes the number of discrete velocities. In this work, we use a two dimensional
lattice with nine allowed lattice directions (D2Q9 scheme).

2.2 Numerical formulation

Equations (3) and (5) are numerically solved through a finite-volume scheme of the cell-
vertex type based on a triangular tessellation, originally proposed in [51]. A schematic rep-
resentation of the space discretization is reported in Figure 1. The control volume for a
generic node is obtained by joining the centroids of the elements around the pivotal node P
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with the midpoints of the edges having P as a common node. The space-time discretization
of equation (3) leads to the following expression for each node P of the mesh:

fi(P, t +∆ t) = fi(P, t)−∆ t
K

∑
k=1

(Φik +Ξik) (8)

where the summation runs over the K triangular elements which share the node P as a
common vertex. The terms Φik and Ξik represent streaming and collisional fluxes of the i-th
population related to the k-th volume, respectively:

Φik =
1

VP

∫
Ωk

[ci ·∇ fi (x, t)]dΩ

Ξik =
1

VP

∫
Ωk

[
fi (x, t)− f eq

i (ρ,u)
τ

]
dΩ

(9)

where VP is the total area (in 2D) of the control volume related to the node P. The resulting
finite-volume equation takes the following general form, which applies to each node P of
the unstructured mesh [51]:

fi(P, t +∆ t) = fi(P, t)+∆ t
K

∑
k=0

Sik fi(Pk, t)−
∆ t
τ

K

∑
k=0

Cik[ fi(Pk, t)− f eq
i (Pk, t)], (10)

where Sik and Cik are the streaming matrix and the matrix associated with the collisional
operator, respectively. Further details of the present numerical approach can be found in
[56].

Pk

Pk+1

P

P2

P1

Ck

Ek

Ek+1
Ck+1

Ck−1

Pk−1

...

...

Fig. 1: Geometrical layout of the cell-vertex finite volume discretization. The dashed-line
encloses the control volume for the generic node P.

The same finite-volume scheme so far described for the evolution equation of the density
distribution function is then applied to the temperature transport equation 5, which results
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as follows:

gi(P, t +∆ t) = gi(P, t)+∆ t
K

∑
k=0

Sikgi(Pk, t)−
∆ t
τg

K

∑
k=0

Cik[gi(Pk, t)−geq
i (Pk, t)]. (11)

In general, the theoretical kinematic viscosity of the lattice Boltzmann equation 3 consists
of two separate contributions, namely ν = c2

s (τ +τn), where c2
s τ is the physical contribution

due to collisional relaxation, while c2
s τn is the term related to the numerical diffusion. The

latter depends on the details of the numerical scheme. For standard LBM, the numerical
diffusion amounts to a constant value, given by τn = −0.5. This is not the case for the
unstructured lattice Boltzmann formulation here employed, which instead show a very low
degree of numerical diffusivity, so that it results ν = c2

s τ [51]. The same applies for the
relation between the thermal diffusivity and the thermal relaxation time, that is α = c2

s τg.

3 Thermophysical properties of nanofluids

In this study we consider two types of water-based nanofluids, that are: Al2O3-water and
CuO-water nanofluid. We report in Table 1 the thermophysical properties of water and the
selected solid nanoparticles used in the present analysis, which we consider to be constant
within the range of temperature characterizing the problem under investigation.

Water Al2O3 CuO

ρ [kg/m3] 1000.0 3970.0 6500.0
cp [J/kg K] 4186.0 765.0 535.6
k [W/m K] 0.606 25.0 20.0
α × 107 [m2/s] 1.45 82.3 57.4

Table 1: Thermophysical properties of water (base fluid) and solid nanoparticles: density
(ρ), specific heat (cp), thermal conductivity (k) and thermal diffusivity (α).

