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Abstract. In this paper, we consider a cubic H2 nonconforming finite element scheme B3
h0 which

does not correspond to a locally defined finite element with Ciarlet′s triple but admit a set of

local basis functions. For the first time, we deduce and write out the expression of basis func-

tions explicitly. Distinguished from the most nonconforming finite element methods, (δ∆h·,∆h·)

with non-constant coefficient δ > 0 is coercive on the nonconforming B3
h0 space which makes

it robust for numerical discretization. For fourth order eigenvalue problem, the B3
h0 scheme can

provide O(h2) approximation for the eigenspace in energy norm and O(h4) approximation for the

eigenvalues. We test the B3
h0 scheme on the vary-coefficient bi-Laplace source and eigenvalue

problem, further, transmission eigenvalue problem. Finally, numerical examples are presented to

demonstrate the effectiveness of the proposed scheme.

1. Introduction

Recently the transmission eigenvalue problem has been attracting interests from many re-
searchers. This problem arose in the inverse scattering theory for inhomogeneous medium and
plays a key role in inverse scattering theory. The transmission eigenvalues can be used to obtain
estimates for the physical characteristics of the hidden scatterer and have a variety of applica-
tions in inverse problem, such as target identification and nondestructive testing [4] [9]. Besides,
transmission eigenvalues can also be used to design the invisible material [12].

Typically, for the scattering of time-harmonic acoustic waves by a bounded simply connected

inhomogeneous medium Ω ⊂ R2, the transmission eigenvalue problem is to find k ∈ C, φ, ϕ ∈
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H2(Ω) such that 
∆φ + k2n(x)φ = 0, in Ω,

∆ϕ + k2ϕ = 0, in Ω,
φ − ϕ = 0, on ∂Ω,

∂φ

∂ν
−

∂ϕ

∂ν
= 0, on ∂Ω,

where n(x) is the index of refraction and ν is the unit outward normal to the boundary ∂Ω.
Typically, it’s assumed that n(x) > 1 or 0 < n(x) < 1.

The transmission eigenvalue problem is non-self-adjoint and not covered by the standard
theory of partial differential equations. It is numerically challenging because of the nonlinear-
ity and the complicated spectral. Moreover, in most cases, the continuous problem degenerates
with an infinite dimensional eigenspace associated with the zero eigenvalue, which has no phys-
ical meaning and makes it difficult to be solved. The first numerical study may be found in [7]
where three finite element methods were proposed. In [18], the author reformulates the trans-
mission eigenvalue problem as the combination of a nonlinear function and a series of fourth
order self-adjoint eigenvalue problems. The roots of the nonlinear function are the transmission
eigenvalues., and an iterative method was proposed based on this. The rigorous convergence
analysis was first given. But this method can only capture real eigenvalues.

To avoid the non-physical eigenspaces, introducing a new variable u = φ − ϕ ∈ H2
0(Ω),

following the same procedure in [13], we can obtain the following fourth order equation

(1)
(
∆ + k2n(x)

) 1
n(x) − 1

(∆ + k2)u = 0.

We remark that the above fourth order equation has eliminated the non-physical zero eigenvalue.

Actually k = 0 implies (
1

n(x) − 1
∆u,∆u) = 0 and u ∈ H2

0(Ω), and then we can obtain u = 0. The

corresponding variational formulation of (1) is to find (k2 , 0, u) ∈ C × H2
0(Ω), such that

(2)
(

1
n(x) − 1

(∆u + k2u),∆v + k2n(x)v
)

= 0, ∀ v ∈ H2
0(Ω).

Let τ = k2 (we also call τ a transmission eigenvalue if k is), the corresponding variational form

is to find (τ , 0, u) ∈ C × H2
0(Ω), such that

(3)
(

1
n(x) − 1

(∆u + τu),∆v + τn(x)v
)

= 0, ∀ v ∈ H2
0(Ω).

Here we consider the case n(x) > 1 for illustration. For the case 0 < n(x) < 1, it follows
similarly. Using Green formula, we can rewrite the original variational formulation (3) as

Aτ(u, v) = τB(u, v), ∀v ∈ V,(4)
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where

Aτ(u, v) =
( 1
n(x) − 1

(∆u + τu), (∆v + τv)
)

+ τ2(u, v),(5)

and

B(u, v) =
(
∇u,∇v

)
.(6)

The bilinear formAτ(·, ·) is coercive on H2
0(Ω)×H2

0(Ω), and the bilinear formB(·, ·) is symmetric

and nonnegative on H2
0(Ω) × H2

0(Ω) [3, 18].

