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Abstract. In this paper we propose a stochastic primal dual fixed point method (SPDFP) for solving the sum
of two proper lower semi-continuous convex function and one of which is composite. The method is based on the
primal dual fixed point method (PDFP) proposed in [7] that does not require subproblem solving. Under some mild
condition, the convergence is established based on two sets of assumptions: bounded and unbounded gradients and
the convergence rate of the expected error of iterate is of the order O(k−α) where k is iteration number and α ∈ (0, 1].
Finally, numerical examples on graphic Lasso and logistic regressions are given to demonstrate the effectiveness of
the proposed algorithm.
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1 Introduction. This paper is devoted to discussing a stochastic algorithm based on the
primal dual fixed point method (PDFP) [7] for minimizing the sum of two proper semi-continuous
convex functions, one of which is a composite, i.e.,

(1.1) x∗ = arg min
x∈Rd

(f1 ◦B)(x) + f2(x),

where f1(x) may not be differentiable and B : Rd → Rm is a linear transform. The function f2(x)
is proper convex lower semi-continous on Rd with the following form:

(1.2) f2(x) =
1

n

n∑
i=1

φi(x),

where φi(x), i = 1, · · · , n are smooth convex functions.
Many problems in machine learning can be formulated as in (1.1). For example, the generalized

lasso [31] is given as follows:

(1.3) x∗ = arg min
x∈Rd

1

n

n∑
i=1

φi(x) + µ‖Bx‖1,

where x ∈ Rd, µ > 0 is the regularization parameter and B the penalty matrix specifying a certain
sparsity pattern of x. The function φi(x) can be square loss φi(x) = 1

2 (aTi x − bi)2, logistic loss
φi(x) = log(1 + exp(−biaTi x)), and hinge loss φi(x) = max{0, 1 − biaTi x}, where ai ∈ Rd denotes
the ith sample and bi ∈ R denotes the label of the sample.

1.1 Motivation. The problem dates back to the structural risk minimization principle in
[32], in which the goal of statistical learning is to minimize the regularized expected risk function:

F (x) = Eξ(L(x, ξ)) +R(x),
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2 YANAN ZHU AND XIAOQUN ZHANG

where L(x, ξ) is the loss when applying the prediction rule x on ξ and R(x) is the regularizer. Rather
than computing the expectation of the loss, one can use a set of training samples to minimize the
regularized empirical risk:

Femp(x) =
1

n

n∑
i=1

L(x, ξi) +R(x).

If the number of samples n is large enough, the regularized expected risk F (x) and the regularized
empirical risk Femp(x) are close with high probability. Since the number of training samples is large,
computing the gradient of the first term of the Femp(x) will be time consuming, which means it will
be inefficient when we directly use many formal algorithms to minimize Femp(x). Thus, instead of
using all the samples to compute the full gradient, the stochastic algorithms use one sample or a
small portion of the samples to compute a noisy gradient in each iteration to reduce the complexity
of the algorithms.

1.2 Recent work. If the linear transform B is the identity, the problem can be rewritten as

(1.4) x∗ = arg min
x∈Rd

f1(x) + f2(x),

and there are many algorithms that can solve it. For deterministic (or batch) algorithms, e.g.,
the proximal gradient descent (PGD) method (also known as proximal forward backward splitting
(PFBS)] [8] and its acceleration versions [4, 20, 14]. If f2(x) has the form (1.2), many researchers
study the stochastic version of PGD algorithms, e.g., stochastic proximal gradient (SPG) descent
[25, 10]. The difference between PGD and SPG descent is that PGD uses all the samples to compute
the full gradient in each iteration, while SPG descent uses one or a small portion of the samples to
compute a noisy gradient. Owing to variance caused by random sampling, SPG descent uses dimin-
ishing step size, which leads to a sub-linear convergence rate. To accelerate the convergence rate and
use a larger step size, many researchers apply variance-reduction techniques to these algorithms,
e.g., the proximal stochastic dual coordinate ascent (Prox-SDCA) method [27] and its acceleration
[28] and the proximal stochastic gradient method with variance reduction (Prox-SVRG) [34].

If the linear transform B 6= I, PGD and SPG descent will have to solve Proxf1◦B(·), which is
not easy in many problems. To deal with it, many deterministic and stochastic algorithms were
designed, e.g., the split Bregman method [11, 26], the alternating direction of multipliers method
(ADMM) [15, 9], and the fixed-point method based on proximity operator (FP2O) [17]. Inspired
by FP2O, the authors in [7] used just one step for the sub-problem of FP2O and proposed the pri-
mal dual fixed-point (PDFP) algorithms. Noting the simplicity of the PDFP approach for solving
the problem (1.1), we study the stochastic version of the PDFP algorithms and apply it to solve
machine-learning problems.

Among the stochastic algorithms used to solve (1.1), the most popular stochastic algorithms are
the stochastic versions of ADMM. There are many types of the stochastic ADMMs, e.g., stochastic
ADMM (STOC-ADMM) [21], the convergence rate of which isO(1/

√
k) for general convex functions

and O(log(k)/k) for strongly convex functions, where k is the iteration number. Based on regu-
larized dual averaging (RDA) [33] and the online proximal gradient (OPG) [38], Suzuki proposed
the RDA-ADMM and OPG-ADMM [29], the convergence rates of which are the same for general
and strongly convex objective functions as STOC-ADMM. To accelerate the algorithms, several
researchers have utilized variance-reduction techniques in the stochastic ADMMs. For example,
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Table 1
Convergence rate of stochastic ADMMs

Algorithms general convex strongly convex storage

STOC-ADMM [36] O(1/
√
k) O(log(k)/k) O(md+ d2)

RDA-ADMM [29] O(1/
√
k) O(log(k)/k) O(md)

OPG-ADMM [29] O(1/
√
k) O(log(k)/k) O(md)

SAG-ADMM [37] O(1/k) unknown O(nd+md)
SCAS-ADMM [35] O(1/k) O(1/k) O(md)
SDCA-ADMM [30] unknown linear O(n+md)
SVRG-ADMM [36] O(1/k) linear O(md)

