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Abstract In this paper, we are concerned with the numerical solution for the backward
fractional Feynman-Kac equation with non-smooth initial data. Here we first provide the
regularity estimate of the solution. And then we use the backward Euler and second-order
backward difference convolution quadratures to approximate the Riemann-Liouville frac-
tional substantial derivative and get the first- and second-order convergence in time. The
finite element method is used to discretize the Laplace operator with the optimal conver-
gence rates. Compared with the previous works for the backward fractional Feynman-Kac
equation, the main advantage of the current discretization is that we don’t need the assump-
tion on the regularity of the solution in temporal and spatial directions. Moreover, the error
estimates of the time semi-discrete schemes and the fully discrete schemes are also provided.
Finally, we perform the numerical experiments to verify the effectiveness of the presented
algorithms.

Keywords backward fractional Feynman-Kac equation - fractional substantial derivative -
finite element method - convolution quadrature - error analysis

1 Introduction

The Feynman-Kac equation describes the distribution of the functionals of the trajec-
tories of the particles, where the functional is defined as A = [ U[x(7)]dT with x(t) being
a trajectory of a particle and U (x) a prescribed function depending on specific applications
[17]. There are two kinds of Feynman-Kac equations: one is for the forward Feynman-Kac
equation, governing the joint probability density of the functional and position; and another
one is for the backward equation, just focusing on the distribution of the functionals. If the
particles are with power-law waiting time and/or jump length distribution(s), the governing
equations for the distribution of the functionals are so-called fractional Feynman-Kac equa-
tions [2L[427)], since the fractional substantial derivative is involved in the equations. More
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generalizations of the Feynman-Kac equations include the models governing the distribu-
tion of the functionals of the particles undergoing the reaction and diffusion processes and
of the particles with multiple internal states [151281[29].

Here we solve the following backward fractional Feynman-Kac equation, presented in
[4]], describing the functional distribution of the particles with power-law waiting time, i.e.,

dG(xg,p,t o

% = oD, YAG(x0,p,t) — pU(x0)G(x0,p,t), (x0,2) € Q x(0,T],
Gx0.p.0) = Golxo). e
G(x07p7t):07 (xo,t)Ez?_Qx(O,T],

(1.1)
where G(xo,p,t) = [;° G(x0,A,t)e PAdA and G(x0,A,1) is the joint probability density func-
tion of finding the particle on A at time ¢ with the initial position of the particle at xo; p is
the Fourier pair of A; @ € (0,1); A stands for Laplace operator; € is a bounded domain and
U (xp) is assumed to be bounded in £ in this paper; T is a fixed final time; oD} %™ denotes
the Riemann-Liouville fractional substantial derivative, whose definition [18] is

1—ot,x _ 1 i /t _zya—1 —(t—=&)pU(xg)
ODt G(Xo,p,l) 7F((X) |:at +pU(X0):| 0 (t (S) e 0 G(xovpvé)dé

=¢ 1PUG0) ( DI=%(PUR) G(xo,p, 1)),

(1.2)
where oD¥ denotes the Riemann-Liouville fractional derivative with the definition [24]]
DIG( 1) ! J /t(t E)*G( &)dé a€(0,1)
X = — X .
oy 0»P7 F(l—a) a[ o 0»P7 ) )

So far there have been many works for fractional partial differential equations, includ-
ing the finite difference method, finite element method, spectral method, and so on 11317,
[SIOTOLT4L 19123, but there are relatively less researches on solving fractional Feynman-
Kac equation numerically [6l1T}[12l[T3l23]]. The main reasons are that fractional substantial
derivative is a time-space coupled non-local operator and the equation covers the complex
parameters which bring about many challenges on regularity and numerical analyses. To our
best knowledge, numerical approximation on fractional substantial derivative is given in [3]];
Ref. [11]] numerically solves the forward and backward fractional Feynman-Kac equations
with the assumptions that the solution is regular, U (xo) is a positive constant, and Re(p) >0
(Re(p) means the real part of p); Ref. [13] presents the H' error estimate for the backward
fractional Feynman-Kac equation with U(xg) > 0 and Re(p) > 0; Ref. [12] provides an
efficient time-stepping method to solve the forward fractional Feynman-Kac equation and
makes error analysis in the measure norm. In this paper, we use the finite element method
in space and convolution quadrature introduced in [20}21] in time to solve the backward
fractional Feynman-Kac equation (LI). The main contributions are as follows.

— We first provide Sobolev regularity for the solution of Eq. (L), i.e., Theorem 2] gives
that the solution G(xo, p,t) € H*(Q) when U (x) is bounded in Q and Gy (xo) € L*(Q).
Compared with the previous works [6[TT,13]], we construct numerical scheme without
any assumption on the regularity of solution in temporal and spatial directions.

— Then we modify the approximation of the Riemann-Liouville fractional derivative got
by convolution quadrature to approximate the Riemann-Liouville fractional substantial
derivative, which skillfully overcome the trouble brought by the non-commutativity of
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the Riemann-Liouville fractional derivative and e~"PU(%0) in error estimate for fully dis-
crete scheme, i.e., e "PU(0) (D& £ (D%e=1PU(0) in Eq. (I).

— Next, a suitable modify based on the Laplace transform representation of solution is
presented to guarantee the accuracy of second-order backward difference scheme (3.9)
(see Sec. 3).

— Besides, motivated by the error estimate in space in [31[16]], a general idea is to get the es-
timate of the difference between ((Br.1(z))* +A)(Br.1(z))* 'Gol(xo) and ((Br.1(z))* +
Ap)(Be.1(2))* 'P,Go(xo) (for their detailed definitions, see Sec. 3 and Sec. 4). Gener-
ally, the sufficient regularity on U (xo) is required to ensure the accuracy of the approx-
imation. Here, we use Ph(e”pU("‘))Go(xo)) for the fully discrete scheme (&) in Sec. 4
instead of ¢~*PU(%0) B, Gy (xy), which weakens the requirement of regularity on U (xp) to
keep the accuracy of the numerical scheme.

— Finally, we provide a complete error analysis for the proposed numerical scheme and
obtain the optimal convergence rates in L?- and H'-norm.