The finite element discretization of (1) is natural. Many schemes, such as the Argyris element
method [7], the (multi-level) BFS element method [14], the Morley element method [16,20], the
modified Zienkiewciz element and the Morley-Zienkiewicz element [23] and other low com-
plexity finite element methods including an interior penalty discontinuous Galerkin method

using C0 Lagrange elements (C0IPG method) [8], and so on. There have also existed some
mixed methods for this problem. The related works for mixed element method can be referred
to [5, 7, 13, 21, 22]. The mixed scheme in [5, 13] which is close to the Ciarlet-Raviart dis-
cretization of biharmonic problem is based on Lagrange finite element method. For the nonzero
transmission eigenvalues, this scheme is equivalent to the one proposed in [7]. However, the
scheme in [5, 13] can eliminate the zero transmission eigenvalue which has an infinite dimen-
sional space and has no physical meaning. A mixed formulation in terms of three scaler fields
and a spectral-mixed method are constructed in [22]. In [21], the authors propose a multi-level
mixed formulation in terms of seven scaler fields. An equivalent linear mixed formulation of
transmission eigenvalue problem which doesn’t produce spurious modes even on non-convex
domains is constructed. The proposed scheme admits a natural nested discretization, based on
that a multi-level scheme is built. Optimal convergence rate and optimal computational cost can
be obtained.

The finite element discretization of (4) looks immediate. While a (∆·,∆·) bilinear form is
used in the formulation, however, we have to note that (∆h·,∆h·) is not coercive on general
nonconforming finite element spaces. A standard approach is to enhance the bilinear from with

α(∇2·,∇2·) for stabilisation, where α is a parameter. It is then not surprising that the choice of
α may effect the performance of the scheme; a detailed illustration of the sensitivity of α can
be found in Sections 2.4 and 3.2. To strengthen the robustness of the scheme, a finite element
space which is of low degree and on which the bilinear form (∆h·,∆h·) is coercive is needed.

In this paper, we introduce a new scheme for the Helmholtz transmission eigenvalue problem.

Basically, we adapt onto (4) a piecewise cubic finite element space B3
h0 introduced in [24,25]. It

is proved that B3
h0 provide O(h2) accuracy on both approximation error in broken H2 error and
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consistency error associated to the biharmonic operator. Moreover, it is proved in [25] that

(∆huh,∆hvh) = (∇2
huh,∇

2
hvh), ∀ uh, vh ∈ B3

h0.

Thus a finite element scheme based on B3
h0 for the transmission eigenvalue problem can pro-

vide O(h2) approximation for the eigenspace in energy norm and O(h4) approximation for the
eigenvalues. Numerical experiments of this paper verify this.

The space B3
h0 does not correspond to a finite element defined by Ciarlet’s triple, however, it

admits a set of local basis functions [24]. By following the procedure given in [24,25], the finite
element scheme designed in this paper can be implemented without knowing the basis functions

of B3
h0. However, in the order that basic algorithms can be used, the local basis functions are

still in need, and we figure out them in this paper.
The rest of this paper is organized as follows. In Section 2, we study the finite element space

B3
h0 and its utilization for the bi-Laplacian operator. We particularly figure out its local basis

functions and illustrate the performance of the scheme with numerical examples. An illustration
about the Morley element onto the model problem is also given for comparison. Section 3 is
devoted to the Helmholtz transmission eigenvalue problem. Numerical experiments are given,
including those of the Morley element for comparison. Finally, some concluding remarks are
given in Section 4.

2. A high-accuracy scheme for bi-Laplacian problem with varying coefficient

In this section, we first consider the following fourth order eigenvalue problem

(7)


∆(δ∆u) = λu, in Ω,

u = 0, on ∂Ω,
∂u
∂n = 0, on ∂Ω,

where δ(x) is a bounded smooth non-constant function and δ > δmin > 0.

2.1. A piecewise cubic finite element space and its structure. Before introducing this finite
element, we introduce some notations. We assume Th a shape regular mesh over Ω with mesh

size h. Denote Xh, Xi
h, Xb

h, Eh, Ei
h, Eb

h the vertices, interior vertices, boundary vertices, the set

of edges, interior edges and boundary edges, respectively. For any edge e ∈ Eh, denote the unit
normal vector of e by ne. For a fixed element T ∈ Th, we denote Pk(T ) the polynomial space
of degree less than or equal to k and |T | means the area measurement of element T . On an
edge e, Pk(e) and |e| are defined similarly. The barycentre coordinates are denoted as usual by
λi(i = 1, 2, 3).
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The nonconforming finite element space B3
h can be defined as follows: ( [24, 25])

B3
h =

{
v ∈ L2(Ω) | v|T ∈ P3(T ), v is continuous at vertices a ∈ Xh and∫

e
~v� ds = 0, and

∫
e

pe~∂nv� ds = 0, ∀ pe ∈ P1(e), ∀ e ∈ Ei
h, ∀ T ∈ Th

}
where ~v� represents the jump of the scalar function v across e, and

B3
h0 =

{
v ∈ B3

h | v(a) = 0, a ∈ Xb
h;

∫
e

v ds = 0, and
∫

e
pe∂nv ds = 0, ∀ pe ∈ P1(e), ∀ e ∈ Eb

h}.

Lemma 1. [24, 25] infwh∈B3
h0
|w − wh|2,h 6 Chk|w|2+k,Ω, ∀ w ∈ H2

0(Ω) ∩ Hk+2(Ω), k = 1, 2.

Local basis functions of B3
h0. The space B3

h0 does not correspond to a locally defined finite

element with Ciarlet′s triple. However, it is pointed out that the space admits a set of local basis
functions. In the following, we will deduce and write out the expressions of basis functions in
detail. The derivation is based on the thought raised in [24] and we need the following results.