Zhong-Kwok proposed the stochastic averaged gradient ADMM (SA-ADMM) [37] by combining
the stochastic averaged gradient [19] and ADMM. The SA-ADMM can achieve a O(1/k) conver-
gence rate for general convex objective functions, while the rate for strongly convex functions is
unknown. SA-ADMM requires extra memory to store historical gradients to approximate the full
gradient, which is not scalable in term of storage. Thus, Zhao et al. proposed the scalable ADMM
(SCAS-ADMM) [35] with a O(1/k) convergence rate for general and strongly convex objective func-
tions. Although SA-ADMM and SCAS-ADMM use the variance-reduction technique, they both
have a sublinear convergence rate, which defeats the original purpose of using variance reduction.
Thus, Suzuki [30] and Zheng-Kwok [36] put forward the stochastic dual coordinate ascent ADMM
(SDCA-ADMM) and stochastic variance-reduced ADMM (SVRG-ADMM) methods, respectively.
Both algorithms can achieve a linear convergence rate for strongly convex functions. Different from
SDCA-ADMM, SVRG-ADMM is more scalable in terms of storage. Table 1 summarizes the con-
vergence rate and storage requirements of different stochastic ADMM algorithms.
In this paper. we propose a stochastic version of PDFP. Under the boundness and non-boundness
gradients of function f2(x), we prove both the convergence and convergence rate of SPDFP. Com-
pared with the stochastic version of ADMM, the computation of SPDFP only involves matrix vector
multiplication and proximal operation, which is easy for many problems. Therefore, SPDFP can
serve as an alternative to solve many machine-learning problems. In addition, numerical results
of SPDFP on fussed lasso, graph guide support vector machine (SVM) and graph guide logistic
regression on real data show some advantages compared to other state-of-the-art methods.

1.3 Organization of this paper. The paper is organized as follows. In Section 2, we present
notations and lemmas that are used throughout the paper. In Section 3, we introduce SPDFP
Algorithm 1 and its equivalent form Algorithm 2. Algorithm 1 will be used in convergence analysis,
while Algorithm 2 will be used in implementation for numerical stability concerns. We then pro-
vide the convergence analysis of the algorithms. Based on different assumptions, we give different
convergence results of the algorithms. Finally, several numerical examples are given to show the
effectiveness of the algorithms.

2 Preliminaries. In this section, we present notation and lemmas used througnout the
paper.

Definition 2.1. The operator Proxf (·) is defined by

Proxf (y) (Rd → Rd) : y → arg min
x∈Rd

{
f(x) +

1

2
‖x− y‖22

}
.
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Definition 2.2. Letting f be a proper convex lower semi-continuous function on X , then the
sub-differential of f is a set-valued operator ∂f : X → 2X defined by

∂f(x) = {s ∈ X |f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ X}.

Definition 2.3. An operator T : Rd → Rd is firmly non-expansive if and only if it satisfies

‖Tx− Ty‖22 ≤
〈
Tx− Ty, x− y

〉
for all (x, y) ∈ Rd × Rd. It can be verified that Proxf and I − Proxf are firmly non-expansive.

Lemma 2.4. If f is convex and has 1
β -Lipschitz continuous gradients, then〈

∇f(x)−∇f(y), x− y
〉
≥ β‖∇f(x)−∇f(y)‖22

for all x, y ∈ Rm.
If f is ν-strongly convex, then 〈

∇f(x)−∇f(y), x− y
〉
≥ ν‖x− y‖22.

Definition 2.5. [18, 23, 25] Define a family of functions (ϕc)c∈R as follows:

ϕc : (0,+∞)→ R : t→

{
(tc − 1)/c if c 6= 0

log(t) if c = 0.

The following lemma is important in the proof of the convergence rate of SPDFP. It can also
be found in Lemma 4.4 of [25].

Lemma 2.6. [18, 23, 25] Let α be in (0, 1), and let c and τ be in (0,∞); (ηk)k∈N∗ is a strictly
positive sequence defined by ηk = c

kα and k ∈ N∗. (sk)k∈N∗ is a sequence satisfying

0 ≤ sk+1 ≤ (1− ηk)sk + τη2k ∀k ∈ N∗.

Let k0 be the smallest integer such that ηk0 ≤ 1. Then, for every k ≥ 2k0 the following estimate
holds:

sk+1 ≤



(
τc2ϕ1−2α(k) + sk0 exp

(ck1−α0

1− α

))
exp

(−c(1− 2α−1)(k + 1)1−α

1− α

)
+

τ2αc

(k − 2)α
,

if α ∈ (0, 1).

sk0

( k0
k + 1

)c
+

τc2

(k + 1)c
(1 +

1

k0
)cϕc−1(k) if α = 1.

Remark 2.7. From Lemma 2.6, it can be seen that

sk =


O(k−α) if α ∈ (0, 1)

O(k−1) +O
( log(k)

k

)
if α = 1, c = 1.

O(k−c) +O(k−1) if α = 1, c 6= 1.
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3 Algorithms. In this section, we present the SPDFP and its variant. First, we present the
fixed-point formulation for the solution of (1.1), which can be found in Theorem 3.1 of [7].

Theorem 3.1. ([7],Theorem 3.1) Let λ and γ be two positive numbers. Supposing that x∗ is a
solution of (1.1), then there exists v∗ ∈ Rm such that

(3.1)


v∗ = (I − Prox γ

λ f1
)(B(x∗ − γ∇f2(x) + (I − λBBT )v∗)

= T̃0(x∗, v∗)

x∗ = x∗ − γ∇f2(x)− λBT T̃0(x∗, v∗)

The PDFP is given as

Algorithm: Primal dual fixed-point method

step 1:set x1 ∈ Rd, v1 ∈ Rm and choose proper γ > 0, λ > 0, then
step 2:for k = 1, 2, · · ·

xk+ 1
2

= xk − γ∇f2(xk)

vk+1 =
(
I − Prox γ

λ f1

)(
Bxk+ 1

2
+ (I − λBBT )vk

)
xk+1 = xk+ 1

2
− λBT vk+1

until the stopping criterion is satisfied.

From (3.1), it can be seen that the PDFP is actually a fixed-point iteration. In addition, PDFP
uses the full gradient and constant step size in each step, which is not applicable for many large-
scale problems. Generally, the stochastic version of PDFP will use a stochastic gradient instead of
a full gradient and diminishing step size to reduce the variance caused by random sampling.
We now give the notation for the stochastic gradient. Recalling the computation of the full gradient,

∇f2(x) =
1

n

n∑
j=1

∇φj(x)

the computation of the stochastic gradient is given as follows:
• Given batch size p, the set {1, 2, · · · , n} is divided into n

p non-overlapping batches, where
the number of entries of each batch is p.

• Then, the batch i is chosen with probability p
n and the stochastic gradient of f2 at x

[denoted ∇f [i]2 (x)] is given by

∇f [i]2 (x) =
1

p

ip∑
j=(i−1)p+1

∇φj(x).

It can be verified that the expectation of the stochastic gradient at x is exactly the full gradient,

i.e., E(∇f [i]2 (x)) = ∇f2(x), which means that the stochastic gradient is an unbiased estimate of the
full gradient.

This manuscript is for review purposes only.