The rest of the paper is organized as follows. We first provide some preliminaries and
a regularity estimate for the solution of Eq. (LT in Sec. 2. Section 3 presents the approx-
imation of the Riemann-Liouville fractional substantial derivative by backward Euler and
second-order backward difference convolution quadratures and gives the error estimates of
the time semi-discrete schemes. In Sec. 4, we use the finite element method to discretize
the Laplace operator and provide the error estimate for the fully discrete scheme with the
non-smooth initial data. In Sec. 5, we verify the effectiveness of the algorithm by numerical
experiments. We conclude the paper with some discussions in the last section.

2 Preliminaries

First, we introduce A = —A with a zero Dirichlet boundary condition. For any r > 0,
denote the space H'(Q) = {v € L*(Q): A7v € L*(Q)} with the norm [26])

s

By = X 4700 0))2

~.
Il

where (4;, ¢;) are the eigenvalues ordered non-decreasingly and the corresponding eigen-
functions (normalized in the L?(£) norm) of operator A. Thus H*(Q) = L2(Q), H'(Q) =
H}(Q),and H?(Q) = H*(Q)NHI(R). For k > 0 and 7/2 < 6 < 7, we define sectors Zg
and Xg - in the complex plane C as

£o = {z € C\ {0} argz| < 6},
Yo ={z€C:|z] > k,|argz| < 6},

and the contour I'g i is defined by
hx={z€C: 7| = k,|argz| < O}U{z € C:z=re™® : 1 > x},

oriented with an increasing imaginary part, where i denotes the imaginary unit and i> = —1.
Then we denote || - || as the operator norm from L?(Q) to L?(Q) and define G(¢) and Gg
as G(xo, p,t) and Go(xp) respectively in the following. Throughout this paper, C denotes a
generic positive constant, whose value may differ at each occurrence; and let € > 0 arbitrary
small.
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Similar to the skill used in [6JIT[13], Eq. (II) can also be converted into

6D/ G (x0,p,1) = AG(x0,p,1), (x0,1) € 2 x (0, T,
G(xo,p,0) = Go(xo), X0 € Q, (2.1)
G(xo,p,t) =0, (x0,1) € 92 x (0,T],

where gD,a "0 denotes Caputo fractional substantial derivative defined by [18]]
6D G(xo,p,1) = e PV EDI PV Gxo,p.1)), € (0,1),
and ng‘ means the Caputo fractional derivative with its definition [24]

§DEG(0p.0) = gy [ (-8 55 Glap s, @ 0.1).

Then we recall the Laplace transform for the fractional substantial derivative.
Lemma 2.1 ([18]) The Laplace transform of the Riemann-Liouville fractional substantial
derivative with o, € (0, 1) is given by

—

D{°G(z) = (B(z,%0))*G(z),

and the Laplace transform of the Caputo fractional substantial derivative with o € (0,1) is
given by

—~

§D/70G(z) = (B(z,%0))*G(z) — (B(2,%0))*'G(0),

where B(z,x0) = (z+pU(x0)) and  stands for taking the Laplace transform. And in the
Jollowing we denote B(z) as B(z,xo).

According to Lemma[2.]] the solution of Eq. (Z.I) can be written as

G(z) = ((B(2))*+A)"(B(2))* " Go. 2.2)

Remark 2.1 By the definition of 3(z), it is easy to see that

B@A#AB), A((B@)*+A)" # ((B(2)" +4)~'A,
(BE)*+A) T (B)* ™ # (B (BE)*+4) 7"

Before we provide the regularity estimate for the solution of Eq. (2.1)), the following
lemma about 3(z) is also needed.

suﬁ‘iciently close

z (@) we have the

to § and x > 0 sufficiently large (depending on the value |p|||U(
Sfollowing results:

Lemma 2.2 ([12]]) Let U(xo) be bounded in Q. By choosing 6 € (
X0

NS

(1) Forallx € Q and z € Xy ., we have B(z) € L3z x, and

3 K
452

Cilzl < |B(z)| < Call, (2.3)

where Cy and C, denote two positive constants. So 3(z)' =% and B(z)*~" are both ana-
Iytic function of 7 € Xg .
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(2) The operator ((B(2))*+A)"" : L*(Q) — L*(Q) is well-defined, bounded, and analytic
with respect to z € Xg ., satisfying

[A((B(2)*+A)" | <C forall z€ Xy, (2.4)

I((BE)*+A)" | <Clzl™* forall z€ X x. (2.5

Theorem 2.1 Assume U (xo) is bounded in Q. If Go € L*(Q) and G(t) is the solution of Eq.
21D, then we have the estimate

1G() o) < Ct=°*2(|Goll2(q), o € [0,2].

Proof Taking inverse Laplace transform and L?(£2) norm on both sides of (Z2)), according
to Lemma we have

16020 scH [ B+ B Gui:

L2(Q)

SC/FB e[| ((B)*+A) " (B(2)* | Goll2(q) ldz]
Sc/n, eIz~ Goll 2 2

o 0
<C (/ ercos(ﬂ)trfldr+/ eKcos((p)td(p) ||G0||L2(Q)
-6

K

<Cl|Goll;2(0)-

Applying A on both sides of (Z.2), taking inverse Laplace transform, and acting L?(£) norm
on both sides, from Lemma[2.2] there is

IAGO) 2 scH [ EaB@+a) B Gud

@)

< [ 1 IAUBE)"+4) " (B[ IGollz
RS

<C [ 1121 Goll ey ]
Ty x

o 0
<C (/ ercos(e)traflerr/ elccos((p)tk.ad(p) HGOHLZ(Q)
K -0

<CtY|Goll2(0)-
Using interpolation properties [13] leads to

1G(®) [l o) < Ct_aa/ZHGO”LZ(Q)» o €[0,2].
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3 Temporal discretization and error analysis

In this section, we first use the backward Euler and second-order backward difference con-
volution quadratures introduced in [20l21] to discretize the Riemann-Liouville fractional
substantial derivative and get the first- and second-order schemes in time. Then we provide
the complete error analysis.