In addition, we set the dynamic viscosity of water equal to 0.001 Pa·s such that the water
Prandtl number is equal to 6.9. To obtain the density and the specific heat of nanofluids we
apply the following formulas:

ρn f = (1−φ)ρb f +φρnp (12)

cpn f =
(1−φ)ρb f cpb f +φρnpcpnp

ρn f
(13)

where subscripts b f , np and n f refer to base fluid (water), nanoparticles and nanofluid,
respectively, while φ is the volume fraction of nanoparticles. The effective dynamic viscosity
of the nanofluid is calculated through the Brinkman model [25], which reads as follows:

µn f =
µb f

(1−φ)2.5 (14)
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As far as the effective thermal conductivity of nanofluid is concerned, here we adopt the
Maxwell-Garnetts formulation [26]:

kn f = kb f
knp +2kb f −2φ(kb f − knp)

knp +2kb f +φ(kb f − knp)
(15)

We note that the effective thermal conductivity of nanofluid in the Maxwell-Garnetts model
depends only on the thermal conductivities of solid nanoparticles and base liquid, and on
their relative volume fraction. Therefore, we do not need to consider the solid nanoparticle
size.

4 Problem statement and numerical setup

We study the forced convective heat transfer of nanofluids in a two-dimensional wavy-
wall channel [62]. The computational domain, for a generic configuration of the channel,
is shown in Figure 2.

XinB

XinT

XwB

XwT

L

2H x

y

Fig. 2: Computational domain: generic configuration for the wavy-wall channel.

With reference to the characteristic dimensions reported in Figure 2, the shapes of top
(St ) and bottom (Sb) wavy-wall profiles are described by the following mathematical func-
tions:

St(x) = H +asin
[

π (x−XinT )

H
+ϕ ′

]
Sb(x) =−H−asin

[
π (x−XinB)

H

] (16)

XinT = XinB +
Hϕ ′′

π
(17)

where a is the amplitude of the wavy surfaces, H is the half separation distance between the
walls, ϕ ′ and ϕ ′′ are two phase shift parameters, XinT and XinB are the lengths of the flat walls
at the entrance region of the domain. Specifically, in accordance with [62], we fix XinB = 3H
and XwT = XwB = Xw = 12H (both walls are made of six complete sinusoidal waves) in the
whole set of numerical simulations performed in this study. Moreover, the overall extension
of the computational domain along the horizontal direction is L = 18H, while the amplitude
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a and the phase shift parameters ϕ ′ and ϕ ′′ are varied parametrically in this study.
We define the following dimensionless quantities:

a =
a
H

; x =
x
H

(18)

where a is the non-dimensional amplitude of the wavy surface and x is the non-dimensional
coordinate along the axis of the channel. The present numerical analysis is performed by
considering three different values of a, 0.1, 0.2 and 0.3, two values of ϕ ′, 0 and π , and three
values of ϕ ′′, 0, π/4 and π/2. In the whole set of numerical simulations concerning the
wavy-wall channel flow problem we set Re = 100, being the Reynolds number defined as in
[62]:

Re =
uinH

ν
(19)

where uin is the mean velocity at inlet section and H is the half separation distance between
the walls (Figure 2). Also, in all of the analyzed scenarios, we select the half channel height
H to be equal to 120 lattice units.
The computational domain is discretized by means of a fully-unstructured mesh of triangu-
lar elements. The mesh, for each channel configuration, is constructed to minimize the com-
putational cost, while retaining high resolution in proximity of the wavy-walls, where the
highest temperature gradients occur. In particular, the mesh resolution is chosen by prelim-
inary performing a grid sensitivity analysis for the case of water flow through a wavy-wall
channel in its base configuration (ϕ ′ = ϕ ′′ = 0) with non-dimensional amplitude of the wavy
surface equal to 0.2. A detail of the final mesh used for the base configuration of the chan-
nel is drawn in Figure 3, as an example. Similar meshes are used for all the other channel
configurations.

Fig. 3: Mesh detail for the base configuration of the wavy-wall channel. The mesh accounts
for roughly 30000 nodes, with the ratio between the largest and the smallest cell size being
approximately equal to 5.

The adopted meshes are highly stretched, with the ratio between the largest and the
smallest cell size being approximately equal to 5. This leads to an overall amount of roughly
30000 nodes, for each mesh used in the present analysis.
The computational domain is divided into three parts along the horizontal direction: an en-
trance region, which is considered from the inlet section to the start of the bottom wavy-
surface (x < XinB ); a middle region, which encloses the whole bottom wavy-surface (XinB ≤
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x≤ (XinB +Xw)); and an outlet region, between the end of the bottom wavy-surface and the
outlet section. We assume that the temperature of both walls in the middle region is held
at a constant value Tw, while we impose the adiabatic condition to the walls in entrance
and outlet regions. Therefore, in the base configuration of the channel (ϕ ′ = ϕ ′′ = 0) both
wavy-surfaces are characterized by a fixed value of the temperature, while all of the flat
walls are considered adiabatic, as in [62]. At the inlet section, the fluid temperature T0 < Tw
is assumed to be constant along the channel height. At the outlet, we assume a developed
flow, such that the temperature gradient along the horizontal direction is zero. Moreover, a
developed velocity profile is set at inlet, while the no-slip condition is applied at both walls.
These boundary conditions are summarized in Table 2. In particular, we set Tw = 350K and
T0 = 300K. The described boundary conditions hold at each computational domain config-
uration of the wavy-wall channel investigated in this work.