6 YANAN ZHU AND XIAOQUN ZHANG

For a stochastic setting, the fixed-point formulation in (3.1) should be modified, and we give
the following lemma.

Lemma 3.2. Let λ > 0, γk > 0 be two positive numbers. Supposing that x∗ is a solution of
(1.1), then there exists v∗ ∈ ∂f1(Bx∗) such that

(3.2)


v∗ = (I − Proxhk)

( λ
γk
B(x∗ − γk∇f2(x∗)) + (I − λBBT )v∗

)
= T

(k)
0 (x∗, v∗)

x∗ = x∗ − γk∇f2(x∗)− γkBT ◦ T (k)
0 (x∗, v∗)

,

where hk(x) = λ
γk
f1(γkλ x). Conversely, if x∗, v∗ satisfy equation (3.2) then x∗ is the solution of

the problem (1.1).

Proof. See Appendix.

Using Lemma 3.2, considering the discussion above, and noting the fact that

(3.3)

v∗ =
(
I − Proxhk

)( λ
γk
B(x∗ − γk∇f2(x∗)) + (I − λBBT )v∗

)
⇔ v∗ =

λ

γk

(
I − Prox γk

λ f1

)(
B(x∗ − γk∇f2(x∗)) + (I − λBBT )

γk
λ
v∗
)
,

we introduce the SPDFP:

Algorithm 1: Stochastic primal dual fixed-point method

Step 1: Set x1 ∈ Rd, v1 ∈ Rm and choose proper c, λ, and α ∈ (0, 1]
Step 2: For k = 1, 2, · · ·

γk = c
kα

choose ik randomly from 1, 2, · · · , n/p with probability p
n .

xk+ 1
2

= xk − γk∇f [ik]2 (xk)

vk+1 = λ
γk

(
I − Prox γk

λ f1

)(
Bxk+ 1

2
+ (I − λBBT )γkλ vk

)
xk+1 = xk+ 1

2
− γkBT vk+1

until the stopping criterion is satisfied.
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Letting vk+1 := γk
λ vk+1, we have the following equivalent form:

Algorithm 2: Stochastic primal dual fixed-point method

Step 1: Set x1 ∈ Rd, v1 ∈ Rm and choose proper c and α ∈ (0, 1)
Step 2: Let k = 1, γ1 = c

choose i1 randomly from 1, 2, · · · , n/p with probability p
n

x1+ 1
2

= x1 − γ1∇f [i1]2 (x1)

v2 =
(
I − Prox γ1

λ f1

)(
Bx1+ 1

2
+ (I − λBBT )γ1λ v1

)
x2 = x1+ 1

2
− λBT v2

Step 3: For k = 2, 3, · · ·
γk = c

kα

choose ik randomly from 1, 2, · · · , n/p with probability p
n

xk+ 1
2

= xk − γk∇f [ik]2 (xk)

vk+1 =
(
I − Prox γk

λ f1

)(
Bxk+ 1

2
+
(
k−1
k

)α
(I − λBBT )vk

)
xk+1 = xk+ 1

2
− λBT vk+1

until the stop criterion is satisfied.

Remark 3.3. Algorithms 1 and 2 are equivalent by changing the notation. In the following, we
use Algorithm 1 for convergence analysis and Algorithm 2 for the numerical simulations.

It can be seen that the differences between PDFP and SPDFP (Algorithm 2) lie in step size
and the computation of gradient: PDFP uses a constant step size and full gradient, while SPDFP
uses diminishing step size and stochastic gradient. The reason for using diminishing step size in
SPDFP is to reduce the variance caused by random sampling. Moreover, there is a difference in
the update of the variable vk, i.e., in SPDFP there is a factor (k−1k )α.

4 Convergence analysis. In this section, we present the convergence results of SPDFP.
Under the assumption of bounded and non-boundness gradients of function f2(x), we give both
the convergence and convergence rate of SPDFP. In addition, Table 2 is given to summarize the
convergence results.

Before we show the convergence, we present the basic results on the sequence.

Lemma 4.1. Choosing 0 ≤ λ ≤ 1/ρmax(BBT ) and letting (xk, vk) be the iteration of Algorithm
1 and (x∗, v∗) as in Lemma 3.2, we then have the following estimate:

(4.1)

E(k+1)
(
‖xk+1 − x∗‖22 +

γ2k+1

λ
‖vk+1 − v∗‖22

)
≤ E(k)

(
‖xk − x∗‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

− 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(x∗)‖22),

where E(k)(·) denotes the expectation up to the k-th iteration and ρmax(BBT ), ρmin(BBT ) denote
the maximum and minimum eigenvalues of matrix BBT , respectively.

Proof. See Appendix.
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The inequality (4.1) is essential in the following convergence analysis. Here and in what follows
we use the notation

(4.2) ak = E(k)
(
‖xk − x∗‖22 +

γ2k
λ
‖vk − v∗‖22

)
,

and then the inequality (4.1) in Lemma 4.1 can be rewritten as

(4.3)
ak+1 ≤ E(k)

(
‖xk − x∗‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

− 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(x∗)‖22).

4.1 Bounded gradient. Now we establish the convergence of SPDFP based on the uniform
boundedness of the gradient of f2(x).

Theorem 4.2. Assuming f2(x) = 1
n

∑n
i=1 φi(x) + ν

2‖x‖
2
2 for some ν > 0 and ∇φi(x), i =

1, · · · , n are uniformly bounded. If we choose c > 0, α ∈ (0.5, 1] and 0 < λ < 1
ρ(BBT )

, then

(4.4) lim
k→∞

E(k)
(
‖xk − x∗‖22

)
→ 0.

Proof. Denote l(x) = 1
n

∑n
i=1 φi(x) and k0 to be the smallest number such that γk0 <

1
2ν ; then,

by Eq. (4.3), we have, for k > k0,

(4.5)

ak+1

1

≤ E(k)
(
‖xk − x∗‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

− 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)

(
‖∇f [ik]2 (xk)−∇f2(x∗)‖22

)
≤ ak − 2γkE(k)

〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)

(
‖∇l[ik](xk) + νxk −∇l(x∗)− νx∗‖22

)
2

≤ ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ 2ν2γ2kE(k)(‖xk − x∗‖22)

+ 2γ2kE(k+1)(‖∇l[ik](xk)−∇l(x∗)‖22)

,
3

≤ ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ 2ν2γ2kE(k)(‖xk − x∗‖22)

+ 4γ2k
(
E(k+1)(‖∇l[ik](xk)‖22) + ‖∇l(x∗)‖22

)
4

≤ ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ 2ν2γ2kE(k)(‖xk − x∗‖22) + γ2kM

5

≤ ak − 2νγk(1− νγk)E(k)(‖xk − x∗‖22) + γ2kM

6

≤ ak − νγkE(k)(‖xk − x∗‖22) + γ2kM

,

where
• Inequality 1 follows from Lemma 4.1.