Let the time step size T =T /N with N € N,t; =it,i=0,1,...,N,and0=1o <f; <--- <
ty = T. Firstly, we use the relationship between Caputo fractional derivative and Riemann-
Liouville fractional derivative

ED%u(t) = oD*(u(t) —u(0)) with o € (0,1)
to reformulate Eq. (Z.I) with Riemann-Liouville fractional substantial derivative, i.e.,
OD;X’XOG(xmpvt) JFAG(XO»PJ) = e_pU(XO)IODtaG(xovpvo)v (Xo,l) €0 x (OvT}a
G(x0,p,0) = Go(xp), xXg € Q,

G(xo,p,t) =0, (x0,1) € 92 x (0, T].
3.1

3.1 Backward Euler scheme and error estimate
We use backward Euler convolution quadrature to discretize the time fractional substantial

derivative and get the first-order accuracy in time. Introduce G" as the numerical approxi-
mation of solution G(xo, p,#,). Then we can obtain the temporal semi-discrete scheme

—1 —1
n): e PV G 4 AG! = e—’"PU@‘o)nZ d*'G", xeQ, n=1,..N,

i=0 i=0
G® = Gy, X0 € 2,
G"(x0) =0, X0 €9dQ, n=1,...,N,
(3.2)
where .
=Y a*'¢ (3.3)
i=0
and ¢
51.,1((;) = P

Multiplying £" on both sides of the first formula of (3.2) and summing n from 1 to e lead to

HM8

— =3 —1
Z o,l 7t,pU X0) G lgl‘l + ZAGngn _ Z e*tnPUO‘O)nZ’ diot,lGOCn~ (3.4)
i=0 n=1 i=0

n=1

Simple calculation implies

(5?1( —1pU( xo a Z Gngn +A Z Gncn _ ( —1pU( x() a Z e—tnpU B GOgn

which is followed by (3.3)). Furthermore, we have

Goe—er(xo)C

(5?1( —1pU( xo a Z Gngn +A Z Gncn _ ( —er(xO)C))a—l .
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Using Cauchy’s integral formula yields

n_L —n— —1pU(xq) o _ —2pU (x)
0 72ﬂi/\c\:§f H(8e1(e YLD A) 71 (81 (e PUC0IE))
1

:2_7'[i/rr ezzﬂ((ﬁr,l(z))a +A)*1(l}m(Z))afleff(szpU(xo))GodZ’

i GOe—‘L'pU(xO) C J
T

(3.5)
where &; = ¢ T(H) 7 = {z=x+1+iy:yeRand |y| <7/7}, Br1(z) = 61,1 (g*T(ZJrPU(XO)))’
and the second equality follows by taking { = e™**. Deforming the contour I'* to I'}, =
{zeC:xk< |7 < TS%(Q)Jargz\ =0}U{zeC:|z| =k,|argz| < 0}, one has

1

G" = 2_m /FBT_K ezm((ﬁrﬁl (Z))a JrA)fl(ﬁT’] (Z))ocfleﬂ:(erpU(xO))GOdZ~ (3.6)

Next, we provide a lemma about fB; | (z) defined in (3.3).

Lemma 3.1 ([12]) Let U(xo) be bounded in Q. By choosing 6 € (%,7) sufficiently close

to 5 and x > 0 sufficiently large (depending on |p|||U (xo)|| 1=()): there exists a positive

constant T, (depending on 0 and ) such that the following estimates hold when T < T,:

(1) Forz € X§ ., we have Br1(2) € L ¢, and

Cilz] < [Bra(2)| < Col2-

(2) The operator ((Br1(2))* +A)~" : L2(Q) — L*(Q) is well-defined, bounded, and ana-
lytic with respect to z € 257,{, satisfying

IA((Bea (2))* +A) N <€ forall z€ X,

I((Bea(@)*+A) "' <Cle|™*  forall z€ X,

where X5 = {z € C: [z| > K,|argz| < 6,[Im(z)| < Z,Re(z) < x+ 1}. Here, Im(z)
means the imaginary part of z and Re(z) the real part of z.
(3) For the real number 7, the following estimate holds

(B()" = (Bea(2)"| < Ctl|™!, z€ Ty,

Theorem 3.1 Ler G(xo,p,t) and G" be the solutions of Eqs. @) and B2) respectively
and assume Go € L*(Q). Then we obtain

1G(x0,0,1) = G" || 2(02) < Cty ' 7l|Goll 2 () -
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Proof Subtracting (3.6)) from the inverse Laplace transform of (2.2), we have

[G(x0,p:ta) = G"[|12(q)

<C|| [ e (B +4)" (B Godz

*/FT (Bt (2)“+A) " (Bra(2)* e TEHPU DGO,

(@)

<C 1Golli2(0)

[ B A ) e
0. \I

[ e (B +a) " ()

~ ((Bea(2))* +A4) ™ (Bea(2)* e~V ) e Go l 2 g
<C{I+11)||Goll 20

For I, using Lemma 221 there is

I< / |2~ |dz| < Ct / nreos(8) g < Cr 1
r9-,’<\r91‘1c ‘rsi:n[(ﬂ)

As for 11, one can split it into

= /F, e ((BE)*+A) " (B)* " = ((Bea(2)*+A) ' (B(2)* 1) dz
L e (Baa @) +4) ™ (BE)™ = (B () +4) (Bea ()
+ /FT ¢ ((Be1(2))*+A) " (Bea ()% (1,e—r<z+pU(x0))) &l

Then by Lemmas [BTland the fact

1((B)*+4) " (B ((Bea () +4) " (B())* |
=H((ﬁ(z))°‘+A)"((l3‘r,1( D%~ (BE)™) (Bea ()% +4) " (B)* | < cx,

I SC”L'/ e ||dz] < Cri
FT

RS
Thus

1G(x0,p,0) = G"l|12(0) < Cty ' 7] Goll 22
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3.2 Second-order backward difference scheme and error estimate

In this subsection, we use second-order backward difference convolution quadrature to dis-
cretize the time fractional substantial derivative and obtain the second-order accuracy in
time. Similarly, introduce G" as the numerical approximation of the solution G(xg,p,#,),
and let