Lemma 2. ( [24]) B3
h0 admits a set of basis functions with vertex-patch-based supports.

The following lemma involves the vector-valued finite element spaces S̃ 2
h0(rot,w0), G̃2

h0(roth, 0)

of which the definition concerns a series of definitions of associated finite element spaces. It’s

omitted here and the author can refer the detail to [24]. And we use ”˜” for vector valued

quantities in the following. And ϕ̃1, ϕ̃2 are the two components of the quantity ϕ̃.

Lemma 3. ( [24]) Define an operator Fh : S̃ 2
h0(rot,w0) −→ G̃2

h0(roth, 0) by

Fhϕ̃h = ϕ̃h + φ̃h, ∀ϕ̃h ∈ S̃ 2
h0(rot,w0), φ̃h ∈ B̃2

h0, s.t. roth(Fhϕ̃h) = 0,

where B̃2
h0 = {φ̃h : (φ̃h|T ) j ∈ span{(λ2

1 + λ2
2 + λ2

3) − 2/3}, j = 1, 2, ∀ T ∈ Th}. And define

(∇−1)h : G̃2
h0(roth, 0) −→ B3

h0, then (∇−1)h ◦ Fh : S̃ 2
h0(rot,w0) −→ B3

h0 is bijective and preserves
support.

From Lemma 3, it can be observed that there are three steps in the derivations of basis func-

tions. We orderly construct the basis functions in S̃ 2
h0(rot,w0), G̃2

h0(roth, 0) and B3
h0. Before

introducing the derivation, we give some definitions. For a ∈ Xh, denote by Pa the union of
triangles of which a is a vertex, namely the patch associated with a; for e ∈ Eh, denote by Pe the
patch associated with e.

First, we consider constructing the basis functions in S̃ 2
h0(rot,w0) with vertex-patch-

based supports. On every vertex (e.g: denoted by a), three basis functions are associated,

which are labelled as ϕ̃x
a, ϕ̃

y
a, ϕ̃Pa . And on every edge (e.g: denoted by e), one basis function is
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associated, which is labelled as ϕ̃e. For every basis function associated with an interior vertex
a, its restriction on a cell T such that a is a node of T . For every basis function associated with
an edge, its restriction on a cell T such that e is an edge of T . Then we can only focus on an
element and give out the basis functions.

For the construction of ϕ̃x
a, ϕ̃

y
a, ϕ̃Pa and ϕ̃e, we follow the thought in [24] and have the guar-

anteed theoretical result.

Lemma 4. ( [24]) The set {ϕ̃x
a, ϕ̃

y
a, ϕ̃Pa , ϕ̃e}a∈Xi

h, e∈Ei
h

forms a basis of S̃ 2
h0(rot,w0).

For a fixed element T ∈ Th, the vertex denoted by i(i = 1, 2, 3), the opposite side of vertex
i denoted by ei. For the vertex i and its opposite edge ei, the associated basis functions are as
follows.

• ϕ̃x
i = ((ϕ̃x

i )1, (ϕ̃x
i )2)T = (λi − 3λiλ j − 3λiλk, 0)T = (3λ2

j + 6λ jλk + 3λ2
k − 4λ j − 4λk + 1, 0)T ,

• ϕ̃
y
i = ((ϕ̃y

i )
1, (ϕ̃y

i )
2)T = (0, λi − 3λiλ j − 3λiλk)T = (0, 3λ2

j + 6λ jλk + 3λ2
k − 4λ j − 4λk + 1)T ,

• ϕ̃i
e = ((ϕ̃i

e)
1, (ϕ̃i

e)
2)T =

6λ jλk

|ei|
(−τ2(ei), τ1(ei))T ,

• ϕ̃Pi = ((ϕ̃Pi)
1, (ϕ̃Pi)

2)T =
6λiλ j

|ek|
(τ1(ek), τ2(ek))T +

6λiλk

|e j|
(τ1(e j), τ2(e j))T

=
6(1 − λ j − λk)λ j

|ek|
(τ1(ek), τ2(ek))T +

6(1 − λ j − λk)λk

|e j|
(τ1(e j), τ2(e j))T ,

where i, j, k satisfy the cyclic coordinate.

Second, we consider constructing the basis functions in G̃2
h0(roth, 0). By Lemma 3 and its

process of proof in [24], it’s easy to verify the following conclusion.

Lemma 5. Under the assumption that {ϕ̃x
a, ϕ̃

y
a, ϕ̃Pa , ϕ̃e}a∈Xi

h, e∈Ei
h

forms a basis of S̃ 2
h0(rot,w0),

then {Fhϕ̃
x
a, Fhϕ̃

y
a, Fhϕ̃Pa , Fhϕ̃e}a∈Xi

h, e∈Ei
h

forms a basis of G̃2
h0(rot, 0) and

supp(Fhϕ̃
x
a) ⊂ supp(ϕ̃x

a), supp(Fhϕ̃
y
a) ⊂ supp(ϕ̃y

a), supp(Fhϕ̃Pa) ⊂ supp(ϕ̃Pa), supp(Fhϕ̃e) ⊂ supp(ϕ̃e).