• Inequalities 2 and 3 use the inequality ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22.
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• Inequality 4 uses the fact that the ∇l(x) is uniformly bounded, i.e., there must be a constant M

such that 4
(
E(k+1)‖∇l[ik](xk)‖22) + ‖∇l(x∗)‖22

)
≤M .

• Inequality 5 uses the strong convexity of function f2(x).

• Inequality 6 uses the fact that 2νγk(1− νγk) ≥ νγk since γk ≤ γk0 ≤ 1
2ν

for k ≥ k0.
Summing Eq. (4.5) from k0 to k, we have

(4.6)

k∑
k=k0

νγkE(k)(‖xk − x∗‖22) ≤ ak0 +M

k∑
k=k0

γ2k − ak+1

≤ ak0 +M

k∑
k=k0

γ2k.

Letting k → +∞, we obtain

(4.7)

+∞∑
k=k0

νγkE(k)(‖xk − x∗‖22) ≤ ak0 +M

+∞∑
k=k0

γ2k.

Since α ∈ (0.5, 1], we have
∑∞
k=k0

γk =∞ and
∑∞
k=k0

γ2k <∞. Thus, if lim
k→∞

E(k)(‖xk−x∗‖22 6→

0, then there must be a constant c > 0 such that E(k)(‖xk − x∗‖22) > c,∀k ≥ k0; we then have

(4.8) ∞ = cν

∞∑
k=k0

γk <

∞∑
k=k0

γkνE(k)(‖xk − x∗‖22) < ak0 +M

∞∑
k=k0

γ2k <∞.

Contradiction. Thus, lim
k→∞

E(k)(‖xk − x∗‖22 → 0.

Remark 4.3. It can be seen that Theorem 4.2 holds if we add a l2 term on logistic loss or hinge
loss.

Theorem 4.2 gives the convergence of SPDFP, but does not provide the convergence rate. The
following theorem gives the convergence rate of SPDFP.

Theorem 4.4. We assume that f2(x) = 1
n

∑n
i=1 φi(x) + ν

2‖x‖
2
2 for some ν > 0 and ∇φi(x) is

uniformly bounded (related to M). Furthermore, the matrix B has full row rank. Given c > 0, α ∈
(0, 1], 0 < λ < 1

ρmax(BBT )
in Algorithm 1, and letting k0 > 0 be an integer large enough such that

γk0 ≤ min{ 1
2ν and

λρmin(BB
T )

ν }, then the following estimate holds:

(4.9) ak+1 ≤ (1− νγk)ak + γ2kM, ∀k ≥ k0.

Proof. From the proof of (4.5), we have for k > k0
(4.10)

ak+1 ≤ E(k)
(
‖xk − x∗‖22

)
− νγkE(k)(‖xk − x∗‖22) + γ2kM +

γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

= (1− νγk)E(k)(‖xk − x∗‖22) +
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22) + γ2kM

≤ (1− νγk)E(k)
(
‖xk − x∗‖22 +

γ2k
λ
‖vk − v∗‖22

)
+ γ2kM

= (1− νγk)ak + γ2kM

.
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The first inequality of (4.10) holds since we replace ak by E(k)
(
‖xk−x∗‖22

)
+

γ2
k

λ (1−λρmin(BBT ))

E(k)(‖vk − v∗‖22) in Eq. (4.5) and use the fact that γk0 ≤ 1
2ν . The second inequality follows from

the fact that γk ≤ γk0 ≤
λρmin(BB

T )
ν ,∀k ≥ k0.

Corollary 4.5. If we let ηk = νγk and D = M
ν2 and c0 = νc, then Eq. (4.9) becomes

(4.11) ak+1 ≤ (1− ηk)ak + η2kD, ∀k ≥ k0.

Using Lemma 3.2 and the fact that ηk0 = νc
kα0
≤ 1

2 < 1 to Eq. (4.11), we obtain

(4.12)

ak+1 ≤



(
Dc20ϕ1−2α(k) + ak0 exp

(c0k1−α0

1− α

))
exp

(−c0(1− 2α−1)(k + 1)1−α

1− α

)
+

D2αc0
(k − 2)α

if α ∈ (0, 1).

ak0

( k0
k + 1

)c0
+

Dc20
(k + 1)c0

(1 +
1

k0
)c0ϕc0−1(k) if α = 1

for k ≥ 2k0. This gives the O(k−α) convergence rate of SPDFP.

4.2 Non-boundness of gradient. In the preceding section, we gave the convergence analy-
sis based on the bounded gradient of the first term of f2; however, if it is not true but the following
assumption holds, then there are also convergence results of SPDFP.

Assumption 4.1. There exist C1, C2 > 0 such that the following inequality holds:

(4.13) E(k+1)
(
‖∇f [ik]2 (xk)−∇f2(xk)‖22

)
≤ C1E(k)(‖xk‖22) + C2,

where xk denotes the kth iteration of Algorithm 1.

It can be seen that the left-hand side of Eq. (4.13) is

E(k+1)
(
‖∇f [ik]2 (xk)−∇f2(xk)‖22

)
= E(k+1)

(
‖∇f [ik]2 (xk)‖22

)
− E(k)

(
‖∇f2(xk)‖22

)
≤ E(k+1)

(
‖∇f [ik]2 (xk)‖22

)
.

Thus, to satisfy inequality (4.13), we only need to verify

(4.14) E(k+1)
(
‖∇f [ik]2 (xk)‖22

)
≤ C1E(k)(‖xk‖22) + C2.

If f2(x) is square loss i.e., f2(x) = 1
n‖Ax − b‖

2
2 = 1

n

∑n
i=1(aTi x − b(i))2 [here, aTi is the ith row of
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matrix A and b(i) is the ith component of vector b], then by the definition of ∇f [ik]2 (xk) we have

(4.15)

E(k+1)
(
‖∇f [ik]2 (xk)‖22

)
=

n/p∑
j=1

p

n

1

p2
E(k)

(
‖ATj (Ajxk − bj)‖22

)
≤ 1

np

n/p∑
j=1

ρmax(AjA
T
j )E(k)

(
‖(Ajxk − bj)‖22

)
≤ Lp
np

n/p∑
j=1

E(k)
(
‖Ajxk‖2 + ‖bj‖2

)2
≤ Lp
np

n/p∑
j=1

2
(
ρmax(ATj Aj)E(k)

(
‖xk‖22

)
+ ‖bj‖22

)
≤

2L2
p

p2
E(k)

(
‖(xk‖22

)
+

2Lp
np
‖b‖22,

where
• Aj is the sub-matrix of A drawn from (j − 1) ∗ p+ 1 to j ∗ p+ 1 rows and bj is a subvector

of b drawn from same index from b.
• Lp = max{ρmax(A1A

T
1 ), · · · , ρmax(An/pA

T
n/p)}.