Boundary BCs

top and bottom

{
T = Tw
∂T/∂y = 0

XinB ≤ x≤ (XinB +Xw)
x < XinB and x > (XinB +Xw)

u = v = 0 0≤ x≤ L

inlet
T = T0

−H ≤ y≤ H∂ p/∂x = 0
u = u(y),v = 0

outlet
∂T/∂x = 0

−H ≤ y≤ Hp = p0
∂u/∂x = ∂v/∂x = 0

Table 2: Boundary conditions for the wavy-wall channel problem.

The boundary conditions are applied by means of a simple, yet effective, approach,
developed by the authors in [51]. According to this approach, at each boundary, the compu-
tational domain is augmented with one buffer of regular, straight triangles, in order to ensure
that the last-but-one line of boundary nodes faces a corresponding neighbor along the x or
y direction (depending on the type of boundary). Therefore, at the fictitious constructed
nodes, we impose i) the same field (temperature, pressure or velocity) of the adjacent line
of nodes, such that a zero-gradient boundary condition automatically results, for the case
of a Neumann boundary condition, or ii) a fixed value for the specific macroscopic variable
(temperature, pressure or velocity), for the case of a Dirichlet boundary condition. Thus,
we apply a local equilibrium to reconstruct the unknown distribution functions at fictitious
nodes, which are required for computing fluxes at the actual boundary nodes. This method
was found to yield acceptable results in this work, as well as in previous works where the
same finite-volume scheme was employed.

Conversion factors from physical to lattice units The lattice Boltzmann method is based
on non-dimensional quantities. Therefore, conversion factors must be defined for space,
time, mass and temperature in order to lead the physical problem into the lattice Boltzmann
framework. To this aim, we consider pure-water as the reference fluid and then we set the nu-
merical properties, in lattice units (l.u.), of any nanofluid by adopting the defined conversion
factors. To set the numerical properties of water, we initially perform a sensitivity analysis
to select a reference Mach number (Ma) such that compressibility effects can be neglected
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in the numerical simulations. Therefore, with Re = 100, H = 120 l.u. and a fixed density of 1
l.u., we carry out a set of simulations for the case of water flow in a wavy-channel in its base
configuration by varying Ma between 0.24 and 0.06 and by computing the relative error on
the mean Nusselt number (defined in next Section). As a result, for Ma = 0.12 we obtain a
percentage error related to the case of Ma = 0.06 roughly equal to 1%. This indicates that
compressibility effects may effectively considered not relevant already at Ma = 0.12, which
is therefore chosen as the reference value for water flow. Since the speed of sound for the
present lattice Boltzmann model is given by cs = 1/

√
3, the resulting mean velocity at inlet

is about 0.07, while the values for kinematic viscosity and relaxation time τ are 0.08 and
0.24 in lattice units, respectively.
The transport of temperature is instead governed by the thermal relaxation time τg, which
depends on the thermal diffusivity, defined as:

α =
k

ρcp
(20)

Therefore, by indicating with subscript LU quantities expressed in lattice units, it results:

αLU =
kLU

ρLU cpLU

=
νLU

ν
k

ρcp
(21)

where k, ρ and cp correspond to quantities in physical units. Equation 21 is obtained by
defining the following conversion factors, for space, time, mass and temperature, respec-
tively:

F[m] =
H

HLU

F[s] =
νLU

ν
F 2

[m]

F[kg] =
ρ

ρLU
F 3

[m]

F[K] =
T

TLU

(22)

and by expressing the thermal conductivity and the specific heat, in lattice units, as follows:

kLU =
kF 3

[s]F[T ]

F[m]F[kg]

cpLU =
cpF 2

[s]F[T ]