_ ey B -
5ea(0) = CHS L2 v(C)—(zai))é—c(%+21§">.<3.7>
According to (Z.2)), we have

G(z) — (B(2)"'Go = —((B(2))* +A)'A(B(2)) ' Go. (3.8)

Using Br2(z) i= 82(e PO, T ): (G" — e nPU0) GOYe=%n and Tv (e Pl)7) to approxi-

mate f(z), G(z) — (B(z)) ' Go, and (ﬁ( ))~! respectively, we have

(G"— e*tnPU(xo)GO)e*Ztn _ 7((5772(6713(2)1'))05 +A)71Av(67ﬁ(z)f)Go.

s

n=1

Thus

(G" — e PV GO~ = —Ay(e PO,

s

((8ea(ePET)*+4)

n

By Cauchy’s integral formula, there exists the second-order temporal semi-discrete scheme

dg?e PV Gl L AG! + %Ae-"PU () G0 = e P gE2 G0y € Q,

—1 n—1
n): d?e UGN L AG" = e PV Y 260 xg€Q, n=2,...N,

i=0 i=0
G = G, X € Q,
G"(x0) =0, XE€R, n=1,...,N,
(3.9)
where .
=Y a**¢'. (3.10)
i=0

Multiplying ¢! and £ on both sides of the first and second formulas of (3.9) respectively
and summing them lead to

i i a2 —t,pU X0) Gn—i —e_t"‘ipU(XO)GO)Cn + iA(Gn _e—t,,pU(xo)GO)Cn
=1i=0 n=1

o (3.11)
_ (ZAet”pU<x0)GOC”+ lAetlpU(XO)Gog) )
2
n=1

According to (3.7) and (3.1Q), after some simple calculations, we get

(Gn o e_t"pU<X0)GO)§n TA Z (Gn o e_t"pU(XO)GO)Cn

n=1

 ngki

(8ep(e YLD L))®

Il
-

n
— —AV 7TPU xo C)
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which can be further written as

(Gn _ e—t,,pU(xo)GO)gn _ 7((5772(8_TPU(X0)§))0‘ +A)_1AV(6_TPU<X0)§)GO.

 ngki

n—
By Cauchy’s integral formula, there is

1
2mi
T

=34 /FT eztn((ﬁr.,z(z))o‘_|_A)*IAv(effmz))GOdZ7

Gn _ e—l‘npU(Xo)GO —

/"H E (Beale PN +A) Av(e UV L)GOdE

(3.12)
where &; = e Tktl) T — {z=x+1+iy:yeRand |y| < m/t}, Br2(z) = 51:72(6—13(1)7)’
and the second equality follows by taking { = e¢~*. Introduce u({) = 18:2({)v({) =
g(%@z and deform the contour I'? to Fef’x ={zeC:x< |z < ﬁ(e)v largz| = 0}U{z €
C: |z| = k,|argz| < 6}. Then there exists

1

G — e mPUR) G0 —
2mi

/r.r ¢ ((Bea(2)* +A) " A(Bea(2)) " (e P9) G4z,

(3.13)
Now, we provide a lemma about f3;»(z) defined in (3.12).

Lemma 3.2 Let U(xo) be bounded in Q. By choosing 6 € (%, ) sufficiently close to % and
Kk > 0 sufficiently large (depending on |p|||U (x0)||;=(q)). there exists a positive constant T,
(depending on 0 and x) such that the following estimates hold when T < T,:

(1) Forz € X§ ., we have B (2) € L ¢, and

Cilz] < |Br2(2)| < Cozl.
(2) The operator ((Bz2(2))* +A)~" : L(Q) — L*(Q) is well-defined, bounded, and ana-
Iytic with respect to z € Xg ., satisfying

IA((Be2()*+A) M| <C  forall ze X5,

1((Be2(2))* +A) "' | <Cl=I™*  forall z€ X,

where £ . ={z€ C: |z| > K, |argz| < 0,|Im(z)| < Z,Re(z) < x+ 1}. Here, Im(z)

= 7>
means the imaginary part of z and Re(z) the real part of z.
(3) For the real number v, there is

[(B(2))Y = (Be2(2))'| < CT2["2, z€ I,
Proof First there are the facts [12]]:

if 7|B(2)| > C, then |t8;2(e” ") > C;

n
T .
tlz| < tlIm(z)| 4 |Re(z)| <27, forze€ Xg, and T < 1 (3.14)

5 v
7)< 7lel + Tlpl U (o) o) < 57 Sorz€ Efcand 1< .
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Then we prove the boundedness of [Bz(z)[. Choosing k > 2|p|[|U (x0)|[;=(q) and using
Taylor’s expansion yield that, for z € Z§

Be2(2)| =

where the fact |z] > K for z € Xj . is used. Thus the inequality |B;2(z)| < C|z| holds.
Next, we prove C|z| < B 2(z)| for z € Z§ . in two cases. If 7|3 (z)| is smaller than some

8:2(e” )| < ClB(2)| < € (J2l+ IpIIU (o) =) ) < C(Jl+ ) < Clel,

constant, then we use Taylor’s expansion (with |0(Tf(z))| < %, due to the smallness of
7|B(z)| assumed):

3/2—2¢ PR 1 e27B(0) /2
T

= B+ 0B > 51BC)

Be2(2)| =

> L (=110 G0 - )

> 2~ x/2) 2 5,

where we have used k > 2[p|[|U (xo)||;- () again and that [z| > k for z € £
If 7|B(z)] is larger than the constant, then (B.14) implies

|Bea(z)| =

Thus, under the conditions k > 2[p|[|U (xo)|| () and T <

8:2(e B >)\ > % > Cla.