Thus, we can choose C1 =
2L2

p

p2 and C2 =
2Lp
np ‖b‖

2
2 in Assumption 4.1. We now give the convergence

and convergence rate of SPDFP based on Assumption 4.1.

Theorem 4.6. Assuming f2(x) is ν-strongly convex, 1
β is the continuous gradient and Assump-

tion 4.1 holds. If we choose α ∈ (0.5, 1], γk = c
kα and 0 < λ ≤ 1

ρ(BBT )
, then

(4.16) lim
k→∞

E(k)
(
‖xk − x∗‖22

)
→ 0.

Proof. As before, letting k0 be large enough such that γk0 <
βν

2(ν+2C1β)
, then by Eq. (4.3) we

have, for k > k0,

(4.17)

ak+1

1

≤ ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(x∗)‖22)

= ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(xk) +∇f2(xk)−∇f2(x∗)‖22)

2

≤ ak − 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ 2γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(xk)‖22)

+ 2γ2kE(k)(‖∇f2(xk)−∇f2(x∗)‖22)

3

≤ ak − 2γk(1− γk
β

)E(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ 2γ2k

(
C1E(k)(‖xk‖22) + C2

)
4

≤ ak − 2γk(1− γk
β

)νE(k)(‖xk − x∗‖22) + 2γ2kC1E(k)
(
‖xk − x∗ + x∗‖22

)
+ 2γ2kC2,

This manuscript is for review purposes only.



12 YANAN ZHU AND XIAOQUN ZHANG

5

≤ ak − 2γk
(
1− (

1

β
+

2C1

ν
)γk
)
νE(k)(‖xk − x∗‖22) + γ2k

(
4C1‖x∗‖22 + 2C2

)
= ak − 2γk

(
1− ν + 2C1β

βν
γk
)
νE(k)(‖xk − x∗‖22) + γ2k

(
4C1‖x∗‖22 + 2C2

)
6

≤ ak − γkνE(k)(‖xk − x∗‖22) + γ2k
(
4C1‖x∗‖22 + 2C2

)
,

where
• Inequality 1 follows from Lemma 4.1.

• Inequality 2 and 5 use the inequality ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22.
• Inequality 3 uses Assumption 4.1 and 1

β
is the continuous gradient of f2(x).

• Inequality 4 uses the ν-strong convexity of function f2(x) and the fact that

γk ≤ γk0 ≤
βν

2(ν + 2C1β)
≤ β.

• Inequality 6 uses the fact that 2γk
(
1− ( ν+2C1β

βν
)γk

)
ν ≥ νγk since γk ≤ γk0 ≤

βν
2(ν+2C1β)

, ∀k ≥ k0.
Similar to Theorem 4.2, we obtain the result by contradiction.

For the convergence rate, we have the following theorem.

Theorem 4.7. Assuming f2(x) is ν-strongly convex 1
β smooth, Assumption 4.1 holds. Fur-

thermore, the matrix B has full row rank. Given c > 0, α ∈ (0, 1], 0 < λ < 1
ρmax(BBT )

, and letting

k0 > 0 be an integer large enough such that γk0 ≤ min{ βν
2(ν+2C1β)

, λρmin(BB
T )

ν }, then the following

estimate holds:

(4.18) ak+1 ≤ (1− νγk)ak + γ2kM1, ∀k ≥ k0,

where M1 = 4C1‖x∗‖22 + 2C2.

Proof. Recalling Eq. (4.17), we have, for k > k0,
(4.19)

ak+1 ≤ E(k)
(
‖xk − x∗‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)− νγkE(k)(‖xk − x∗‖22)

+ γ2k
(
4C1‖x∗‖22 + 2C2

)
= (1− νγk)E(k)(‖xk − x∗‖22) +

γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22) + γ2k
(
4C1‖x∗‖22 + 2C2

)
≤ (1− νγk)E(k)

(
‖xk − x∗‖22 +

γ2k
λ
‖vk − v∗‖22

)
+ γ2k

(
4C1‖x∗‖22 + 2C2

)
= (1− νγk)ak + γ2k

(
4C1‖x∗‖22 + 2C2

)
= (1− νγk)ak + γ2kM1.

In the first inequality, we replace ak by E(k)
(
‖xk − x∗‖22

)
+

γ2
k

λ (1 − λρmin(BBT ))E(k)(‖vk − v∗‖22)

in Eq. (4.17) and use the fact that γk0 ≤
βν

2(ν+2C1β)
. The second inequality follows from the fact

that γk ≤ γk0 ≤
λρmin(BB

T )
ν ,∀k ≥ k0.
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Corollary 4.8. If we let ηk = νγk and D =
4C1‖x∗‖22+2C2

ν2 , c0 = νc, then Eq. (4.9) become

(4.20) ak+1 ≤ (1− ηk)ak + η2kD, ∀k ≥ k0.

Letting K = max{k0, k1}, where k1 is the smallest integer such that ηk1 < 1, then, by using Lemma
3.2 to Eq. (4.11), we obtain

(4.21) ak+1 ≤



(
Dc20ϕ1−2α(k) + aKexp

(c0K1−α

1− α

))
exp
(−c0(1− 2α−1)(k + 1)1−α

1− α

)
+

D2αc0
(k − 2)α

if α ∈ (0, 1).

aK

( K

k + 1

)c0
+

Dc20
(k + 1)c0

(1 +
1

K
)c0ϕc0−1(k) if α = 1

for k ≥ 2K.

Table 2 summarizes the convergence results of SPDFP based on the following:
• Strong convexity of f2(x) (S.C.)
• Bounded gradient (BG)
• Assumption 4.1 (Asmp 4.1)
• Full row rank of matrix B (FrkB)
• Lipchitz continous gradient of f2(x) (Lip)
• Range of α (α)
• Convergence (Cg)
• Convergence rate (Cg rate)

Table 2
Summary of convergence results of SPDFP

Case S.C. BG Asmp 4.1 Lip FrkB α Cg Cg rate
Theorem 4.2 X X − − − (0.5, 1] X −
Theorem 4.4 X X − − X (0, 1] X X
Theorem 4.6 X − X X − (0.5, 1] X −
Theorem 4.7 X − X X X (0, 1] X X

Remark 4.9. It can be seen from Eq. (4.12) and Remark 2.7 that the best convergence rate
of SPDFP is O(1/k) (when α = 1, c > 1). However, the number k0 in Theorem 4.4 - Theorem 4.7
may be too large if the condition number of matrix BBT and f2(x) is bad. When this happens,
a larger α, which means faster decreasing step size, will diminish the overall performance of the
algorithm. Thus, in our second and third numerical examples, we choose α < 1, especially slightly
larger than 0.5 to solve some real-world datasets (see Section 5).