F 2
[m]

(23)

Therefore, for water, we obtain αLU = 0.01158 lattice units, which leads to τg = 0.0347.
To obtain the corresponding properties of nanfluids in lattice units we then make use of the
conversion factors defined in equations (22).
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5 Results and discussion

The heat transfer behavior of nanofluids is analyzed in this study by evaluating several fun-
damental parameters, such as local Nusselt number, mean Nusselt number, non-dimensional
pressure drop and thermal enhancement factor. Specifically, we define the local Nusselt
number at each solid wall of the channel as referred to the thermal conductivity of the base
fluid [63,45]. Therefore:

Nuw(x) =
hcH
kb f

=
kn f

kb f

(∂T/∂n)|wH
Tw−Tavg(x)

(24)

where hc is the convective heat transfer coefficient, the temperature gradient at wall is com-
puted by:

∂T
∂n

∣∣∣∣
w
=

√(
∂T
∂x

)2

+

(
∂T
∂y

)2

(25)

and Tavg(x) indicates the bulk temperature (i.e. average temperature along a vertical section
of the channel), which it is obtained by the following expression:

Tavg(x) =
∫ H
−H u(x,y)T (x,y)dy∫ H
−H u(x,y)dy

(26)

We note that the ratio kn f /kb f in equation (24) reduces to 1 for water. The integrals in equa-
tion 26 are computed by selecting 40 equally spaced control points along each considered
section of the channel, and then by performing a barycentric interpolation to obtain the val-
ues of u and T at each control point.
To compute a reliable value of the local Nusselt number, at each cross section of the channel,
we define the following local average Nusselt number:

Nu(x) =
1
2
[NuB(x)+NuT (x)] (27)

where subscript B and T indicate the bottom and top walls, respectively. We also define a
mean Nusselt number along the channel, which characterizes the global heat transfer behav-
ior of the nanofluid, as:

Num =
1
s

∫ s

0
Nuds (28)

where s indicates the length of the channel centerline. Moreover, in order to evaluate the
effect of nanoparticles on the heat transfer, we define the enhancement factor as [46]:

En =
Num(φ)−Num(φ = 0)

Num(φ = 0)
×100 (29)

where Num(φ ) is the mean Nusselt number related to a nanofluid with a given volume frac-
tion φ and Num(φ = 0) indicates the corresponding mean Nusselt number for the base fluid
(i.e. water). Finally, we compute the pressure drop along the channel to understand the ef-
fects of nanoparticles volume fraction and channel shape on the pumping requirements.
Therefore, we define the following non-dimensional pressure drop:

∆ p =
∆ p

ρb f u2
in

(30)

where ∆ p is the pressure difference between inlet and outlet of the channel, ρb f is the
reference density of the base fluid and uin is the mean inlet velocity.
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5.1 Preliminary validation

The numerical model is initially validated by simulating the fluid flow and heat transfer
convection of water between two parallel plates. In this case, the computational domain
consists of a rectangular geometry with aspect ratio equal to 15. The channel is subjected
to constant wall temperature Tw, while the temperature of the inflow fluid is fixed at T0.
Boundary conditions are the same as those presented in Table 2 for the wavy-wall problem.
For the present case only, we set the Reynolds number equal to 20, the relaxation time is set
to 0.48, while the thermal relaxation time results equal to 0.0695.

0.0 0.01 0.02 0.03 0.04 0.05
4.0

8.0

12.0

16.0

Nu = 7.54

Gz−1

Nu

Fig. 4: Local Nusselt number distribution along the channel as obtained by the numerical
model proposed in the present study.

As expected, the local Nusselt number, in the fully developed region of the flow, ap-
proaches the asymptotic value of 7.54, which is the theoretical value reported in literature
[64]. The result is shown in Figure 4, where the local Nusselt number is plotted against the
Graetz number. This is defined as:

Gz =
Dh

L
RePr (31)

with being Dh the hydraulic diameter, given by twice the spacing of the plates.