= +1 , we have proved that

Cilz| < [Br2(2)] =
which leads to (according to Lemma[3.3]provided in the following)

Be2(2) € 27r/2+e-

From B;,(z) > Clz|, we have B;» € X /2+¢.c|x|> Which results in the second conclusion of
this Lemma by using the resolvent estimate [16]].
As for the third conclusion, there is

B~ (B2
~|Be)- (Bo+PE@P [ 1 -5 P22 B [ 1-5e 2P us)
—1B@V[1- (14262 [ (-2 P05 22307 [ (1= 920 ) |
If 7B ()| < 1/2, by Taylor’s expansion, we have

'1 + 7B [ (1= 92 By —22(B (o)) / (1= e B0 g

0

Sale P0)| <Colel Ve g,

Y:Hﬁ(leﬁ(Z)IZ)-

So,
|(B(2))" = (Be2(2))"| < |B(2)|"CT?|B(2) > = C<*|B(2)["*2.
As for 7|B(z)| > 1/2, we have

Tzl 2 Ctlfea(a)| =€, VeI,
(B(2)" = (Be2(2)"| < Cl|” <CT?2"*2,  Vze L.

Thus the third conclusion is reached.
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Next we provide a lemma about 8; > (e ") defined in (3.7).

Lemma 3.3 Let U(xo) be bounded in Q and L = |p|||U(x0)|| 1=(0)- There exist positive

Q)
constants 6y € (%, 57”), 7o, and co such that if 6 € (%, 60) and t € (0,79), then
T
0:2(e) € Zppie, if |2l #0, |arg(2)| <6, and [Im(z)] < L (3.15)

Here Im(z) means the imaginary part of z.

Proof Obviously, if |z| # 0 and arg(z) = 0, then we have arg (J;2(e™*")) = 0.
If |z] # 0, arg(z) = @ € (0,6], and 0 < Im(z) < /T +L, then @ = t|z|sin(¢p) € (0,7 +
Lt] and it’s easy to see that
(1) if o € (0, ], then arg (8; 2(e*%)) € [0, 7);
(2) if o € (m, w+ Lt], then there exists a constant ¢y such that arg (8; 2 (e %%)) € [—co7,0).

For (2), the conclusion can be directly obtained.
For (1), if @ = m, then arg(d; (e 7)) = 0 and (3.13)) holds. Introduce ¢ = arg(z) and
r = e Tlelcos(®) When @ € (0,7) and ¢ < Z, i.e., r < 1, then we have

—2rcos % cos
cot (arg (&,2(67“))) = 3/22r32in(a))(?)rj_sin(2(1)()2/(12))/2
_3/2—2rcos(0) +r*(2cos* (@) — 1)/2
T 2rsin(0) — sin() cos(o)
(-9) et 2
sin(®) (2r — 12 cos(m))

(% - %) cos(w)
sin(®) (2r —r2cos(w))  sin()
1 cos(m)
~ sin(®) (2—cos(w))  sin(®)
1 —(2—cos(w))cos(®)
sin(w) (2 —cos())

Thus arg (6; (e 7)) < /2.
When ¢ > /2, choosing ¢ close to /2, using Lemma[32]and the definitions of ;>
and w, we have

1|8, (e ORlITs@TioN < ¢ and  |8:5(e7?)| > Clz|, o €[0,1],

where 8 ,(z) means the first derivative about z. Thus we obtain

5; 2(e—o\zlrcos((p)e—iw)m.cos((p)

)

|6172(€_‘Z|TC0S<¢)e_im) _ 5‘;’2(64@)‘ <C ‘e—c\zlrcos((p)‘

<Clcos(¢)|[8z2(e )]
T s
<c|p— 3|82,
Using the fact [20] that when [{| <1 and { # 0, 6;2({) € Xz, holds, we have ; (e )
lies in a sector Xy 5 .

So, we have proved (3.13) when arg(z) € [0, 6]. The case arg(z) € [—6,0) can be proved
in the same way.
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Theorem 3.2 Let G(xg,p,t) and G" be the solutions of Eqs. @) and (B9) respectively
and assume Go € L*(Q). Then there exist

1G(x0,p1a) = Gl 2(0) < Cty *T(|Go I 12(q) -
Proof Subtracting (3.13) from the inverse Laplace transform of (3.8) leads to

1G(x0,p51n) = G" || 12(q)

<C‘ ﬁ/FB.Keztn((ﬁ(Z))a_'_A)—IA(IB(Z)),lGOdZ
*zim/r ¢ ((Bra(2))* +A) TA(Bra(2)) (e PGz
0.k L)
= /FM\FT ((B(2)*+A) ' A(B(2) "' dz 1Goll 2 )

| [ e B+ ABE)

— ((Be2(2)* +4) " A(Bea(2)) (e P D)) e[ Gol 2 0
<C(I+1)||Goll;2(q)-

For I, using Lemma[22] it has

1 S/ e ||z| 7t |dz| < C‘L'Z/ o8O gy < cr 272
FB.K\I—‘GT.K T

Tsin(6)

As for 11, it can be split as

1< /;T e ((B(2)*+4)"A(B(2) ™" = ((Bea(2)* +A4)'A(B(2)) ") dz
L e ((Beale)™ + A)ABE) !~ (Beal@) +4) M A(Bea(a)) ) e
+ /FT 61["((/3f,2(z))a+A)_1A(ﬁ1,2(z))_] (1 —u (e—fﬁr,z(z))) dzll .

Then by Lemmas [32land the facts
[((B)*+A) T AB(2) " = ((Bea(2)*+A)'A(B(2)) ']
=[[((B@)* +4) " ((Be2(2))* = (B(2)*)((Br2(2)* +A4)'A(B(2) || < €[z

and p(e %) = 1+ 0(z272) [22]], we have
1 gc#/ e |z]|dz| < CTt, 2.
T

Thus
1G(x0,0,t2) = G" | 12(0) < Cty *T|Goll12(g)-
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4 Space discretization and error analysis

In this section, we discretize Laplacian by the finite element method and provide the error
estimate for the fully discrete scheme of Eq. (2.I). Here we construct the fully discrete
scheme based on backward Euler scheme (3.2)); the corresponding one for (3.9) will be
commented at the end of this section. Let .7}, be a shape regular quasi-uniform partitions
of the domain £, where % is the maximum diameter. Denote X, as piecewise linear finite
element space

X, = {vh € C(Q) :vh|T S f@], VT € 9, Vh|¢')Q :0},

where 22! denotes the set of piecewise polynomials of degree 1 over 7. Then we define
the L*-orthogonal projection P, : L*(2) — Xj, by

(Paut,vpy) = (u,vp) Vv, € X

Denote (-, ) as the L, inner product. Then the fully discrete scheme for Eq. (Z.I) reads: Find
G}, € X, such that

el n—1
(Z d;x,letipU(xo)G;lli’vh> + (VG V) = (etnPU(xo) Z dl.a’lGo,Vh> “4.1
i=0 =0

for any v;, € X,. For convenience, denote f(xo,p,t) = e PV GO, £(1) = f(x0,p,1), f" =
f(tn), and f}! = P, f" in the following. Thus @I} can be rewritten as

el n—1
( d?’letipU<x0)GZl,Vh) +(VG}, V) = (Z d;x-,lf;l’7vh) 4.2)
0 i=0

=
for any v;, € Xj,.