The above lemma tells us that Fh can preserve the linear independence and the support of

basis functions. Then, for an element T ∈ Th, Fhϕ̃
x
i , Fhϕ̃

y
i , Fhϕ̃Pi , Fhϕ̃ei(i = 1, 2, 3) are the

corresponding basis functions in G̃2
h0(roth, 0).

Denote φT = λ2
1 + λ2

2 + λ2
3 − 2/3 and ϕ̂x

i , Fhϕ̃
x
i ∈ G̃2

h0(roth, 0). By Lemma 3, we assume

ϕ̂x
i = ϕ̃x

i + (αx
i , β

x
i )TφT , rothϕ̂

x
i = 0.
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By calculation, we can obtain

αx
i =

[(λk)x − (λ j)x][(λk)y + (λ j)y]
(λk)y(λ j)x − (λk)x(λ j)y

, βx
i =

[(λk)y − (λ j)y][(λk)y + (λ j)y]
(λk)y(λ j)x − (λk)x(λ j)y

.

Similarly, for Fhϕ̃
y
i = ϕ̃

y
i + (αy

i , β
y
i )

TφT , Fhϕ̃
i
e = ϕ̃i

e + (αi
e, β

i
e)

TφT , Fhϕ̃Pi = ϕ̃Pi + (αPi , βPi)
TφT , we

have

α
y
i =

[(λ j)x − (λk)x][(λ j)x + (λk)x]
(λk)y(λ j)x − (λk)x(λ j)y

, β
y
i =

[(λ j)y − (λk)y][(λ j)x + (λk)x]
(λk)y(λ j)x − (λk)x(λ j)y

.

αi
e = (λi)x

6|T |
|ei|

2 , βi
e = (λi)y

6|T |
|ei|

2 .

αPi =

−12|T |∇λ j∇λk

{
( (λk)x
|ek |2

+
(λ j)x

|e j |2
)
}
− 3
|T |

{
(λ j)x + (λk)x

}
2(λk)y(λ j)x − 2(λk)x(λ j)y

,

βPi =

−12|T |∇λ j∇λk

{
( (λk)y

|ek |2
+

(λ j)y

|e j |2
)
}
− 3
|T |

{
(λ j)y + (λk)y

}
2(λk)y(λ j)x − 2(λk)x(λ j)y

.

Here, we consider constructing the basis functions in B3
h0. By Lemma 3 and its process of

proof in [24], it’s easy to verify the following conclusion.

Lemma 6. Under the assumption that {ϕ̃x
a, ϕ̃

y
a, ϕ̃Pa , ϕ̃e}a∈Xi

h, e∈Ei
h

forms a basis of S̃ 2
h0(rot,w0),

then {(∇−1)h ◦ Fhϕ̃
x
a, (∇−1)h ◦ Fhϕ̃

y
a, (∇−1)h ◦ Fhϕ̃Pa , (∇−1)h ◦ Fhϕ̃e}a∈Xi

h, e∈Ei
h

forms a basis of B3
h0

and

supp
(
(∇−1)h ◦ Fhϕ̃

x
a

)
⊂ supp(ϕ̃x

a), supp
(
(∇−1)h ◦ Fhϕ̃

y
a

)
⊂ supp(ϕ̃y

a),

supp
(
(∇−1)h ◦ Fhϕ̃Pa

)
⊂ supp(ϕ̃Pa), supp

(
(∇−1)h ◦ Fhϕ̃e

)
⊂ supp(ϕ̃e).

Denote wx
i = (∇−1)h ◦ Fhϕ̃

x
i , wy

i = (∇−1)h ◦ Fhϕ̃
y
i , wi

e = (∇−1)h ◦ Fhϕ̃
i
e, wPi = (∇−1)h ◦ Fhϕ̃Pi . By

calculation, the corresponding basis functions in B3
h0 are as follows.

wx
i (λ j, λk) = −ξk

(
λ3

j

3
− λ2

j +
2
3
λ j) + (

2
3
λ3

k − λ
2
k +

λk

3
) + (2λ2

jλk + λ jλ
2
k − 2λ jλk)

 +

ξ j

{
(
2
3
λ3

j − λ
2
j +

λ j

3
) + (

λ3
k

3
− λ2

k +
2
3
λk) + (2λ jλ

2
k + λ2

jλk − 2λ jλk)
}
,
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wy
i (λ j, λk) = −ηk

(
λ3

j

3
− λ2

j +
2
3
λ j) + (

2
3
λ3

k − λ
2
k +

λk

3
) + (2λ2

jλk + λ jλ
2
k − 2λ jλk)

 +

η j

{
(
2
3
λ3

j − λ
2
j +

λ j

3
) + (

λ3
k

3
− λ2

k +
2
3
λk) + (2λ jλ

2
k + λ2

jλk − 2λ jλk)
}
,

wi
e(λ j, λk) = −

6|T |
|ei|

2

{
(
2
3
λ3

j − λ
2
j +

λ j

3
) + (

2
3
λ3

k − λ
2
k +

λk

3
) + (2λ2

jλk + 2λ jλ
2
k − 2λ jλk)

}
,

wPi(λ j, λk) = −3(η jηk + ξ jξk)
{

1
|e j|

2 (
2
3
λ3

j − λ
2
j +

λ j

3
) +

1
|ek|

2 (
2
3
λ3

k − λ
2
k +

λk

3
)+

}

+ 6
{

(−
2
3
λ3

j + λ2
j −

λ j

6
) + (−

2
3
λ3

k + λ2
k −

λk

6
) + (λ jλk − λ

2
jλk − λ jλ

2
k)
}
− 1,

where i = 1, 2, 3 which correspond to three vertices of a triangular element and ξi = x j − xk,

ηi = y j − yk, i, j, k satisfy the cyclic coordinate.