5.2 Forced convection of water in wavy-wall channels

We further validate the method by analyzing the case of forced convection in a wavy-wall
channel for pure water, and by comparing the obtained local Nusselt number distribution
with results provided in [62]. The numerical setup corresponds to the one described in pre-
vious Section and also adopted for the analysis of nanofluid flows presented later. Validation
is performed by analyzing the base configuration of the channel, that is ϕ ′ = ϕ ′′ = 0, with
the non-dimensional amplitude of the wavy surface ranging from 0.1 to 0.3. Later on, we
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shall extend the analysis by considering several values of the phase shift between the wavy
surfaces. These results will provide a base reference for evaluation of the nanofluid flows
thermal performance. In Figure 5 we show the obtained local Nusselt number distributions
along the middle region of the channel for different values of the wavy surface amplitude,
with a comparison between our numerical solution and the one reported in [62] for the case
a = 0.2.
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Fig. 5: Distribution of local Nusselt number for water flow (Pr = 6.9, Re = 100) in the wavy-
wall channel base-configuration (ϕ ′ = ϕ ′′ = 0). Variation of the wavy surface amplitude.

The local Nusselt number is expected to be higher in the converging section of each
wave than in the diverging section. This can be inferred by considering that the converging
sections are characterized by higher velocity gradients and, therefore, by higher tempera-
ture gradients, which in turn leads to enhanced heat transfer rate. This behavior is correctly
captured by our model and, despite a slight underestimation of the local maximum values
of Nu toward the end of the middle region of the channel, our numerical results are in good
agreement with those from literature. Also, we observe a significant increase of the local
maximum value of Nu, at each converging section, when the wavy surface amplitude is var-
ied from 0.1 to 0.3. Conversely, the local minimum values of Nu, occurring at the diverging
sections of the waves, decrease when a goes from 0.1 to 0.2, but they remain fairly the same
when a is varied further, namely up to 0.3. These findings are in line with those provided in
[62], for the same configurations, obtained for different values of Re. In Table 3 we report
the computed mean Nusselt number for the three cases considered.

a 0.1 0.2 0.3

Num 4.47 4.49 4.89

Table 3: Mean Nusselt number of water flow for different non-dimensional amplitude of the
wavy surface (with ϕ ′ = ϕ ′′ = 0).
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The mean Nusselt number values obtained via the adopted method match well with those
reported by Wang and Chen [62]. Further, we show in Figure 6 the computed local Nusselt
number distributions along the middle region of the channel when a phase shift between top
and bottom wavy walls is set. In this case we have kept the non-dimensional amplitude of
both wavy surfaces equal to 0.2.
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ϕ ′ = π ; ϕ ′′ = 0

Fig. 6: Distribution of local Nusselt number for water flow (Pr = 6.9, Re = 100) in a wavy
channel with a = 0.2. Variation of phase shift parameters.

We note that a phase shift between the walls leads to a corresponding shift of the local
Nusselt number profile along the channel. Moreover, the amplitude of the Nusselt number
decreases when the phase shift ϕ ′′ is varied from 0 to π/2. In particular, higher values of
ϕ ′′ lead to lower values of the local maximum Nusselt number, at the converging sections,
while the local minimum values of Nu, at diverging sections, remain almost unchanged. The
case of ϕ ′ = π and ϕ ′′ = 0, which corresponds to antiphase wavy surfaces, reveals instead
a different behavior. In such a configuration the cross section of the channel is constant,
therefore the flow is subjected to low velocity gradient variations. This results in a lower
Nusselt number along all the middle region of the channel then in the previous cases. Table
4 summarizes the mean Nusselt numbers as obtained for the analyzed configurations.

ϕ ′ 0 0 0 π
ϕ ′′ 0 π/4 π/2 0

Num 4.49 4.48 4.32 4.08

Table 4: Mean Nusselt number of water flow for different values of the phase shift parame-
ters (with a = 0.2).

The results show a significant impact of the phase shift parameters on the heat transfer
performance of the water flow, with a drop of the mean Nusselt number when the two wavy
surfaces are in the antiphase configuration.
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5.3 Forced convection of nanofluids in wavy-wall channels

In this Section, we analyze the flow and heat transfer of two metal oxide nanofluids, namely
water-alumina (Al2O3) and water-copper oxide (CuO), by considering variable concentra-
tion of solid nanoparticles into the base fluid, and different configurations of wavy-wall
channel. In particular, we first investigate on the effects of the wavy surface amplitude and,
subsequently, we analyze the effects due to a phase shift between top and bottom wavy
surfaces.