Remark 4.1 Using the time discretization introduced in Sec. 3, the time semi-discrete scheme
of Eq. (I.I) can be written as

ananl n—1 . .

—+ d® e iPURIAGM 4 pU (x9)G" =0, x €, n=1,...,N,
i=0

G’ =G, X €Q,

Gn(X())IO, X0 €dQ, n=1,...,N,

and the fully discrete scheme has the form

G — Gn—l n—1 . )
—h —h ) - Y a (e""pU(xO)AGZ_’,v;,) +(pU(x0)Gh,vi) =0, Vv, € Xy,
i=0

T
(4.3)
or

G — anl n—1 .
<%7vh) + Z d;x-,l (Vszt7ve*fiPU(X0)vh) + (pU(xO)GZ’vh) = 07 V\)h € Xy.
i=0

4.4)
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It is easy to see that the second term ():;‘;01 dlq’] e”ipU("0>AG2_i, vh) in (£3) vanishes since

Gﬁl € Xj,. As for (@4), we need to require U (x() regular enough to guarantee
(eiIfPU(XO)AGZ#,vh) — (VGZii,Veft"pU(xO)vh) )

Thus the equivalent form (2.1)) can help to construct numerical scheme efficiently and reduce
the requirement of the regularity of U (xg).

Define the discrete operator Aj: X;, — X}, satisfying
(Anttp, vi) = (Vup, Vvp) - Vup, vy € X

Then (&) can be rewritten as

n—1 n—1
Z dia,le—t,-pU(xo)szi_‘_AhG;tl _ Z d,'o"lfg' 4.5)
i=0 =0

Multiplying " and summing 7 from 1 to  for Eq. {.3) lead to

o n—1 ) oo n—1
Y Y die PG L Y MG = Y Y d g
n=1i=0 n=1 n=1i=0
Taking { = e % and using Cauchy’s integral theorem lead to
T . o n—|
Gl — _/ (Bt (2) +an) "' Y Y d% frendz. (4.6)
2mi Jry, n=1i=0
Similarly, the solution G" of semi-discrete scheme (3.2)) can also be written as
T . o n—|
G = = / N (Ber (@) +A) Y Y d® frenaz, @.7)
2 Jry, n=1i=0

Remark 4.2 According to [3L[16]], the convergence in space can be obtained by estimating

1G" = Ghlli2(a)

=C /1"1’ eZtn((ﬁT-,l(Z))a+A)71(ﬁf,1(2))a71G0dZ
_/1._1 eUn((ﬁf,l(Z))a-l-Ah)_](ﬁf’l(z))a_'PhGodZ
. (@)
<C [ ||((Bri(2)*+A) " (Bri(2)*!

FGT,K
= ((Bea () +A) ™" (Bea () By l42l 1 Goll 2 -

where the representation of G)} can be got by modifying the fully discrete scheme (.1} as

n—1 n—1
(Z d*'e PV ("0>G2’,vh> +(VG}, V) = <ef"PU<x0> Yy dia’lPhGo,vh> .48
i=0 i=0
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Since we need to estimate ||((Bz,1(2)*+4) " (Be.1(2)* ' = ((Be.1(2)* +4n) " (Be1(2)* ' Aull.

the following equation is needed (refer to the proof of Lemma [£.2))

((Be1(2))%G®vi) = ((Bea (2) “PuGvi) - Vi € Xp. 4.9)
Obviously Eq. (£39) holds only when U (xp) is regular enough and the grid mesh is suitable.

But for the scheme (4.1)), the equality (£.9) is no longer necessary. Next we introduce two
lemmas, which will be used in the error estimate between Eqs. (3.2) and (£.1).

Lemma 4.1 ([3]) For any 11, » > 0 with 6 € (1/2, ), there exists

Inz+mnl

sin(@2) 107 € Fro:

nlz+rn < —m0m

Lemma 4.2 Letv e L*(Q)and z € Zg . Denote w = ((B1(z))*+A) " 'vand wy, = ((Br.1(2))*+
Ah)*lth. There exists

lw—wall2(0) +hllw = wall g1 gy < CH||V]I12(q)
Proof Using the definitions of w, wy, A and A, we have
((Be1(2)*w,0) + (Vw, V) = (nx) Vi € Hy(Q),
((Be1(2)%wn, x) + (Vwi, V) = (Piv,X) VX € X

Denote ¢ = w —wy,. Thus
((Bz1(2))%e.x) +(Ve,VX) =0 Vx € X, (4.10)

Choose Bz ymax = Br,1(z,x) for some x € Q satisfying |Br max| = supycq |Br.1(z,x)| and B jin =
Bz.1(z,x) for some x € Q satisfying |Br min| = infreq |Br,1(z,x)|. According to Lemmas[3.]
and 4] there exists

B alllelZ2 ) + 1 Vell7 ) ClBE il llelZ2 o) + 1 VellF q)
<C|((Br1 ()% )|+ | Vel 72 g
<C|((Bz,1(2)) %, ) + (Ve,Ve)|
<C|((Be.1(2))%e,w—x) + (Ve,V(w—x))l,

the detailed derivations of which can be seen in Appendix A. Taking )y = m,w as the La-
grange interpolation of w and using the Cauchy-Schwarz inequality, we have

(4.11)

1BE il 12 ) + 11Vl ) < € (1BE aullellz ) IVl 120y + B Vellz Wy ) -
Using Lemma ] again, it has

Bl 191220y + 199112 ) <CI(((Be (2)* +A)w )| < CIVl 2y ¥l 2
which leads to

wllz2(0) < ClI™* V2@ VW2 i) < Clal ™[Vl
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On the other hand, we can obtain

Wl @) =AWl 20y < ClIH(=(Bea (2))* + (Be.a (2)* +A) ((Be1 (2))* +4) "Vl 12(q)
<C(IVll2 () + 121wl 2(0) < ClIVI2 ()

Thus we have
1B il gy + Vel g
<Chlvl2@) (121 2lellz @) + IVell 2o )
which leads to
‘Bf,max|a/2||e”L2(Q) +Vell2 ) < Chllv]2(a)- (4.12)
To get the L? estimate, for ¢ € L?() we set

v =((Be1(2)*+4)"'9.

