Skip to main content
Log in

Mixed FEM for Time-Fractional Diffusion Problems with Time-Dependent Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a mixed finite element method is applied in spatial directions while keeping time variable continuous to a class of time-fractional diffusion problems with time-dependent coefficients on a bounded convex polygonal domain. Based on an energy argument combined with a repeated application of an integral operator, optimal error estimates, which are optimal with respect to both approximation properties and regularity results, are derived for the semidiscrete problem with smooth as well as nonsmooth initial data. Specially, a priori error bounds for both primary and secondary variables in \(L^2\)-norm are established. Since the comparison between Fortin projection and the mixed Galerkin approximation of the secondary variable yields an improved rate of convergence, therefore, as a by-product, we derive \(L^p\)-estimates for the error in primary variable. Finally, some numerical experiments are conducted to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramble, J.H., Schatz, A.H., Thomée, V., Wahlbin, L.B.: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14, 218–241 (1977)

    Article  MathSciNet  Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, 2nd edn. Springer, New York (1991)

    Book  Google Scholar 

  3. Chen, H., Ewing, R., Lazarov, R.: Superconvergence of mixed finite element methods for for parabolic problems with nonsmooth initial data. Numer. Math. 78, 495–521 (1998)

    Article  MathSciNet  Google Scholar 

  4. Fujita, H., Suzuki, T.: Evolution problems. Handbook of Numerical Analysis, vol. II, pp. 789–928. North Holland, Amsterdam (1991)

    Google Scholar 

  5. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  6. Goswami, D., Pani, A.K.: An alternate approach to optimal L2-error analysis of semidiscrete Galerkin methods for linear parabolic problems with nonsmooth initial data. Numer. Funct. Anal. Optim. 32, 946–982 (2011)

    Article  MathSciNet  Google Scholar 

  7. Goswami, D., Pani, A.K., Yadav, S.: Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data. J. Sci. Comput. 56, 131–164 (2013)

    Article  MathSciNet  Google Scholar 

  8. Goswami, D., Pani, A.K., Yadav, S.: Optimal \(L^2\) estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth data. ANZIAM J. 55, 245–266 (2014)

    Article  MathSciNet  Google Scholar 

  9. Huang, M., Thomée, V.: Some convergence estimates for semidiscrete Galerkin type schemes for time-dependent non-selfadjoint equations. Math. Comput. 37, 327–346 (1981)

    Article  Google Scholar 

  10. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Lazarov, R., Pascal, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time dependent coefficient: analysis and numerical solution. Math. Comput. 88, 2157–2186 (2019)

    Article  MathSciNet  Google Scholar 

  14. Johnson, C., Thomée, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numér. 14, 41–78 (1981)

    Article  MathSciNet  Google Scholar 

  15. Karaa, S.: Semidiscrete finite element analysis time fractional parabolic problems: a unified approach. SIAM J. Numer. 56, 1673–1692 (2018)

    Article  MathSciNet  Google Scholar 

  16. Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional sub-diffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Karaa, S., Mustapha, K., Pani, A.K.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74, 519–535 (2018)

    Article  MathSciNet  Google Scholar 

  18. Karaa, S., Pani, A.K.: Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. ESAIM Math. Model. Numer. Anal. 52(2), 773–801 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  20. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54, 1763–1784 (2016)

    Article  MathSciNet  Google Scholar 

  21. Luskin, M., Rannacher, R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19, 93–113 (1982)

    Article  MathSciNet  Google Scholar 

  22. Mclean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  23. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  24. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87, 2259–2272 (2018)

    Article  MathSciNet  Google Scholar 

  25. Mustapha, K., Schötzau, D.: Well-posedness of \(hp-\)version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1226–1246 (2014)

    Article  MathSciNet  Google Scholar 

  26. Raviart, P., Thomas, J.A.: Mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. In: Galligani, I., Magenes, E. (eds). Lecture Notes in Mathematics, vol. 606. Springer, Berlin (1977)

  27. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  28. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  Google Scholar 

  29. Zhao, Y., Chen, P., Bu, W., Liu, X., Tang, Y.: Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 70, 407–428 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Research Council of Oman grant ORG/CBS/15/001. The second author acknowledges the support from Institute Chair Professor’s fund and the support from SERB, Govt. India via MATRIX Grant No. MTR/201S/000309. Both the authors thank the referees for their valuable suggestions which help to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Pani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaa, S., Pani, A.K. Mixed FEM for Time-Fractional Diffusion Problems with Time-Dependent Coefficients. J Sci Comput 83, 51 (2020). https://doi.org/10.1007/s10915-020-01236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01236-7

Keywords

Mathematics Subject Classification

Navigation