2.2. A second order computational scheme for bi-Laplacian source and eigenvalue prob-
lems. The bi-Laplacian source problem is to find u satisfying

(8)


∆(δ∆u) = f , in Ω,

u = 0, on ∂Ω,
∂u
∂n = 0, on ∂Ω.

A finite element scheme for (8) is defined as: find uh ∈ B3
h0, such that

(9) (δ∆huh,∆hvh) = ( f , vh), ∀ vh ∈ B3
h0.

Theorem 7. Let u ∈ H4(Ω) ∩ H2
0(Ω) be the solution of (8), and uh be the solution of (9),

respectively. Then

|u − uh|2,h 6 Chk|u|2+k,Ω, k = 1, 2,

and

|u − uh|1,h 6 Ch3|u|4,Ω, when Ω is convex.

The finite element space B3
h0 leads immediately to a high-accuracy scheme for the eigenvalue

problem of bi-Laplacian equation.

2.3. Numerical experiments.
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2.3.1. For source problems. Example 1. Consider the bi-Laplacian source problem (8) with

constant coefficient δ = 1 on square domain Ω1 = [0, 1]2 with

f = −4π4 (cos(2πx) + cos(2πy) − 4 cos(2πx) cos(2πy)) .

The exact solution is u(x, y) = sin(πx)2 sin(πy)2.
Example 2. Consider the bi-Laplacian source problem (8) with constant coefficient δ = 1

on triangle domain Ω2 whose vertices are given by (0, 0), (1, 0), (0, 1). And we consider f =

72(x + y)2 − 48(x + y) + 8 for which the exact solution is u(x, y) = x2y2(1 − x − y)2.
Here we test on Example 1 and Example 2, respectively. The mesh size of the initial mesh

is h0 = 1
2 . Six levels of uniformly refined triangular meshes are generated for numerical ex-

periments and hk = hk−1/2, k = 1, 2, 3, 4, 5, 6. The finest degrees of freedom (short for DOFs)
for Example 1 are 97283. The refinest DOFs for Example 2 are 48387. We discretize by the

second order computational scheme corresponding to B3
h0 space. For each series of meshes,

we obtain the numerical solution uhk . The convergent orders measured by h2, h1, L2 norms

respectively are computed by

log2

(
‖u − uhk‖h2

‖u − uhk−1‖h2

)
, k = 2, 3, 4, 5, 6,

log2

(
‖u − uhk‖h1

‖u − uhk−1‖h1

)
, k = 2, 3, 4, 5, 6,

and

log2

(
‖u − uhk‖L2

‖u − uhk−1‖L2

)
, k = 2, 3, 4, 5, 6.

For Example 1, the errors for numerical solutions are showed in Figure 1(a). For Example
2, the errors for numerical solutions are showed in Figure 1(b). We can observe that

(1) The convergence rate for source problem measured by h2 norm is 2;
(2) The convergence rate for source problem measured by h1 norm is 3;
(3) The convergence rate for source problem measured by L2 norm is 4;
which are consistent with the theoretical results.
Example 3. Consider the bi-Laplacian source problem with varying coefficient δ = 8+x1−x2

on triangle domain Ω2 whose vertices are given by (0, 0), (1, 0), (0, 1). And we consider f =

64x3 + 48x2y + 528x2 − 48xy2 + 1152xy − 368x − 64y3 + 624y2 − 400y + 64 for which the exact

solution is u(x, y) = x2y2(1 − x − y)2.
For Example 3, the errors for numerical solutions are showed in Figure 2. We can observe

that
(1) The convergence rate for source problem measured by h2 norm is 2;
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Figure 1. The numerical performance for bi-Laplacian source problem by B3
h0.

Y-axis means the numerical error ‖u − uhk‖ measured by L2 or h1 or h2 norm.
X-axis means the size of mesh. Left: for Example 1 which is on square domain;
Right: for Example 2 which is on triangle domain.

(2) The convergence rate for source problem measured by h1 norm is 3;
(3) The convergence rate for source problem measured by L2 norm is 4;
which are optimal and consistent with the theoretical results.
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Figure 2. The numerical performance by B3
h0 for biharmonic source problem

with non-constant coefficient δ = 8 + x1 − x2. Y-axis means the numerical error
‖u − uhk‖ measured by L2 or h1 or h2 norm. X-axis means the size of mesh.



A HIGH ACCURACY NONCONFORMING FINITE ELEMENT SCHEME FOR TEP 11

2.3.2. For eigenvalue problem. Example 4. Consider the bi-Laplacian eigenvalue problem (7)

with constant coefficient δ = 1 on the unit square domain Ω1 = [0, 1]2.
Example 5. Consider the bi-Laplacian eigenvalue problem (7) with constant coefficient δ = 1

on the non-convex L-shaped domain Ω3 = [0, 1] × [0, 1]\[0, 1
2 ) × ( 1

2 , 1].