Using Lemma[3.1] we have

IWllz@) < ClIT19ll2@):  1AVI20) < ClI#l2 @) (4.13)

Interpolation property leads to

W1 < Clel™*I19].2(0)- (4.14)
By duality, there is
o Ve,V
HeHLZ(Q)S sup ‘(ev(p” < sup |((ﬁ‘rﬁ1(z)) e,l[f)+( ¢, W)|
serr() 1912 @) ™ gerr(a) 101l:2(0)

Furthermore,

[((Bz1(2)%e, w) + (Ve, V)| =[((Br,1(2)) *e, w — Poy) + (Ve,V(y — By))|
S\Z|a/2\|€\|LZ<Q) 2%y — Pyl 2 q)
+ Vel 2 o) V(¥ = Pov) [l 1200
<CH||Vll2(0) 11l2(0)»

which follows by Eqgs. (@.12)), (£13), and (@.14). Thus, the desired estimate is obtained.

Theorem 4.1 Ler G" and G}} be the solutions of Egs. 3.2) and @.1) respectively and assume
Go € L*(Q). Then we obtain

1G" = Ghll2(0) +hIV(G" = G}l 1210y < CHt, *[|Goll2(q)-
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Proof Subtracting (£.6) from (€.7) yields
1G" = Ghll 2 (@)

o j—I )
SC T/ eZtn(((ﬁTﬁl(Z))a{»A)*l 7((ﬁ‘r](z))a+Ah IPh Z Zdla-,lfjefz[jdz
FGT.K j=1i=0 LZ(Q)

S CT/ |ezln |
e

0.k

[(Bea(2)*+A) ™" = ((Bea(2)*+An) "Bl

o j—1

Z Z dfalGoe—t,-(HpU(xo))

j=1i=0

<c e
s

Thus by Lemma 2] there is
1G" =Gl 2 ) < ChZf,:a”GOHL?(Q)

|dz|
@)

(@)% +4) 7" = ((Bea(2)* + A1) " Pul 1B ()| *~ "z Goll 2 )

Similarly, it can be obtained that
1G" = Gyl (o)

o j—I

o [ (Bra @)+ A) "~ (Bea () A0 ') gg a! fle s

S CT/ |ezln |
e

0.k

<c

HY(Q)

[((Bea(@)* +A4) ™" = (Bea () +A1) "' Pl 20010
(2) (Q)

|dz]
@)

'nMs

i 4% GoetiPU )

<c e
I

1Be1 ()1~ dzl1Goll 2 @)
< Chi™%||Goll 2

(B () +A)™" = (B @) +40) " Pll 2 ) 11

Remark 4.3 Comparing Theorem [£.1] and Remark 2] it is easy to see that our numerical
scheme (£.I) needs much less regularity requirement of U (xo) than scheme (3) to keep the
optimal convergence rate.

Remark 4.4 In this section, we provide the complete error analysis based on the time first
order scheme (3.2)). Similarly, from the second order scheme (3.9)), the fully discrete scheme
can be written as: for any v;, € Xj,

1
E(VPh(e_"”U 0 G, V)

- (Ph(e_"pU<X0)dg"2G0),vh) , n=1;

n—1
(Z d;x,Ze—tipU(X())GZ_’7vh> +(VG}, V)

i=0

(e_’OpU(XO)G;l,,Vh) + (VG,]” Vi) +
(4.15)

n—1
_ Zdlaz (Ph(e*tnpUO‘O)Go)?vh)’ n:2’...,N.

i=0
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The optimal convergence of the scheme (4.13) can be similarly got by the techniques used
in this section.

5 Numerical experiments

In this section, we first present four numerical experiments to validate the predicted conver-
gence rate of our numerical schemes and then provide an example to show the difference
between (@) and {8). Due to the unknown exact solution, the spatial errors can be tested

by
Ey =G} — GZ/ZHLZ(Q)a

where Gj means the numerical solution of G at time #, with mesh size h; similarly, the
temporal errors can be tested by

E; =G — G’Z/z\lem),

where G’ are the numerical solutions of G at the fixed time #, with time step size 7. And
corresponding convergence rates can be calculated by

In(Ey/Ep2) _ In(Ec/Er)p)
m2) 0 =g

For convenience, we choose the domain Q = (0, 1).
Here, the following two groups of initial values and U (x() are used:

(@)

Rate =

Go(x0) = X0,1/2), U(x0) = X(1/2,1)s
(b)
Go(x0) = X(0,1/2), U(x0) =xo,
where ¥(, ) denotes the characteristic function on (a,D).
Example 1 In this example, we use backward Euler scheme (3.2)) to solve Eq. (Z.I) under
condition (@) and show the corresponding numerical results. Here we take 7 =1, p = 1 +1,
o=0.3,0.7,and T = 1/50, 1/100, 1/200, 1/400. We use small spatial mesh size h = 1/128

so that the spatial discretization error is relatively negligible. Table [ presents the L* errors
and convergence rates, which agree with Theorem 3.1]

Table 1 L? errors and convergence rates with condition @) using numerical scheme (3.2

o\t 1/50 1/100 1/200 1/400
0.3 | 6.435E-05 3.201E-05 1.597E-05 7.974E-06
Rate 1.0072 1.0036 1.0018