5.3.1 Effect of wavy surface amplitude

We vary the non-dimensional amplitude of both wavy surfaces from 0.1 to 0.3, without any
phase shift. In Figure 7 we show the obtained distributions for the local Nusselt number
along the middle region of the channel, as for the case of Al2O3-water nanofluid. In particu-
lar, we consider several nanoparticles volume fractions.
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Fig. 7: Distribution of local Nusselt number for Al2O3-water flow, at Re = 100, in a wavy
channel with variation of wavy surface amplitude and with different nanoparticles concen-
tration. From the top to the bottom: a = 0.1, a = 0.2, a = 0.3.

.
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The local Nusselt number profiles for the considered nanofluid follow those related to
water (φ = 0), as expected. However, we observe a significant enhancement in heat transfer
with the increasing of the nanoparticles volume fraction, for all of the three cases analyzed.
In fact, the local reduction of the temperature gradients occurring within the nanofluid flow
is compensated by an increase of the thermal conductivity, thus leading to an overall increas-
ing of the heat transfer rate. We obtain similar trends to those depicted in Figure 7 also for
the CuO-water nanofluid. Nevertheless, we emphasize that the effect due to the presence of
nanoparticles within the base fluid is more pronounced in Al2O3-water nanofluid, which ex-
hibits the most enhanced thermal behavior among the two considered nanofluids. This result
can be justified by considering that the Al2O3-water nanofluid is characterized by higher
thermal conductivity an higher thermal diffusivity than the CuO-water nanofluid [65,66].
Next, Figure 8 shows a direct comparison between the local Nusselt distribution obtained
for water and for Al2O3-water nanofluid with an elevated concentration of nanoparticles,
that is φ = 0.10, in three different channel configurations, namely those with a equal to 0.1,
0.2 and 0.3.
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Fig. 8: Comparison between local Nusselt number distributions of water (Pr=6.9) and Al2O3-
water flow with φ = 10% (Pr = 5.2), at Re = 100, in a wavy channel. Effect of the wavy
surface amplitude.

Our results indicate that for wavy surface amplitudes equal to 0.2 and 0.3 the local
maximum values of Nu, occurring at the converging section of each wave, are significantly
higher for Al2O3-water nanofluid than those for pure water, while the local miminum values
of Nu, at the diverging sections, are nearly the same. This leads to an overall enhancement of
the heat transfer performance of the fluid flow. Further, Figure 9 reports the variation of the
local Nusselt number along the middle region of a wavy channel characterized by a = 0.2,
for both the considered nanofluids, with φ = 0.10, in comparison with water.
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Fig. 9: Distribution of local Nusselt number for water and different types of nanofluids with
φ = 10%, at Re = 100, in a wavy channel with a = 0.2.

As mentioned before, in the present flow regime the Al2O3-water nanofluid is the one
exhibiting the highest values of Nu, along the channel. Figure 10 illustrates the tempera-
ture fields for the CuO-water nanofluid flow, at steady-state conditions, as a representative
example of the flow through the wavy-wall channel, in the three different geometrical con-
figurations so far investigated. From Figure 10 we observe that an increasing of the wavy
surface amplitude causes a significant difference in the temperature distribution inside the
channel. In particular, in the a = 0.1 configuration we note that the thickness of the thermal
boundary layer is quite regular along the channel and the isothermal lines are contracted
near the walls. On the other hand, at higher values of the wavy surface amplitude, a more
intense mixing of the fluid flow occurs at the diverging sections of the channel.

Fig. 10: Temperature fields for CuO-water nanofluid flow with φ = 0.10 at Re = 100 in three
different channel configurations. From the top to the bottom: a = 0.1, a = 0.2 and a = 0.3.
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In fact, results show that a flow reversal occurs in the regions near the wall surfaces en-
closed by each wave. This phenomenon becomes evident at high values of the wavy surface
amplitude (a = 0.3), while it is almost negligible at lower values (a = 0.1): as the wavy
amplitude is increased, the strength of the flow reversal also increases. In order to depict
this behavior, in Figure 11, where only a portion of the domain is represented, we report the
streamlines contours for the case of CuO-water nanofluid flow with φ = 0.10 in a channel
configuration characterized by wavy surface amplitude a = 0.3.

Fig. 11: Streamlines for CuO-water nanofluid flow with φ = 0.10 at Re = 100 in a = 0.3
channel configuration.