Here we test on Example 4 and Example 5, respectively. The mesh size of the initial mesh

is h0 = 1
2 . Six levels of uniformly refined triangular meshes are generated for numerical ex-

periments and hk = hk−1/2, k = 1, 2, 3, 4, 5, 6. The finest degrees of freedom (short for DOFs)
for Example 4 are 97283. The refinest DOFs for Example 5 are 146435. We discretize by the

second order computational scheme corresponding to B3
h0 space. For each series of meshes, we

obtain the computed eigenvalue λhk . The convergent orders are computed by

log2

(
|
λk−1 − λk

λk−2 − λk−1
|

)
, k = 3, 4, 5, 6.

We present the results of the first six biharmonic eigenvalues showed in Figure 3. For Example
4, the results are showed in 3(a). For Example 5, the numerical performance is showed in 3(b).
We can observe that for convex domain, the convergence rate for eigenvalues approximates 4
which is optimal and consistent with the theoretical expectation. For non-convex domain, the
convergence rates are not optimal due to the low regularity of eigenfunctions.
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Figure 3. The convergence rates for the lowest six real eigenvalues for bi-
Laplacian eigenvalue problem by B3

h0. Y-axis means the numerical error |λ−λhk |.
X-axis means the size of mesh. Left: for Example 4 which is on square domain;
Right: for Example 5 which is on the non-convex L-shaped domain.

2.3.3. The B3
h0 scheme for biharmonic eigenvalue problem with non-constant coefficient. By

B3
h0 scheme, the variational formulation for (7) is as followed: find u ∈ H2

0(Ω) and λ ∈ R, such
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that

(δ∆u,∆v) = λ(u, v), ∀v ∈ H2
0(Ω),

The corresponding discretized variational formulation is to find uh ∈ B3
h0 and λh ∈ R, such

that

(δ∆uh,∆vh) = λh(uh, vh), ∀vh ∈ B3
h0.

Example 6. Consider the unit square domain Ω = [0, 1] × [0, 1] with δ(x) = 8 + x1 − x2.

Example 7. Consider the unit square domain Ω = [0, 1] × [0, 1] with δ(x) =

√
x2

1 + x2
2 + 1.

Here we test on Example 6 and Example 7. The mesh size of the initial mesh is h0 = 1
4 .

Five levels of uniformly refined triangular meshes are generated for numerical experiments and
hk = hk−1/2, k = 1, 2, 3, 4, 5. The finest degrees of freedom (short for DOFs) are 97283.

For Example 6, the lowest ten computed eigenvalues are showed in Table 1. The convergence
rate of eigenvalues is 4. The computed eigenvalues tend to give the upper bound.

Table 1. The performance of B3
h0 for Example 6.

Mesh 1 2 3 4 5 Trend Ordλ
λ1 10374.5195 10345.9954 10343.9256 10343.7882 10343.7794 ↘ 3.97049
λ2 43152.3618 43005.8128 42994.7833 42994.0362 42993.9885 ↘ 3.96937
λ3 43280.1536 43068.7439 43053.2500 43052.2064 43052.1391 ↘ 3.95288
λ4 94720.7844 93650.3052 93568.7622 93563.1966 93562.8374 ↘ 3.95358
λ5 138651.7814 138270.0014 138240.9393 138239.0035 138238.8805 ↘ 3.97531
λ6 140390.6663 139603.9073 139543.0269 139538.7129 139538.4292 ↘ 3.92672
λ7 221070.9885 217636.1630 217378.1490 217360.2947 217359.1410 ↘ 3.95190
λ8 221623.7915 218016.9168 217724.6523 217704.3709 217703.0464 ↘ 3.93657
λ9 353927.2977 353674.1751 353645.2752 353642.4924 353642.2935 ↘ 3.80689
λ10 355323.7661 353783.9540 353664.7616 353656.2796 353655.7170 ↘ 3.91410

For Example 7, the lowest ten computed eigenvalues are showed in Table 2. The convergence
rate of eigenvalues is 4. The computed eigenvalues tend to give the upper bound.

2.4. Comparison with Morley element scheme. We check the Morley element scheme for
the eigenvalue problem

(10)
{

∆δ∆u = λu in Ω

u = ∂u
∂n = 0, on ∂Ω.

For Morley element, we consider the following variational formulation: find u ∈ H2
0(Ω) and

λ ∈ R, such that

(11) α(∇2u,∇2v) + ((δ − α)∆u,∆v) = λ(u, v), ∀v ∈ H2
0(Ω),
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Table 2. The performance of B3
h0 for Example 7.