0.7 | L.118E-04 5.521E-05 2.743E-05 1.368E-05
Rate 1.0180 1.0089 1.0045
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Table 2 L? errors and convergence rates with condition @ using numerical scheme (3.9)

o\T 1/10 1720 1/40 1/80

0.3 | 5.185E-05 1.192E-05 2.875E-06 7.110E-07
Rate 2.1215 2.0515 2.0154

0.7 | 1.452E-04 3.343E-05 7.981E-06 1.968E-06
Rate 2.1190 2.0665 2.0199

Example 2 1In this example, we use second-order backward difference scheme (3.9) to solve
Eq. 2.) under condition @). Here we take T =1, p = —1 +i, ® =0.3,0.7, and T = 1/10,
1/20, 1/40, 1/80. To investigate the convergence in time and eliminate the influence from
spatial discretization, we set & = 1/128. Table [ presents the L? errors and convergence
rates, which agree with Theorem [3.2]

Example 3 We consider the spatial convergence of numerical scheme (£.2)) under condition
(B) and present the numerical results. Here we take T =1, p =2 +1i, a = 0.2, 0.8, and
h=1/16, 1/32, 1/64, 1/128. To investigate the convergence in spatial and eliminate the
influence from temporal discretization, we set T = 1/1000. Table [3 presents the L? errors
and convergence rates and TableE provides the H' errors and convergence rates, which both
agree with the results of Theorem [£.11

Table 3 L? errors and convergence rates with condition (B) using numerical scheme (@2)

o\h 1/16 1/32 1/64 1/128

0.2 | 1.072E-04 2.683E-05 6.708E-06 1.677E-06
Rate 1.9988 1.9997 1.9999

0.8 | 3.151E-05 7.885E-06 1.972E-06 4.929E-07
Rate 1.9989 1.9997 1.9999

Table 4 H' errors and convergence rates with condition (B) using numerical scheme @2)

o\h 1/16 1/32 1/64 1/128

0.2 | 6.062E-03 3.033E-03 1.517E-03 7.586E-04
Rate 0.9987 0.9997 0.9999

0.8 | 1.673E-03 8.371E-04 4.186E-04 2.093E-04
Rate 0.9991 0.9998 0.9999

Example 4 We consider the spatial convergence of numerical scheme (.13) under condi-
tion @ and show the numerical results. Here we take 7 =1, p = =2 +1i, o = 0.4, 0.6,
and h = 1/10, 1/20, 1/40, 1/80. We use small time step 7 = 1/1000 so that the temporal
discretization error is relatively negligible. Table 8] presents the L? errors and convergence
rates and Table 6l provides the H' errors and convergence rates. These results show that the
numerical scheme achieves optimal convergence rates in L?- and H'-norm.

Example 5 In this example, we want to verify the effectiveness of our numerical scheme
(4.2). We show the numerical results for solving Eq. 2.1) under condition (@). Here we take
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Table 5 L? errors and convergence rates with condition @) using numerical scheme E.13)

o\h 1/10 1720 1740 1/80

0.4 | 1.296E-04 3.247E-05 8.159E-06 2.062E-06
Rate 1.9966 1.9927 1.9842

0.6 | 9.379E-05 2.355E-05 5.944E-06 1.517E-06
Rate 1.9934 1.9864 1.9707

Table 6 H' errors and convergence rates with condition @) using numerical scheme #.13)

o\h 1/10 1720 1740 1/80

0.4 | 7.296E-03 3.648E-03 1.824E-03 9.120E-04
Rate 1.0000 1.0000 1.0000

0.6 | 5.132E-03 2.566E-03  1.283E-03 6.415E-04
Rate 0.9999 1.0000 1.0000

T=1,t=1/1000,p =—1+i,¢=0.4,0.6,and h=1/16, 1/32, 1/64, 1/128. Table[Zlland
Table [§ present the L? errors and convergence rates of numerical schemes @2) and &S8)
respectively. Comparing these results, it can be found that the errors of numerical scheme
(48] are much bigger and it can’t achieve optimal convergence rates. These results show
that our scheme is effective.

Table 7 L? errors and convergence rates with condition (@) using numerical scheme #2))

o\h 1/16 1/32 1/64 1/128

0.4 | 1.296E-04 3.239E-05 8.097E-06 2.024E-06
Rate 2.0001 2.0000 2.0000

0.6 | 9.277E-05 2.319E-05 5.798E-06  1.450E-06
Rate 1.9999 2.0000 2.0000

Table 8 L? errors and convergence rates with condition (@) using numerical scheme #8)

o\h 1/16 1/32 1/64 1/128

0.4 | 9.232E-04 4.620E-04 2.315E-04 1.160E-04
Rate 0.9988 0.9967 0.9976

0.6 | 6.282E-04 3.150E-04 1.580E-04 7.919E-05
Rate 0.9959 0.9950 0.9968

6 Conclusion

Backward fractional Feynman-Kac equation describes the functional distribution of anoma-
lous diffusion process. The challenge of regularity analysis and numerical analysis mainly
comes from its time-space coupled fractional substantial derivative. This work weakens the
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regularity requirement of the function U (x) in obtaining the optimal convergence rates. The
provided numerical schemes do not need to make the assumptions on the regularity of the
exact solution in temporal and spatial directions. The error estimates are presented with opti-
mal convergence rates. The performed numerical experiments not only verify the theoretical
predictions but also show the effectiveness of the techniques introduced in the scheme to
keep the accuracy.
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A Derivation of (.11)

Without loss of generality, we denote 2 = [0,1], 0 =xp < x] < -+- <x, = I, and Ax; = x; —x;_;. Let
0 = sup,cq arg((Br,1(z,x))%) —infrcg arg((Br,1 (z,x))%). Then we have

1 n
‘((ﬁu(ax))“e,e)‘ = ‘/0 (Be.1(z,x))%e(x)*dx :r}gr; ZAxi(ﬁr,l(Z,xi))a (x1)?
>cos 9 lim iAx-e(x)z\(ﬁ (z,%:))%]
B nsen &t i€\Xi T,1\& A
>cos 9 lim iAx-e(x)z\,Ba inl
= 2 "*}wizl 1 1 T,min
0
>os (5 ) 18%llel
Therefore,
0
cos (§ ) Bl < [((Bes () e
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