Such a recirculating flow, characterized by low velocity gradients, causes the mixing
of the fluid flow, which decreases the local convective heat transfer coefficient. This is the
reason why the local minimum values of Nu, which occur in the proximity of the diverging
sections of the channel, are higher in the case of a = 0.1 than those for the channel with
a = 0.2 and a = 0.3. The presence of nanoparticles within the flow however, leads to an
enhancement of the heat transfer rate at the converging sections of the channel, thus mitigat-
ing the effect due to flow reversal. Furthermore, in Figure 12 we present results in terms of
mean Nusselt number, as computed via our numerical model, for the two types of nanofluid
considered in the three different geometrical configurations of the channel investigated.
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Fig. 12: Variation of mean Nusselt number with nanoparticles volume fraction, for different
types of nanofluids and for different wavy surface amplitudes (with ϕ ′ = ϕ ′′ = 0), at Re =
100.
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From Figure 12 we note that the nanoparticles volume fraction plays a major role in
the characterization of the thermal performance of the fluid flow. Specifically, increasing
the volume fraction of the nanoparticles beyond 0.02 results in a significant enhancement
in the heat transfer rate. This stands for all the geometrical configurations analyzed and it is
especially true for the Al2O3-water nanofluid. For this specific nanofluid, the computed en-
hancement factor (equation 29) goes from a minimum value of 2.6 %, obtained for the case
of a = 0.3 with φ = 0.02, to a maximum value of 19.9 %, related to the case of a = 0.2 with
φ = 0.10. The enhancement factor obtained for the CuO-water nanofluid flow is generally
lower, however, it is still substantial, with a maximum value of around 13%. Finally, Figure
13 displays the variation of the non-dimensional pressure drop with nanoparticles volume
fractions for different wavy surface amplitudes, for the case of Al2O3-water nanofluid. In
Figure 13, the values reported for the case of a = 0 correspond to those from the ana-
lytical solution of Navier-Stokes equations for the plane Poiseuille flow. As expected, for
each channel configuration, higher values of the nanoparticles volume fraction correspond
to higher pressure drops. This is due to the increase of density and dynamic viscosity of
nanofluid with respect to the water. Also, we note that the channel with wavy surface am-
plitudes a = 0.3 has the highest pressure drop over all the range of nanoparticles volume
fraction considered, followed by the channels with a = 0.2 and a = 0.1. This indicates that,
despite high values of the wavy surface amplitude (up to a = 0.3) lead to an enhancement of
the heat transfer rate, they cause a significant increment in pumping power of the channel.
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Fig. 13: Non-dimensional pressure drop for Al2O3-water nanofluid flow in different wavy-
wall channel configurations, as a function of the nanoparticles volume fraction (at Re =
100).

5.3.2 Effect of phase shift

This section reports the effects of the phase shift between the two wavy walls for Al2O3-
water and CuO-water nanofluid flows in four different channel configurations. These are
defined through the two phase shift parameters previously introduced, namely ϕ ′ and ϕ ′′ in
equations (16) and (17). The non-dimensional amplitude of both wavy surfaces is set to 0.2.
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Figures 14 and 15 report the distribution of the local Nusselt number along the middle region
of the channel for the two nanofluid flows considered, respectively, with a nanoparticles
volume fraction of 0.10. The trends are similar for other values of the volume fraction.
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Fig. 14: Comparison between local Nusselt number distributions of water (Pr=6.9) and
Al2O3-water flow with φ = 10% (Pr = 5.2), at Re = 100, in a wavy channel. Effect of the
phase shift.
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Fig. 15: Comparison between local Nusselt number distributions of water (Pr=6.9) and CuO-
water flow with φ = 10% (Pr = 4.4), at Re = 100, in a wavy channel. Effect of the phase
shift.
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The phase shift between the wavy walls leads to a shifting of the local Nusselt number
profile as well. Moreover, the amplitude of Nu decreases with the increasing of the asymme-
try of the channel, and it drops when the two wavy surfaces are in antiphase configuration.
Both the Al2O3-water and CuO-water nanofluids outperform the pure water flow in terms of
heat transfer. In fact, we observe that, in both cases, the presence of nanoparticles leads to
an enhancement of the local maximum values of Nu along the channel. Figure 16 illustrates
the temperature fields for the CuO-water nanofluid flow with φ = 0.10 for several channel
configurations, as an illustrative example. As depicted in Figure 16, the phase shift between
the wavy walls gives rise to an asymmetric temperature distribution with respect to the cen-
tral axis of the channel. Such a phenomenon is responsible for a significant decreasing of the
heat transfer with respect to the case of symmetric channel configuration. Finally, Figure 17
shows the effect of nanoparticles volume fraction on the mean Nusselt number for different
configurations of the wavy-wall channel and for both the considered nanofluids.