Mesh 1 2 3 4 5 Trend Ordλ
λ1 2242.0180 2236.1646 2235.7399 2235.7117 2235.7099 ↘ 3.97022
λ2 9154.9841 9110.2819 9107.0020 9106.7807 9106.7664 ↘ 3.95159
λ3 9486.4385 9456.1682 9453.8979 9453.7445 9453.7347 ↘ 3.97046
λ4 20506.1886 20276.9808 20259.5801 20258.3940 20258.3174 ↘ 3.95238
λ5 29816.2535 29732.0314 29725.6516 29725.2265 29725.1994 ↘ 3.97507
λ6 30135.9791 29969.1169 29956.0394 29955.1090 29955.0478 ↘ 3.92537
λ7 47066.3802 46285.9069 46222.8811 46218.5018 46218.2154 ↘ 3.93437
λ8 49000.9675 48277.8380 48224.0164 48220.3162 48220.0777 ↘ 3.95558
λ9 75673.2614 75431.9016 75400.3136 75398.0123 75397.8583 ↘ 3.90143
λ10 75808.5004 75588.8154 75579.7274 75578.9302 75578.8748 ↘ 3.84894

where (∇2u,∇2v) =
∫

Ω

∑2
s,t=1

∂2u
∂xs∂xt

∂2v
∂xs∂xt

dx, i.e., the inner product of the Hessian matrices of u

and v and α is a constant satisfying 0 < α < δmin. The items on the left side of (11) guarantee
the coercivity of variational problem.

The Morley element discretization space for H2
0(Ω) is denoted by V M

h . The corresponding

discretized variational formulation is: find uh ∈ V M
h and λh ∈ R, such that

(12) α(∇2uh,∇
2vh) + ((δ − α)∆uh,∆vh) = λh(uh, vh), ∀vh ∈ V M

h (Ω).

We test the numerical performance of Morley element method on Example 6 and Example
7. For Example 6, by Morley element, the lowest ten computed real eigenvalues on three
successive grid levels are showed in Figure 4. We can observe that the numerical results are
sensitive to the parameter α and greatly depend on the choice of α.

For Example 7, the numerical results are showed in Figure 5. For different parameter α, the
computed eigenvalues are different. For different δ(x), the optimal α is also different.

3. A high-accuracy scheme for the transmission eigenvalue problem

For the nonlinear transmission eigenvalue problem (4), the corresponding discretization form

is to find (τh, uh) ∈ R × B3
h0 such that B(uh, uh) = 1 and

Aτh,h(uh, vh) = τhBh(uh, vh), ∀vh ∈ B3
h0.(13)

Let {ξ j}
Nh
j=1 be a basis for B3

h0 and the corresponding FEM solution uh =
∑Nh

j=1 u jξ j, where {u j}

corresponds to the standard degrees of freedom for B3
h0 scheme. We need the following matrices

in the discrete case and obtain the discretized quadratic eigenvalue problem

(14) (A + τB + τ2C)x = 0,
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Figure 4. The numerical performance by Morley element for biharmonic eigen-
value problem with non-constant coefficient δ = 8 + x1 − x2. Y-axis means the
eigenvalues and X-axis means the sequence number of the lowest ten computed
eigenvalues. For a fixed α, the computed real eigenvalues on three successive
grid levels are lised corresponding to mesh size h = 0.04, 0.02, 0.01.

Matrix Dimension Definition
A Nh × Nh hessian matrix: Ai, j =

∫
Ω

1
n−1∆ξi∆ξ jdx

B Nh × Nh stiff matrix: Bi, j =
∫

Ω

1
n−1∆ξiξ j + 1

n−1ξi∆ξ j − ∇ξi · ∇ξ jdx
C Nh × Nh mass matrix: Ci, j =

∫
Ω

n
n−1ξiξ jdx

where x = (u1, u2, · · · , uNh)
T . The computation of matrices A, B, C involves the numerical

integration of basis functions with non-constant coefficients. In practice, we use Gaussian inte-
gral formula and calculate the linear combination of function values at gaussian nodes on each
triangular element.

For (14), in practical computation, we convert to the linear eigenvalue problem(
−B −A
I O

) (
p1

p2

)
= τ

(
C O
O I

) (
p1

p2

)
and use matlab function ”eigs” or ”sptarn” to solve. And both p1 and p2 are all eigenvectors
corresponding to τ.

Theorem 8. Let (τ, u), (τh, uh) be the solution of (4) and (13), respectively. Under the assump-
tions of Lemma 3.2 in [18], we can obtain the following results
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Figure 5. The numerical performance by Morley element for biharmonic eigen-

value problem with non-constant coefficient δ = 1 +

√
x2

1 + x2
2. Y-axis means the

eigenvalues and X-axis means the sequence number of the lowest ten computed
eigenvalues. For a fixed α, the computed real eigenvalues on three successive
grid levels are lised corresponding to mesh size h = 0.04, 0.02, 0.01.

‖u − uh‖h2 . h2,

‖u − uh‖1 . h4,

|τ − τh| . h4.

3.1. The numerical performance of the nonconforming B3
h0 scheme. Here we focus on the

case n(x) > 1 which is of dominant interest in practice [6]. For the case 0 < n(x) < 1, it
can be treated similarly. Numerical experiments are conducted on a convex domain (a unit
square domain Ω1 = [0, 1] × [0, 1]) and a non-convex domain (a L-shaped domain Ω2 =

(0, 1) × (0, 1)\[1
2 , 1) × [ 1

2 , 1)). Six levels of uniformly refined triangular meshes are generated

for numerical experiments. The mesh size of the initial mesh is h0 = 0.05 and hk = hk−1/2, k =

1, 2, 3, 4, 5, 6. Note that further refinement would lead to very large matrix eigenvalue problems
which take too long to solve. All examples are done using Matlab 2016a on a laptop with 16G
memory and 2.9GHz Intel Core i7-7500U processor.
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For each series of meshes, we obtain the eigenvalue series {λhk}
6
k=1. The convergent orders are

computed by

(15) log2(|
λhl − λhl+1

λhl+1 − λhl+2

|), l = 1, 2, 3, 4.