5 Numerical results. In this section, we investigate the numerical performance of SPDFP.
First, we synthesized an example called fussed lasso to see the behavior of SPDFP with different step
sizes (i.e., different α) to confirm the correctness of the convergence results. We then performed
experiments on graph guide SVM [21]. The comparison between SADMM [21] and SPDFP on
dataset 20newsgroups1 for a multi-class classification task will be given. Finally, we performed

1http://www.cs.nyu.edu/ roweis/data.html
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14 YANAN ZHU AND XIAOQUN ZHANG

experiments on graph guide logistic regression [2]. The comparisons between OPG-ADMM [29],
SCAS-ADMM [35], PDFP [7], and SPDFP on datasets a9a and covtype from LIBSVM [6] will
be presented.

5.1 Synthetic example. First, we consider a synthetized example called fussed lasso, i.e.,

(5.1) min
x∈Rd

1

2n
‖Ax− b‖22 + ν‖Bx‖1,

where A ∈ Rn×d, x ∈ Rd, b ∈ Rn, and matrix B ∈ R(n−1)×n is a sparse matrix, the diagonal entry
of which is −1; the upper diagonal entry is 1 and all the other entries are zero. The first term is a
data-fidelity term and the second term ensures the sparsity of successive differences in x.

We synthesize the problem as follows. The entries of A are drawn from standard normal
distribution. Its dimension is n = 10000 and d = 200. For vector b, we first draw a vector x0, the
entries of which are 1. We then randomly choose 0.05 of its entries to be perturbed by noise; after
that, the vector b is computed by b = Ax0 + ε, where ε is random Gaussian noise. The ground
truth of (5.1) is then obtained by running PDFP for 3000 iterations for which we observed the
convergence.

Fig. 1. Relative error of the function value (left) and of the iterate (right) vs epoch over 10 independent
repetitions

Figure 1 gives the relative error of function value and error of iteration. In each figure, we con-
sider different step sizes, i.e., γk = c/k0.3,c/k0.5, c/k0.7, c/k (i.e., α = 0.3, 0.5, 0.7, 1). The constant
c is given such that it give the best performance for a given α. The batch size is 100 here. From
the results we can see that example with bigger α have better performance both for relative error
of the function value and of the iterate, which conforms to our convergence analysis. Figure 2 gives
the relative error of the function value and of the iterate versus time. We consider different step
sizes (α = 0.7, 1) and batch sizes (p = 100, 1000). It can be seen that the examples with larger α,
i.e., α = 1, and batch size, i.e., p = 1, 000, exhibit the best performance.
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Fig. 2. Relative error of the function value (left) and of the iterate (right) vs time with different batch sizes
and α over 10 independent repetitions

5.2 Graph-Guide SVM. The second example we considered is a problem called graph
guide SVM, which was also considered in [21]. The problem is formulated as follows:

(5.2) min
x∈Rd

1

n

n∑
i=1

φi(x) + γ‖x‖22 + ν‖Bx‖1,

where φi(x) = max{0, 1 − bisTi x}, i = 1, · · · , n the hinge loss, and bi denotes the label of the ith
sample si. The matrix B is determined by sparse inverse covariance selection [3] (or graphical lasso
[12]). In [21], the author uses stochastic ADMM to solve this problem, i.e., the problem (5.2) is
reformulated as

(5.3)
min
x∈Rd

1

n

n∑
i=1

φi(x) + γ‖x‖22 + ν‖y‖1

s.t. Bx = y.

Denoting f2(x) = 1
n

∑n
i=1 φi(x)+γ‖x‖22, f1(x) = ‖x‖1 and the approximated augmented Lagrangian

as follows,

(5.4)

L̂β̃,k(x, y, λ) = f2(xk) +
〈
∇f [ik]2 (xk), x− xk

〉
+ f1(y)

−
〈
λ,Bx− y

〉
+
β̃

2
‖Bx− y‖22 +

‖x− xk‖22
2ζk+1

,

the STOC-ADMM is formulated as

(5.5)


xk+1 = arg min

x∈Rd
L̂β̃,k(x, yk, λk)

yk+1 = arg min
x∈Rd

L̂β̃,k(xk+1, y, λk)

λk+1 = λk − β̃(Bxk+1 − yk+1),
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16 YANAN ZHU AND XIAOQUN ZHANG

which is equivalent to

(5.6)


xk+1 =

( I

ζk+1
+ β̃BTB

)−1[
BT (β̃yk + λk) +

xk
ζk+1

−∇f [ik]2 (xk)
]

yk+1 = Proxf1/β̃

(
Bxk+1 −

λk

β̃

)
λk+1 = λk − β̃(Bxk+1 − yk+1).

The key step of SPDFP (Algorithm 2) is given as follows:

(5.7)



γk =
c

kα

xk+ 1
2

= xk − γk∇f [ik]2 (xk)

vk+1 = (I − Prox γk
λ f1

)
(
Bxk+ 1

2
+
(k − 1

k

)α
(I − λBBT )vk

)
xk+1 = xk+ 1

2
− λBT vk+1.

It can be seen that the difference between SPDFP and STOC-ADMM is that SPDFP does not need
to solve the linear equation, which may decrease the complexity in each iteration.

In the experiment, we compared STOC-ADMM and SPDFP on dataset 20newsgroups2, which
is composed of binary occurrences of 100 popular words counted from 16, 242 newsgroup postings
on the top level of which are four main categories: computer, recreation, science, and talks. As
in [21], we split 80% of the postings for training and 20% for testing and used the one-versus-rest
scheme for this multi-class classification task. The parameters for STOC-ADMM are exactly the
same as in [21]. For SPDFP, we set λ = 0.02 and γk = 2/k0.55 to ensure the best performance.
All the other settings in the model are the same for both algorithms. We give the plot of testing
accuracy averaged over 10 independent repetitions both as a function of epoch and as a function of
time. From Figure 3, it can be seen that the training accuracy of the SPDFP is as good as that of
STOC-ADMM, while SPDFP achieves the highest accuracy much quicker.