Fig. 16: Temperature fields for CuO-water nanofluid flow with φ = 0.10 at Re = 100 in four
different channel configurations. The wavy surface amplitude is set to 0.2. From the top to
the bottom: ϕ ′ = ϕ ′′ = 0; ϕ ′ = 0 and ϕ ′′ = π/4; ϕ ′ = 0 and ϕ ′′ = π/2; ϕ ′ = π and ϕ ′′ = 0.

The mean Nusselt number varies significantly across the different channel configura-
tions, with the axis-symmetric geometry being the one that exhibit the best thermal perfor-
mance. Also, the results indicate that the heat transfer may be significantly enhanced with
addition of nanoparticles. Specifically, the enhancement factor reaches 20% for Al2O3-water
nanofluid with φ = 0.10 in the antiphase wavy surfaces configuration, thus suggesting that
the employment of such a fluid may represent an effective solution in heat transfer devices.
As far as the pressure drop it concerns, we obtain quite similar results among all the consid-
ered geometries, for each nanoparticles volume fraction, with the anthiphase configuration
being the one exhibiting slightly lower values of ∆ p with respect to the other cases. This
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result indicates that a phase shift between the wavy walls does not bring any significant
advantage in terms of pumping power.
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Fig. 17: Variation of mean Nusselt number with nanoparticles volume fraction, for different
types of nanofluids and for different channel configurations (with a = 0.2), at Re = 100.

The presented investigation provides a quantitative analysis of the nanofluid heat transfer
in wavy-wall channels of different geometries. The wavy-wall channel configuration repre-
sents indeed an interesting option to generate flow mixing and enhance the heat transfer rate
in several engineering applications. Among these, for instance, microscale cooling devices,
such as microchannel heat sinks, are of particular relevance for heat removal. In these cases,
the flow generally occurs at relatively low Reynolds numbers, therefore an optimal design of
the channel, in conjunction with the use of a nanofluid, is instrumental to achieve improved
cooling performance. In this context, our study may provide useful information on the ther-
mal behavior of nanofluid flows through corrugated walls, by proving that the irregularity
of the channel surfaces may lead to an enhancement or a decreasing of the thermal perfor-
mance depending on the specific geometrical arrangement. The method used in this work
finds therefore applicability in the development and optimization of advanced heat transfer
devices involving laminar flows with improved thermal properties.

6 Conclusions

A numerical investigation on the forced convection of nanofluid flows through wavy-wall
channels has been conducted in this work. The employed computational approach is based
on a finite-volume formulation of the lattice Boltmann method, which is applied to fully
unstructured meshes. This model allows to deal with complex geometries, thus overcoming a
severe limitation of traditional LBMs (i.e. LBMs on uniform Cartesian mesh), and extending
its range of applicability toward the study of realistic problems of engineering interest.
In this paper, we consider two types of water-based nanofluids, that are: aluminum oxide
and copper oxide nanofluids. These are modeled by following a single phase homogeneous
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approach. We then study the effects due to geometrical parameters such as the wavy surface
amplitude and the phase shift between the wavy surfaces.
As a result, we observe that increasing the wavy surface amplitude (up to a non-dimensional
value of 0.3) leads to an improvement of the thermal performances of the fluid flow, in
terms of heat transfer rate. In contrast, a phase shift between the wavy surfaces causes a
decrease of the local Nusselt number, which results in a lower heat transfer rate. These
findings suggest that the axis-symmetric configuration of the channel, with a high value of
the wavy surface amplitude, represents the most suitable solution to enhance the heat transfer
rate. In addition, we find that the employment of nanofluids leads to a significant increase of
the local Nusselt number, especially when the nanoparticles volume fraction exceed the 5%.
Among the different nanofluids considered, the Al2O3-water nanofluid provides the most
effective way to improve thermal performances, by leading to an enhancement factor up to
20 %.
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