We consider the following examples.
Example 8. The unit square domain Ω1 with the constant index of refraction n(x) = 16.
The finest degrees of freedom (short for DOFs) are 194566. It costs 251.661752s for the

whole calculation. We present the results of the first six real transmission eigenvalues. The

eigenvalue approximations (λh =
√
τh) on the finest mesh are (1.879591, 2.444236, 2.444236,

2.866439, 3.140111, 3.471509).
From Figure 6, we can observe the following phenomena:

(1) The convergence rates of transmission eigenvalues by B3
h0 are 4.

(2) It gives the upper bound for real eigenvalues.

(3) The results by B3
h0 are consistent with those in [13] [14] [16].
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Figure 6. The convergence rates for the lowest six real eigenvalues of the unit
square with n(x) = 16 by B3

h0. Y-axis means λhk −λh6 , as h tends to zero, λhk −λh6

can be positive or negative; however, as illustrated in the figure, it’s positive, here
k = 1, 2, 3, 4, 5. X-axis means the size of mesh and so are the followings.

Example 9. The unit square domain Ω1 with the non-constant index of refraction n(x) =

8 + x1 − x2.
The first six real eigenvalue approximations on the finest mesh are (2.822189, 3.538697,

3.538992, 4.117742, 4.501729, 4.989140) which is consistent with the results in [13] [14] [16].

The convergence rates are showed in Figure 7. It can also be observed that B3
h0 does give the
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theoretical predicted fourth convergence rate. And the computed real eigenvalues are monoton-
ically decreasing as the mesh is refined.
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Figure 7. The convergence rates for the lowest six real eigenvalues of the unit
square with n(x) = 8 + x1 − x2 by B3

h0. Y-axis means λhk − λh6 , as h tends to
zero, λhk − λh6 can be positive or negative; however, as illustrated in the figure,
it’s positive, here k = 1, 2, 3, 4, 5. X-axis means the size of mesh and so are the
followings.

Example 10. The L-shaped domain Ω2 with the constant index of refraction n(x) = 24.
The finest DOFs are 292870. The total calculate time is 467.822844 second. The lowest six

real eigenvalues on the finest mesh are (4.275620, 4.555635, 5.172225, 5.271284, 5.984808,
6.081556). Since Ω2 has a reentrant corner, the eigenfunction has a low regularity. The conver-

gence order for the eigenvalue approximation is less than 4 by the B3
h0 scheme as is showed in

Figure 8.

3.2. Morley element scheme revisited. In [16] [19], the authors proposed the Morley element
to discretize transmission eigenvalue problem. For the non-constant index of refraction n(x),

assume 0 < αs ≤
1

n(x)−1 ≤ αb. They transformed the variational formulation to the following

form:

(16)
( 1
n(x) − 1

∆u,∆v
)

=
(( 1

n(x) − 1
− α

)
∆u,∆v

)
+ (α∇2u,∇2v),

where (∇2u,∇2v) =
∫

Ω

∑2
s,t=1

∂2u
∂xs∂xt

∂2v
∂xs∂xt

dx, i.e., the inner product of the Hessian matrices of u

and v, α is a constant satisfying 0 < α < αs. The form on the right hand of (16) guarantees the
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Figure 8. The convergence rates for the lowest six real eigenvalues of the L-
shaped domain with n(x) = 24 by B3

h0. Y-axis means |λhk − λh6 |, as h tends to
zero. X-axis means the size of mesh.

coercivity of the variational formulation on H2
0(Ω) (c.f. [19]). However, in practical computa-

tion, the numerical performance is sensitive to the choice of α. Figure 9 shows the numerical

performance by Morley element for unit square domain Ω = [0, 1]2 with index of refraction
n1(x) = 8 + x1 − x2. We test on different α. For a fixed α, we record and present the lowest
10 computed real eigenvalues on three successive grid levels. It’s observed that the numerical
results are greatly dependent on the choice of α. Figure 10 shows the numerical performance

for unit square domain with index of refraction n2(x) = 18 + x2
1 + x2

2. For different index of

refractions, the optimal choice of α is also different.

4. Concluding remarks

In this paper, we present a finite element scheme for the Helmholtz transmission eigenvalue

problem based on the space B3
h0. Different from most existing nonconforming finite elements,

the bilinear form (∆h,∆h) is coercive on the space B3
h0, and it fits for the problem of operator ∆δ∆,

including both the source and eigenvalue problems. Schemes associated with B3
h0 are designed

without introducing extra stabilisation mechanism. Numerical experiments illustrate the high
accuracy of the schemes. Theoretical analysis will be given soon. The explicit formulation of
the local basis functions obtained for easy application will bring in convenience in the future.
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