5.3 Graph guide logistic regression. The third example that we performed experiments
on was the graph guide logistic regression model [2]:

(5.8) min
x∈Rd

1

n

n∑
i=1

φi(x) + ν1‖Bx‖1,

where φi(x) = log(1 + exp(−bisTi x)). As in [21, 36], we used sparse inverse covariance selection [3]
to obtain the graph matrix G and B = [G; I], where I denotes identity. We also added a l2 term
to make the problem meet our setting, i.e., we solved the following problem:

(5.9) min
x∈Rd

1

n

n∑
i=1

φi(x) + ν1‖x‖22 + ν2‖Bx‖1.

The following are the details of the example:

2http://www.cs.nyu.edu/ roweis/data.html
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Fig. 3. Testing accuracy averaged over 10 independent repetitions as a function of epochs (left) and computation
time (right) for multi-class classification. Dataset: 20newsgroup

• We used two datasets, a9a (54 features and 581012 samples) and covtype (123 features
and 32561 samples), from LIBSVM [6].

• We used half of the set for training and half for testing.
• The ground truth of (5.9) was derived by running PDFP for 10, 000 iterations.
• We compared SPDFP with SCAS-ADMM [35], OPG-ADMM [29], and PDFP [7].
• The mini-batch version of different algorithms has been given; the batch size was 200 for

a9a and 1,000 for covtype.
• All the algorithms were run 10 times and the average reported.

(a) a9a (b) covtype

Fig. 4. Averaged relative error of objective value vs epochs over 10 independent repetitions

Figure 4 gives the log-log plot of relative error of the function value and epochs. It can be seen
that the performance of SPDFP is as good as that of traditional algorithms, while the performance
of PDFP is not good in this large-scale problem. Figures 5 and 6, which give the objective value
and testing loss of the algorithms, also verify this fact. Figure 7 gives the plot of objective value
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(a) a9a (b) covtype

Fig. 5. Averaged objective value vs epochs over 10 independent repetitions

(a) a9a (b) covtype

Fig. 6. Averaged testing loss vs epochs over 10 independent repetitions

versus time. It can be seen that stochastic algorithms perform much better than deterministic
algorithms (we plot 300 iterations for PDFP in Figure 7, i.e. 300 epochs).
We also note that in the convergence analysis, we added an l2 term to make the problem strongly
convex. However, if we eliminate the l2 term, i.e., set ν1 = 0, the SPDFP exhibits similar perfor-
mance in this example; see Figure 8 - 11.

6 Conclusions. In this paper, we propose the stochastic primal dual fixed-point algorithm
for solving the problem considered in (1.1). Based on boundness and non-boundness assumptions of
gradient of f2(x), we give the convergence and convergence rate of SPDFP. Under mild conditions,
SPDFP can achieve a O(k−α) rate, where k is iteration number and α ∈ (0, 1]. The efficiency of
SPDFP is confirmed through examples on fussed lasso, graph guide SVM, and graph guide logistic
regression for some real-world datasets.

This manuscript is for review purposes only.



STOCHASTIC PRIMAL DUAL FIXED POINT METHOD FOR COMPOSITE OPTIMIZATION 19

(a) a9a (b) covtype

Fig. 7. Averaged objective value vs time over 10 independent repetitions

(a) a9a (b) covtype

Fig. 8. Averaged relative error of objective value vs epochs over 10 independent repetitions (without l2 term)

7 Appendix. Here, we give the details of the aforementioned lemmas. First, we give a
lemma that will be used in the proof of Lemma 3.2.

Lemma 7.1. Letting r > 0 and h(x) = rf0(x/r), x ∈ Rd, then, for all y ∈ Rd,

Proxh(y) = rProxr−1f0(y/r).

Proof. The assertion can be proved by using the definition of Proxf0(·) and change of variables.
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(a) a9a (b) covtype

Fig. 9. Averaged objective value vs epochs over 10 independent repetitions (without l2 term)

(a) a9a (b) covtype

Fig. 10. Averaged testing loss vs epochs over 10 independent repetitions (without l2 term)

7.1 Proof of Lemma 3.2

Proof. By the first optimality condition of problem (1.1), we have

(7.1)

x∗ = arg min
x∈Rd

(f1 ◦B)(x) + f2(x)

⇔ 0 ∈ −γk∇f2(x∗)− γk∂(f1 ◦B)(x∗)

⇔ x∗ ∈ x∗ − γk∇f2(x∗)− γkBT∂f1(Bx∗)

⇔ x∗ ∈ x∗ − γk∇f2(x∗)− λ
(
BT ◦ γk

λ
∂f1(Bx∗).

Letting

(7.2) v∗ ∈ ∂f1(Bx∗),
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(a) a9a (b) covtype

Fig. 11. Averaged objective value vs time over 10 independent repetitions (without l2 term)

then equation (7.1) can be rewritten as

(7.3) x∗ = x∗ − γk∇f2(x∗)− γkBT v∗.

From equation (7.2), we also have

(7.4)
γk
λ
v∗ ∈ ∂ γk

λ
f1(Bx∗),

which means that

(7.5)

Bx∗ = Prox γk
λ f1

(Bx∗ +
γk
λ
v∗)

⇔ (Bx∗ +
γk
λ
v∗)− γk

λ
v∗ = Prox γk

λ f1
(Bx∗ +

γk
λ
v∗)

⇔ γk
λ
v∗ = (I − Prox γk

λ f1
)(Bx∗ +

γk
λ
v∗)

⇔ v∗ =
λ

γk
(I − Prox γk

λ f1
)(Bx∗ +

γk
λ
v∗)

⇔ v∗ =
λ

γk
Bx∗ + v∗ − λ

γk
Prox γk

λ f1
(Bx∗ +

γk
λ
v∗)

⇔ v∗ =
λ

γk
Bx∗ + v∗ − λ

γk
Prox( λγk

)−1f1

( λ
γk
Bx∗ + v∗

λ
γk

)
⇔ v∗ =

λ

γk
Bx∗ + v∗ − Proxhk

( λ
γk
Bx∗ + v∗

)
⇔ v∗ = (I − Proxhk)

( λ
γk
Bx∗ + v∗

)

,

where, in the second-to-last equality, we let hk(x) = λ
γk
f1( x

λ
γk

) = λ
γk
f1(γkλ x) and using Lemma 7.1.
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Inserting Eq. (7.3) into the last equality of Eq. (7.5), we have

(7.6)

v∗ = (I − Proxhk)
( λ
γk
B(x∗ − γk∇f2(x∗)) + (I − λBBT )v∗

)
⇔ v∗ =

λ

γk
(I − Prox γk

λ f1
)
(
B(x∗ − γk∇f2(x∗)) + (I − λBBT )

γk
λ
v∗
)
.

Combining (7.3), (7.5) and (7.6), we obtain
v∗ = (I − Proxhk)

( λ
γk
B(x∗ − γk∇f2(x∗)) + (I − λBBT )v∗

)
= T

(k)
0 (x∗, v∗)

x∗ = x∗ − γk∇f2(x∗)− γkBTT (k)
0 (x∗, v∗).

The converse can be similarly verified. This completes the proof.

7.2 Proof of Lemma 4.1.

Proof. Letting (x∗, v∗) be that in Lemma 3.2 and (xk, vk) be the iterate in Algorithm 1,

T
(k)
1 (·) = (I − Proxhk)(·), where hk(x) = λ

γk
f1( x

λ
γk

) = λ
γk
f1(γkλ x). We denote

ϕ
(k)
1,i (x, y) =

λ

γk
B(x− γk∇f [i]2 (x)) + (I − λBBT )y

=
λ

γk
Bg

(1)
k,i (x) +My

ϕ
(k)
2 (x, y) =

λ

γk
B(x− γk∇f2(x)) + (I − λBBT )y

=
λ

γk
Bg

(2)
k (x) +My

Here, g
(1)
k,i (x) = x− γk∇f [i]2 (x) and g

(2)
k (x) = x− γk∇f2(x), M = I − λBBT .

i) Estimation of ‖vk+1 − v∗‖22:

(7.7)

‖vk+1 − v∗‖22 = ‖T (k)
1 (ϕ

(k)
1,ik

(xk, vk))− v∗‖22
= ‖T (k)

1 (ϕ
(k)
1,ik

(xk, vk))− T (k)
1 (ϕ

(k)
2 (x∗, v∗))‖22

≤
〈
T

(k)
1 (ϕ

(k)
1,ik

(xk, vk))− T (k)
1 (ϕ

(k)
2 (x∗, v∗)), ϕ

(k)
1,ik

(xk, vk)− ϕ(k)
2 (x∗, v∗)

〉
=

λ

γk

〈
T

(k)
1 (ϕ

(k)
1,ik

(xk, vk))− T (k)
1 (ϕ

(k)
2 (x∗, v∗)), B(g

(1)
k,ik

(xk)− g(2)k (x∗))
〉

+
〈
T

(k)
1 (ϕ

(k)
1,ik

(xk, vk))− T (k)
1 (ϕ

(k)
2 (x∗, v∗)),M(vk − v∗)

〉
.

The second equality follows from Eq. (3.2) and the inequality follows from the firm non-

expansiveness of T
(k)
1 (see definition 2.3).

Here, and in what follows, for convenience, we denote T
(k)
1 (ϕ

(k)
1,ik

) = T
(k)
1 (ϕ

(k)
1,ik

(xk, vk)) and

T
(k)
1 (ϕ

(k)
2 ) = T

(k)
1 (ϕ

(k)
2 (x∗, v∗)).
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ii) Estimation of ‖xk+1 − x∗‖22 :
(7.8)
‖xk+1 − x∗‖22
= ‖xk − γk∇f [ik]2 (xk)− γkBT ◦ T (k)

1 (ϕ
(k)
1,ik

)−
(
x∗ − γk∇f2(x∗)− γkBT ◦ T (k)

1 (ϕ
(k)
2 )
)
‖22

= ‖g(1)k,ik(xk)− γkBT ◦ T (k)
1 (ϕ

(k)
1,ik

)−
(
g
(2)
k (x∗)− γkBT ◦ T (k)

1 (ϕ
(k)
2 )
)
‖22

= ‖g(1)k,ik(xk)− g(2)k (x∗)− γkBT ◦
(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
‖22

= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk
〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

+
γ2k
λ2
‖λBT ◦ (T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖22

= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk
〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

− γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M +

γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖22.

The first equality follows from Eq. (3.2). In the last equality, we use the definition M =
I − λBBT and ‖y‖M =

√
< y,My >.

iii) From (7.7) and (7.8), we have
(7.9)

‖xk+1 − x∗‖22 +
γ2k+1

λ
‖vk+1 − v∗‖22

= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk
〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

− γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M +

γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖22

+
γ2k+1

λ
‖(T1(ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖22

≤ ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk
〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

− γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M + 2

γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖22

≤ ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk
〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

− γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M

+ 2
γ2k
λ

λ

γk

〈
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ), B(g

(1)
k,ik

(xk)− g(2)k (x∗))
〉

+ 2
γ2k
λ

〈
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ),M(vk − v∗)

〉
= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 − 2γk

〈
BT ◦

(
T

(k)
1 (ϕ

(k)
1 )− T (k)

1 (ϕ
(k)
2 )
)
, g

(1)
k,ik

(xk)− g(2)k (x∗)
〉

− γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M + 2γk

〈
T

(k)
1 (ϕ

(k)
1 )− T (k)

1 (ϕ
(k)
2 ), B(g

(1)
k,ik

(xk)− g(2)k (x∗))
〉

+ 2
γ2k
λ

〈
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ),M(vk − v∗)

〉
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= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 + 2
γ2k
λ

〈
T

(k)
1 (ϕ

(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ),M(vk − v∗)

〉
− γ2k

λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))‖2M

= ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 +
γ2k
λ
‖vk − v∗‖2M −

γ2k
λ
‖(T (k)

1 (ϕ
(k)
1,ik

)− T (k)
1 (ϕ

(k)
2 ))− (vk − v∗)‖2M

≤ ‖g(1)k,ik(xk)− g(2)k (x∗)‖22 +
γ2k
λ

(1− λρmin(BBT ))‖vk − v∗‖22,

where the first equality uses Eq. (7.8) and the second equality of (7.7). The first inequality
uses the fact that γk is decreasing with respect to k. The second inequality uses Eq. (7.7).
The last inequality uses the fact that 0 < λ ≤ 1

ρmax(BBT )
, which means that 0 � M �

(1− λρmin(BBT )).
Considering the expectations of both sides of inequality (7.9), we obtain
(7.10)

E(k+1)(‖xk+1 − x∗‖22 +
γ2k+1

λ
‖vk+1 − v∗‖22)

≤ E(k+1)(‖g(1)k,ik(xk)− g(2)k (x∗)‖22) +
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

= E(k+1)
(
‖xk − x∗ − γk(∇f [ik]2 (xk)−∇f2(x∗))‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

= E(k)
(
‖xk − x∗‖22

)
+
γ2k
λ

(1− λρmin(BBT ))E(k)(‖vk − v∗‖22)

− 2γkE(k)
〈
∇f2(xk)−∇f2(x∗), xk − x∗

〉
+ γ2kE(k+1)(‖∇f [ik]2 (xk)−∇f2(x∗)‖22),

where, in the third term of the last equality, we use the fact that

E(k+1)
(
∇f [ik]2 (xk)

)
= E(k)

(
∇f2(xk)

)
.

This completes the proof.
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